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Abstract 

 

In our previous research, we applied independent component analysis (ICA) for the 

restoration of image sequences degraded by atmospheric turbulence. The original high-resolution 

image and turbulent sources were considered independent sources from which the degraded 

image is composed of. Although the result was promising, the assumption of source 

independence may not be true in practice. In this paper, we propose to apply the concept of 

dependent component analysis (DCA), which can relax the independence assumption, to image 

restoration. In addition, the restored image can be further enhanced by employing a recently 

developed Gabor-filter-bank-based single channel blind image deconvolution algorithm. Both 

simulated and real data experiments demonstrate that DCA outperforms ICA, resulting in the 

flexibility in the use of adjacent image frames. The contribution of this research is to convert the 

original multi-frame blind deconvolution problem into blind source separation problem without 
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the assumption on source independence; as a result, there is no a priori information, such as 

sensor bandwidth, point-spread-function, or statistics of source images, that is required. 

 

Keywords: Atmospheric turbulence; Image restoration; Independent component analysis; 

Dependent component analysis. 

 

1. Introduction 

Atmospheric turbulence is an inevitable problem in long-distance ground-based and space-based 

imaging. The optical effects of atmospheric turbulence arise from random inhomogeneities in the 

temperature distribution of the atmosphere. A consequence of these temperature inhomogeneities 

is non-stationary random distribution of the refraction index of the atmosphere [1]. Atmospheric 

turbulence can make distant objects being viewed through a sensor (e.g., a digital camera or 

video recorder) to appear blurred. Also, the time-varying nature of the turbulence can make the 

appearance of objects to wave in a slow quasi-periodic fashion. When a target is small and 

moving, its actual location becomes very difficult to estimate. This phenomenon greatly hinders 

accurate target detection, tracking, classification, and identification.  

Numerous methods have been developed to mitigate the atmospheric turbulence effects. 

Three broad classes of techniques used to correct turbulence effects are: 1) pure post-processing 

techniques, which use specialized image processing algorithms; 2) adaptive optics techniques, 

which afford a mechanical means of sensing and correcting for turbulence effects; and 3) hybrid 

methods, which combine the elements of post-processing techniques and adaptive optics 

techniques. Each of these techniques has performance limitation as well as hardware and 

software requirements. In our research, due to its low cost, we focus on the development of pure 
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post-processing techniques to correct atmospheric turbulence. Quite a few algorithms in this 

aspect have been developed in the past twenty years. These algorithms fall into two major 

categories: those adopting explicit or implicit ways to measure the perturbations induced on the 

wavefront by the atmosphere, and those using no wavefront information to construct the 

underlying image formation characteristics of the atmosphere. Wavefront reference algorithms 

include the guides (natural or artificial) and deconvolution from optical measurements of the 

wavefront entering the telescope, while reference-less algorithms do not need such guides. In our 

research, we are interested in the no-reference techniques because no optical measurements are 

required. This also makes real time or near-real time implementation possible and simple for 

many national defense related applications. 

Current image restoration techniques for atmospheric turbulence correction employ the well-

known linear image formation model      yxsyxhyxg ,,,  , where the degraded image 

 yxg ,  is obtained by convolving the original high-resolution image  yxs ,  with the point-

spread-function (PSF)  yxh ,  (i.e., PSF models the degradation caused by atmospheric 

turbulence) [2]. Due to the space- and time-varying nature of atmospheric turbulence, the PSF 

should be changed with pixel location  yx,  and time t. However, for the purpose of simplicity 

and mathematical tractability, most techniques assume that PSF is unchanged with space and 

time. In other words, they are space- and time-invariant restoration approaches.  

To relax the unrealistic assumption of a space- and time-invariant PSF, we introduced the 

Blind Source Separation (BSS) technique to achieve the restoration of image sequences [3]. 

Instead of using the linear convolutive degradation model and estimating the PSF, we considered 

each spatial turbulence pattern as one physical source, the original high-resolution image of the 
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object as another source, and then the degraded low-resolution image was the result from the 

linear combination of these sources. This leads to the model at the component level written as  

      0
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where contributions from the high-resolution object image and individual turbulence patterns 

 
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
between time tn and the reference time t0, i.e. tn = tn  t0, are contained in the unknown 

mixing matrix coefficients anm, which depend on some physical constants [3]. The component 

level model (1) can be generalized to a multi-frame model in a matrix form as 

 ASG    (2) 

where TNR G  is a matrix of the blurred image frames with each row representing a blurred 

image frame, MNR A  is an unknown basis or mixing matrix, and TMR S is a matrix of the 

source images. Here, N represents the number of frames whereas each frame is treated as one 

measurement, M denotes the number of source images, and T = PQ stands for the number of 

pixels in each image (P and Q are image spatial dimensions). It is assumed that each image 

frame has been transformed into a vector by a row or column stacking procedure. It is also 

assumed that motion effects, if present, are compensated in advance. 

 BSS can be applied on (2) to extract the high-resolution object image without the prior 

knowledge or estimation of PSF. The most successful solution of the BSS problem is achieved 

through independent component analysis (ICA). It solves the BSS problem by imposing a 

constraint on extracted sources to be non-Gaussian (at most one source is allowed to be 

Gaussian) and statistically independent from each other [4]. One of popular ICA algorithms, 

referred to as Joint Approximate Dia-gonalization of Eigenmatrices (JADE), was adopted due to 
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its robustness, wherein the statistical dependence among data samples was measured by the 

fourth-order cross-cumulants [5]. 

However, it has been argued that the assumption of source independence may not be true in 

many situations. For instance, the atmospheric turbulence components may be correlated 

spatially and temporally. Sources may be at least partially statistically dependent due to the fact 

that multi-frame image model adopted in [3] and used herein assumes all the sources are emitted 

from the same space-time location (x, y, t0). Thus, in this paper, we will propose the use of 

dependent component analysis (DCA) for image restoration, which does not require sources to 

be independent. Both simulated and real data experiments demonstrate that DCA outperforms 

ICA under this circumstance. In addition, DCA can be employed to further sharpen the restored 

image to achieve super-resolution. 

In summary, the contribution of this research is to convert the original multi-frame blind 

deconvolution problem into BSS problem without the assumption on source independence; as a 

result, no a priori information or assumption on sensor bandwidth, PSF, or statistics of source 

images is required. 

 

2. Derivation of DCA algorithms 

Few papers in the literature discuss the problem of DCA [6]. Here we adopt some previous 

studies conducted in [7][8]. The basic idea behind DCA is to find a transform T that can improve 

the statistical independence between the sources but leave the basis matrix unchanged, i.e.,  

      SAASG TTT  . (3) 

Because the sources after this transformation will be less statistically dependent, any standard 

ICA algorithm, such as JADE, derived for the original BSS problem can be used to learn the 
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basis matrix A. Once the basis matrix A is estimated, the sources S can be recovered by applying 

the pseudo-inverse of A on the multi-frame image G in (2). 

Examples of linear transforms that possess such a required invariance property and generate 

less dependent sources include: 1) highpass filtering, 2) innovation, and 3) wavelet transforms.  

 

Highpass filtering (HP) 

A highpass filter, such as the Butterworth highpass filter, is applied to preprocess the observed 

signals G, followed by a standard ICA algorithm, such as JADE, on the filtered data in order to 

learn the mixing matrix A. This is motivated by the fact that highpass filtered signals are usually 

more independent than original signals that include low frequency components. Meanwhile, this 

approach is computationally very efficient, making it attractive for DCA problems with 

statistically dependent sources. In this case the transform T in Eq. (3) is the highpass filtering 

operator that can be seen as a special case of the filter bank approach [9][10]. 

 

Innovation (IN) 

Another computationally efficient approach is based on the use of innovation. The arguments for 

using innovation are that they are usually more independent from each other and more non-

Gaussian than original processes [11]. The innovation process is referred to as prediction error 

[12], which is defined as:  

       Mmirsbrsre m

l

i
imm ,,1   ,

1

 


 (4) 

where sm(r i) is the i-th sample of a source process sm(r) at location (r i) and b’s are prediction 

coefficients. em(r) represents the new information that sm(r) has but is not contained in the past l 
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samples. It is proved in [11] that if G and S follow the linear mixture model (2) their innovation 

processes GE  and SE  (in matrix form) follow the same model as well, i.e.,  

 SG AEE  . (5) 

In this case the transform T in Eq. (3) is the linear prediction operator. Temporal decorrelation 

based preprocessing algorithm [23] can be seen as an extension of the presented innovation 

based DCA algorithm. It is the same as the presented method when the model is linear but the 

algorithm in [23] works in the case of post-nonlinear mixture as well. 

 

Subband decomposition independent component analysis (SDICA)  

The SDICA approach assumes that wideband source signals can be dependent but some of their 

narrowband sub-components are less dependent [9][10]. Thus, SDICA extends applicability of 

standard ICA through the relaxation of the independence assumption. In this case, the transform 

T in Eq. (3) is any kind of filter-bank-like transform used to implement the sub-band 

decomposition scheme. 

A wavelet transform-based approach to SDICA was developed in [8][13] to obtain adaptive 

subband decomposition of wideband signals through a computationally efficient implementation 

in a form of iterative filter bank. Computationally efficient small cumulant-based approximation 

of mutual information is used for automated selection of the subband with the least dependent 

components, to which an ICA algorithm is applied. The potential disadvantage of this approach 

is high computational complexity if 2D wavelet transform is used for image decomposition. 

Hence, a reformulation can be accomplished based on dual tree complex wavelets [14]. Dual tree 

complex wavelets are approximately computationally as efficient as decimated wavelet packets 

but as accurate as the shift-invariant wavelet packet approach [15][16]. 
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3. Algorithms for comparison 

Other BSS approaches that can deal with statistically dependent sources include: independent 

subspace analysis (ISA) [24][25], nonnegative matrix and tensor factorization (NMF/NTF) [27-

30], and the blind Richardson-Lucy (BRL) algorithm [33-36], which are used for comparison 

purpose in this paper. They are briefly described as follows. 

 

Independent Subspace Analysis 

ISA assumes that the source signal space is composed of a number of subspaces. Signals 

contained in the same subspace are mutually dependent while signals contained in different 

subspaces are independent. When each subspace contains one component only, the ISA becomes 

ICA. The practical difficulty with the ISA approach is in choosing a scheme necessary to 

partition the source signal space into the subspaces with the required property. For instance, it is 

not obvious how to choose the number of subspaces as well as the number of signals contained 

in each subspace.  

In the multi-frame blind deconvolution problem treated in this paper we decompose the 

signal space into two subspaces: one that contains one image representing an approximation of 

the object and the other that contains images related to the turbulence patterns. Here, we present 

in the sequel brief derivation of the ISA algorithm [25], which is based on the concept of multi-

dimensional ICA [24] that follows the same model in (2). It is assumed that components   1

M

m m
s  

are divided into K tuples where components contained in the same tuple are dependent and 

components contained in different tuples are independent (in other words, tuples correspond to 

subspaces). It is also assumed in [25] that the joint probability density function (pdf) of a 

particular subspace is spherically symmetric; hence, it can be expressed as the sum of squares of 
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 
1

kdk
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s , where k denotes the subspace index and dk denotes the dimension of the kth subspace 

such that 
1

K

kk
d M


 . It is further assumed sparse representation, which may be in agreement 

with data representation adopted in our approach due to the fact that turbulence patterns are 

expected to be sparse. Under these assumptions the following gradient update for de-mixing 

matrix W is obtained (i.e., WGS) 
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( ) ( ) ( ) ( ) 1,...,
k m

m m i
i S

t t s t s t m M





 
     

 
w z   (6) 

where k(m) denotes the index of the subspace to which wm belongs and z denotes the whitened 

data (whitening is applied to data matrix in ISA in the same way as in standard ICA) [26].  

 

Nonnegative Matrix and Tensor Factorization 

Unlike ICA, NMF/NTF algorithms do not impose statistical independence or non-

Gaussianity requirements on the sources. NMF/NTF algorithms may yield physically useful 

solutions by imposing the nonnegativity, sparseness or smoothness constraints on the sources 

[27-30]. In [27], the NMF algorithm was first derived to minimize two cost functions: the 

squared Euclidean distance and the Kullback-Leibler divergence. Using a gradient descent 

approach the resulting multiplicative algorithms converged very slowly. In addition, the lack of 

additional constraints prevents NMF algorithms [27] from yielding a unique decomposition. 

Generalization of the NMF algorithms [27] has been done in [28-30]. The gradient-based NMF 

algorithm with a sparseness constraint being incorporated into the cost function leads to the 

regularized alternating least square (RALS) algorithm [28]: 

   21
( ) ( )

2
D       S S A AG AS G AS S A  (7) 
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where the regularization terms S and A enforce sparse solutions for A and S, respectively. If 

constraints are chosen as   2( ) 1 2 ijij
s S S  and   2( ) 1 2 ijij

a A A , the regularization terms help 

regularize the pseudo-inverse when the normal matrices ATA and SST are ill-conditioned. 

Assume  D S G AS 0  and  D A G AS 0  for positive entries in A and S, which occurs at 

stationary points. Then 

    ( )

( 1) ( )max , k

k T k T 



  S A A

S A A A G  

    ( 1)

( 1) ( )max , k

k T T k  




  A S S
A GS SS   (8) 

where k denotes iteration index,  ( )+ is Moore-Penrose inverse, and   is a small constant (10-9) to 

enforce positive entries. Regularization terms help avoid local minima and are implemented as 

 ( ) ( )
0 expk k k     A S  (in the experiments 0=20 and =10). We employ constraints if there 

is a priori information about the sparseness of either A or S; otherwise, we set both 

regularization terms to zero. This algorithm is referred to as the NMF algorithm in this paper. 

Extension of this approach, known as local ALS, to 3D tensor factorization is given in [29], 

which is referred to as the NTF algorithm in this paper. In this case G and S in model (2) become 

3D tensors: 0
N P QR  
G  and 0

M P QR  
S . Unlike a majority of NTF/NMF algorithms that estimate 

the source matrix/tensor globally, the local ALS algorithm [29] performs it at the source level: 

  ( ) ( )

1

M
m m

m m s
m


 

   
Ts a G  

     1

M




      
T TA A AS G S SS I   (9) 

where IM is an MM identity matrix, ( )m
s  is a sparseness constraint that regulates sparseness of 

the mth source, am represents the mth column of A , ( )m
j jj m

 G G a s , and []+=max{,}  
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(e.g., =10-16). Regularization constant  changes as a function of the iteration index as 

 0 expk k    (with 0 = 100 and  = 0.02 in the experiments). Note that sparseness 

constraint ( )m
s  imposed on source tensors affects the final result ( ( )m

s  = 0.05 in the experiment).  

     

Blind Richardson-Lucy (BRL) algorithm 

BRL algorithm [33][34] was originally derived for non-blind single frame deconvolution of 

astronomical images. It has been later formulated in [35] for blind deconvolution, and then 

modified by an iterative restoration algorithm in [36]. To briefly introduce BRL algorithm we 

need to write a single frame image gn, n {1,…,N}, in the lexicographical notation:  

 n g Hs  (10) 

 
where PQ PQxPQ

0+ 0, R , Rn  g s H  (BRL needs to employ a PSF function whose matrix version is 

H). The observed image vector gn and the original image vector s are obtained by a stacking 

procedure. The matrix H is a block-Toeplitz matrix [31]. It absorbs itself into the blurring kernel 

h(x,y) by assuming that at least its size is known. The block-Toeplitz structure of H can be 

further approximated by a block-circular structure. This approximation introduces small 

degradations at image boundaries, but enables the expression of Eq. (10) with the circular 

convolution. The algorithm can be implemented in the block adaptive fashion: 

     ( ) ( 1) ( 1) ( )
1

ˆ ˆ ˆˆ ˆ
Tk k k k k

i i i
 


    

H s g H s H     

    ( ) ( ) ( )T ( ) ( )
1ˆ ˆ ˆk k k k k

i i i
   
 

s s H g H s   (11) 

where   denotes component-wise multiplication,   denotes component-wise division, i and k 

are internal and main iteration indices, respectively. Note that although H is blindly estimated 

from the observed image, its size must be either known or estimated a priori. 
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4. DCA for single image enhancement 

After a high-resolution frame is reconstructed, its quality can be further improved using a 

sharpening approach in a post-processing step. In general, it is difficult to conduct image 

sharpening based on a single-frame image only, due to the lack of additional information. It is 

easier if more observations are available about the scene, and image details can be extracted from 

these observations. Here, we investigate a single-frame multi-channel image enhancement 

approach [13]. A 2D Gabor filter bank can be employed to realize multi-channel filtering, 

considered as multiple observations for ICA or DCA [13]. After the multi-channel version of the 

original image is generated, an ICA or DCA algorithm can be applied to extract an enhanced 

image. The multi-channel linear mixture model of an observed image, in the form of (2), has in 

[13] been obtained under a special assumption that source signals are the original high-resolution 

source image and its higher order spatial derivatives. Note that this special class of sources is 

mutually statistically dependent, [17], and a DCA algorithm is a better choice than an ICA 

algorithm to fulfill image enhancement. 

 

5. No-reference image quality assessment 

In order to objectively evaluate image quality after restoration, automatic assessment is needed. 

When desired high-resolution image is available, quality assessment can simply be achieved by 

comparing the restored image with desired image using a certain criterion, such as signal-to-

noise ratio (SNR). However, in many practical situations the desired image is not available. 

Thus, quality assessment becomes “no-reference”. Here we introduce two “no-reference” 

metrics: the area under the magnitude of the 1D the Fourier transform along a chosen line in the 

image and the Laplacian operator. 
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The power spectrum-based image quality metric has been proposed in [21][22] due to the 

invariance of power spectra of arbitrary scenes. It has been proposed as a substitute for 

subjective image assessment in situations when naturally occurring targets are not available and 

when re-imaging of the same scene for comparison purpose (via mean square error) is not 

possible. Most importantly the power spectrum metric can be easily incorporated into a human 

visual system model [21][22]. In this paper, instead of calculating power spectrum-based image 

quality metric in an absolute sense, we compare one-dimensional power spectrums of images 

restored by various algorithms. When the power spectrum is normalized to unit gain at the DC 

component, the area under it corresponds to the level of details contained in the image: 

 
 
 0 0

F
PSA

F





  (12)  

where  corresponds with half of the sampling frequency and  F   represents magnitude of 

the discrete Fourier transform (DFT) of a chosen line in the image. An image with better quality 

of restored details should have a larger PSA. 

The Laplacian operator is an approximation to the second derivative of brightness I(x,y) in 

direction x and y, can be applied: 

                           
2

2

2

2
2 ,,

,
y

yxI

x

yxI
yxI








 .                                         (13) 

It is actually a spatial highpass filter. It yields a larger response to a point than to a line. An 

image with turbulence is typically comprised of points varying in brightness, and the Laplacian 

operator will emphasize these points.  A metric based on Laplacian operator is [18] 

                             yxII ,mean 2
4                                              (14) 
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which takes the average of second-order derivatives of pixels in the entire image.  An image with 

better quality should have a smaller I4. 

 

6. Experiments 

6.1 Computer simulation 

In order to perform comparative performance analysis and demonstrate performance consistency 

of the DCA algorithms in solving blind deconvolution problem, we created four degraded 

frames. They were obtained by convolving the original image shown in Fig. 1(a) (with 128128 

pixels) using a Gaussian kernel-based PSFs, i.e. 

      , , , , 1,...,4n n ng x y h x y s x y n    

 
2 2

2
( , , ) exp

2n n n
n

x y
h x y C


 

  
 

  (15) 

where Cn and n represent a normalization constant and standard deviation associated with the 

nth frame, respectively. 

We point out that Gaussian kernel-based PSFs are commonly used to simulate the long-term 

exposure to atmospheric turbulence [31][32]. Standard deviations used to generate four PSFs in 

this experiment were randomly chosen as [1.8535 2.1909 2.2892 1.9624]. Fig. 1(b) shows one of 

the four blurred frames. Fig. 2 shows the result obtained by DCA (IN-JADE) algorithm. Based 

on the adopted data representation one image (i.e., Fig. 2(b)) corresponds with the object, while 

the rest of images correspond with turbulence patterns. Fig. 3 shows the restored images using 

various algorithms. In terms of visual perception, the best performance is achieved by innovation 

and HPF based DCA algorithms. Note that performance of the BRL algorithm is modest despite 

the fact that radius of the degradation kernel had to be estimated. To quantify the performance, 
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Table 1 lists the values using the two no-reference image quality metrics: PSA metric given by 

Eq. (12) and I4 metric given by Eq. (14). Note that better performance corresponds to a larger 

PSA value and a smaller I4 value. In this regard it appears that DCA algorithms based on 

innovation, HP filtering, and wavelet transform performed the best. This is in agreement with the 

visual impression discussed previously. 

 

6.2 Real data experiment 1 

An image sequence of the Washington Monument is used in the experiment, which is the same 

as in [3]. Note that the frames with 10-frame spacing were used in [3]. In Figs. 4-12, we 

compared the performance of the ICA (i.e., JADE) algorithm and the three DCA algorithms in 

nine cases with different fashions in frame selection. The number of Givens rotations was used to 

evaluate the computational complexity, and the Laplacian metric I4 was adopted to evaluate the 

image quality. 

 

Case 1: using 5 consecutive frames (Fig. 4) 

In this case, the observations were obviously dependent.  So the JADE algorithm yielded a poor 

result. The three DCA algorithms provided better performance, but the result could be further 

improved. This may be because the number of frames (i.e., observations) was not large enough 

to accommodate all the sources existing (the number of components that can be extracted is up-

bounded by the number of frames). 

 

Case 2: using 10 consecutive frames (Fig. 5) 

In this case, the observations were strongly dependent. So the JADE algorithm yielded an even 

poorer result.  Compared to Case 1, the three DCA algorithms provided better performance with 

the number of frames (i.e., observations) being increased. 
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Case 3: using 20 consecutive frames (Fig. 6) 

The phenomenon was similar to that in Case 2. The performance of the JADE algorithm became 

worse, and the performance of the three DCA algorithms became better. 

 

Case 4: using 50 consecutive frames (Fig. 7) 

The phenomenon was similar to that in Case 2. The performance of the JADE algorithm became 

even worse, and the performance of the three DCA algorithms became even better. 

 

Case 5: using 25 frames with 2-frames spacing (Fig. 8) 

In this case, the observations became less dependent. But the performance of the three DCA 

algorithms was still better than that of the JADE algorithm. 

 

Case 6: using 10 frames with 5-frames spacing (Fig. 9) 

In this case, the observations became more independent. The performance of the JADE 

algorithm became much better, and the performance of the three DCA algorithms remained 

unchanged. 

 

Case 7: using 20 frames with 5-frames spacing (Fig. 10) 

It is similar to Case 6 but more frames were used. The performance of the JADE algorithm 

became worse again due to the increase of the number of frames; the performance of the three 

DCA algorithms was slightly improved. 

 

Case 8: using 10 frames with 10-frames spacing (Fig. 11) 

In this case, the observations became quite independent. The performance of the JADE algorithm 

became much better; the performance of the three DCA algorithms remained unchanged. 
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Case 9: using 5 frames with 20-frames spacing (Fig. 12) 

In this case, the observations became very independent. So the performance of the JADE 

algorithm was improved; the performance of the three DCA algorithms remained unchanged. 

 

The observations in Cases 1-9 can be summarized as follows. 

1)  When the original JADE is applied, use of consecutive frames causes the difficulty in source 

separation; it has to use the frames with spacing; increasing the number of frames even 

worsens the situation.   

2)  The proposed DCA algorithms can relax the constraints on frame selection, greatly 

simplifying future hardware implementation. 

3)  Among the three DCA algorithms, the one using innovation provides the best reconstruction 

result (due to the smallest I4 values in most cases). 

4)  Among the three DCA algorithms, the SDICA requires the least computation time (due to the 

smallest number of Givens rotations in most cases).  

5)  The three DCA algorithms may yield better results than the original ICA even when the ICA 

performs well. 

Note that increasing the frame spacing results in more independent observations. 

Consequently, the mixing matrix A is better conditioned. This certainly improves the 

performance of the ICA algorithm. However, the performance of the DCA algorithms is not 

influenced much by this strategy due to its capability of handling source dependence. However, 

if spacing is increased too much, then the slow quasi-periodic variation of turbulence can make 

the measurements more linearly dependent, which will degrade the ICA performance again. 

Hence, DCA algorithms can significantly relax the constraints on the selection of frames and the 

number of frames to be used in the restoration process.  
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The data in Case 1, which includes five consecutive frames, were used for comparative 

performance analysis with other methods capable to separate dependent sources. The PSA and I4 

were calculated for the restored images obtained from these methods. As shown in Table 2, it is 

confirmed that ISA, NMF, NTF, and BRL could not compete with the three DCA methods. 

Within the three DCA methods, those using innovation and HP filtering provided the best results. 

 

Fig. 13 shows an original image obtained after restoration with the previously described 

DCA approach. Fig. 14 shows the 16 versions (real and imaginary) obtained after 2D Gabor 

filtering where two spatial frequencies and four orientations were used [13]. Then there were 17 

channels available for the further processing.  

The 17 channels ought to be processed by DCA, because the high-resolution image and its 

spatial derivatives are statistically dependent [13][17]. One extracted source will be the final 

sharpened image. In order to automatically extract the finally enhanced image, predictability 

metric is adopted as the selection criteria. Predictability metric of an extracted image s(n) is 

defined as: 
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  

 
 

max

max

2

2

( ) ( )( )
( ) log log

( ) ( ) ( )

n

n
n

n

s n s nV s n
F s n

U s n s n s n


 



 

 (16) 

where V reflects the extent to which s(n) is predicted by a long term moving average ( )s n  and U 

reflects the extent to which s(n) is predicted by a short term moving average ( )s n  [19][20]. 

Because the deconvolution method [13] extracts source image and its spatial derivatives, the true 

source image should be the most predictable and its derivatives should be less predictable. In 

other words, the algorithm automatically chooses the source with the lowest F value as the final 

sharpened image. 
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Fig. 15(a) shows the result when the wavelet transform was applied for DCA (i.e., SDICA). 

Obviously, the final result was s1.  Fig. 16(b) shows the result when the innovation was applied 

for DCA. Obviously, the final result was still s1. Comparing the s1 in Fig. 15(b) with the s1 in 

Fig. 15(a), it implies that the result obtained by innovation was better because it looked more 

natural, and the enhancement around the window area was obvious.  Results shown on Fig. 15(a) 

and Fig. 15(b) were obtained when four sources were extracted using JADE, i.e., it had been 

assumed that in addition to the high-resolution image its three spatial derivatives existed in the 

linear mixture model of the multi-channel single frame image. If only one source was assumed, 

the result looked even better as shown in Fig. 15(c). By comparing Fig. 15(b) and Fig. 15(c) with 

Fig. 13, we can see that the image is significantly enhanced with sharpened edges and enhanced 

details such as the area around the window. 

 

6.3 Real data experiment 2 

To further investigate the performance of the DCA algorithms, 10 consecutive frames with 

108108 pixels were used in the second experiment. One of degraded frames was shown in Fig. 

16(a). The restored images using JADE, IN-JADE, and HP-JADE were shown in Fig. 16(b)-(d), 

where the improvement is evident around road lamps. Fig. 16(e) is the enhancement result for 

the image in Fig. 16(d) using the multi-channel filtering approach in Section 4, where the details 

in tree profile and road lamp were highlighted. 

Table 3 lists the image quality assessment results for all the methods. We can see that ICA 

(JADE) performed well in this case, and SDICA did not perform as well as ICA. However, IN-

JADE and HP-JADE still outperformed the ICA. All these methods provided better results than 

ISA, NMF, NTF, and BRL. 
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7. Conclusion 

In our previous research, we applied ICA for the restoration of image sequences degraded by 

atmospheric turbulence. The degraded image was assumed to be composed of the original high-

resolution image and turbulent sources that exist at the same space-time location (x,y,t0). The 

assumption made on the high-resolution image and turbulent sources is that they are mutually 

statistically independent despite the fact that they are emitted from the same space-time location 

(x,y,t0). Although the result was promising, the assumption of source independence may not be 

true in practice. To make the ICA result acceptable, we need to select frames with certain 

spacing. This leads to problems in real-time or near real-time implementation. In this paper, we 

propose to apply DCA, which can relax this requirement. The experimental results using 

simulated and real data demonstrate that DCA can significantly improve the restoration 

performance, without imposing any requirement on the selection of frames to be used in the 

restoration process. They outperform other algorithms that can be applied to dependent sources. 

Among the three DCA algorithms we discuss here, the ones based on innovation and highpass 

filtering yield the better results and the SDICA based on wavelet packet requires the smallest 

computational times. In addition to that, the restored image can be further sharpened through a 

post-processing step with a single-frame multi-channel blind deconvolution method based on 2D 

Gabor-filter bank and DCA. It is noteworthy that DCA performs similarly to ICA when the 

assumption of source independence is satisfied. 
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List of table captions 

Table 1.  No-reference quality assessment for the restored images in the computer simulation.  

Table 2.  No-reference quality assessment for the restored images in real data experiment 1. 

Table 3.  No-reference quality assessment for the restored images in real data experiment 2. 

 

List of figure captions 

Fig. 1.  (a) original image and (b) a degraded image used in computer simulation. 

Fig. 2.  Four source images obtained from DCA (IN-JADE) algorithm: (a), (c), and (d) 

correspond to turbulence patterns, (b) corresponds to the restored image.  

Fig. 3.  Images restored from four simulated blurred frames using (a) ICA (JADE), (b) DCA 

(IN-JADE), (c) DCA (HP-JADE), (d) DCA (SDICA), (e) ISA, (f) NMF, (g) NTF, and 

(h) BRL algorithms. 

Fig. 4.   Restored images from ICA and three DCA algorithms when using 5 consecutive frames. 

Fig. 5.  Restored images from ICA and three DCA algorithms when using 10 consecutive 

frames. 

Fig. 6.  Restored images from ICA and three DCA algorithms when using 20 consecutive 

frames. 

Fig. 7.  Restored images from ICA and three DCA algorithms when using 50 consecutive 

frames. 

Fig. 8.   Restored images from ICA and three DCA algorithms when using 25 frames with 2-

frames spacing. 

Fig. 9.  Restored images from ICA and three DCA algorithms when using 10 frames with 5-

frames spacing. 
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Fig. 10.  Restored images from ICA and three DCA algorithms when using 20 frames with 5-

frames spacing. 

Fig. 11.  Restored images from ICA and three DCA algorithms when using 10 frames with 10-

frames spacing. 

Fig. 12.  Restored images from ICA and three DCA algorithms when using 5 frames with 20-

frames spacing. 

Fig. 13.  A reconstructed frame for further enhancement. 

Fig. 14.  Multi-channel version of the original image in Fig. 13 produced by the 2D Gabor filter 

bank with two spatial frequencies and four orientations. 

Fig. 15.  Image enhancement for Fig. 13 using single-frame multi-channel filtering. 

Fig. 16.  Results for real data experiment 2. 
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Table 1.  No-reference quality assessment for the restored images in computer simulation. 

 ICA 

(JADE) 

DCA  

(IN-JADE) 

DCA 

(HP-JADE)

DCA  

(SDICA) 

ISA NMF NTF BRL 

PSA 3.53 3.90 4.44 3.18 2.87 3.44 2.45 2.66 

I4 6.18 2.56 3.66 2.79 4.08 5.21 2.54 3.60 

 
 

Table 2.  No-reference quality assessment for the restored images in real data experiment 1. 

 ICA 

(JADE) 

DCA  

(IN-JADE) 

DCA 

(HP-JADE) 

DCA  

(SDICA)

ISA NMF NTF BRL 

PSA 2.74 2.74 2.76 2.73 1.61 2.69 2.73 2.23 

I4 2.06 1.63 1.63 1.82 3.53 2.10 9.10 7.29 

 
 

Table 3.  No-reference quality assessment for the restored images in real data experiment 2. 

 ICA 

(JADE) 

DCA  

(IN-JADE) 

DCA 

(HP-JADE) 

DCA  

(SDICA)

ISA NMF NTF BRL 

PSA 6.71 6.99 7.11 5.27 3.94 5.20 3.69 2.63 

I4 2.56 2.52 2.56 3.57 5.26 5.19 4.38 5.19 
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                                (a)                                                                                   (b)  

 
Fig. 1.  (a) original image and (b) a degraded image used in computer simulation. 
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 (a)                                                                                       (b) 

 

                        
(c)                                                                                     (d) 

 
Fig. 2.  Four source images obtained from DCA (IN-JADE) algorithm: (a), (c), and (d) 

correspond to turbulence patterns, (b) corresponds to the restored image.  
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                       (a)                                                (b)                                                (c) 

 

         
                       (d)                                                (e)                                                (f) 

 

     
                                                 (g)                                                (h)                                               

 
Fig. 3.  Images restored from four simulated blurred frames using (a) ICA (JADE), (b) DCA (IN-

JADE), (c) DCA (HP-JADE), (d) DCA (SDICA), (e) ISA, (f) NMF, (g) NTF, and (h) BRL 

algorithms. 
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                                 JADE                           HP-JADE                       IN-JADE                         SDICA 

Givens Rotation:       (44)                                 (30)                                 (32)                               (59) 
Laplacian Metric:  (2.0580)                          (1.6284)                          (1.6260)                        (1.8220) 

Fig. 4.  Restored images from ICA and three DCA algorithms when using 5 consecutive frames. 
 

                                                             
                                  JADE                           HP-JADE                      IN-JADE                        SDICA 

Givens Rotation:       (398)                               (265)                             (441)                                (39) 
Laplacian Metric:   (2.3736)                           (1.5320)                        (1.5236)                         (1.6416) 

Fig. 5. Restored images from ICA and three DCA algorithms when using 10 consecutive frames. 
 

                                                                    
                                   JADE                          HP-JADE                      IN-JADE                         SDICA 

Givens Rotation:       (9341)                            (4931)                            (3912)                              (123) 
Laplacian Metric:    (1.9220)                         (1.4408)                        (1.4328)                          (1.6084) 

Fig. 6. Restored images from ICA and three DCA algorithms when using 20 consecutive frames. 



 33

                                                               
                                   JADE                          HP-JADE                       IN-JADE                        SDICA 

Givens Rotation:      (51746)                          (33355)                           (36922)                          (46) 
Laplacian Metric:    (3.4932)                         (1.3928)                          (1.3756)                      (1.5200) 

Fig. 7. Restored images from ICA and three DCA algorithms when using 50 consecutive frames. 

                                                             
                                  JADE                          HP-JADE                        IN-JADE                        SDICA 
Givens Rotation:      (5364)                            (9492)                             (8368)                             (44) 
Laplacian Metric:   (2.8660)                         (1.3664)                          (1.3600)                         (1.4560) 

Fig. 8.  Restored images from ICA and three DCA algorithms when using 25 frames with 2-
frames spacing. 

                                                             
                                  JADE                           HP-JADE                        IN-JADE                       SDICA 

Givens Rotation:       (715)                              (1197)                              (460)                             (49) 
Laplacian Metric:   (1.5192)                          (1.3920)                          (1.3880)                       (1.5448) 

Fig. 9.  Restored images from ICA and three DCA algorithms when using 10 frames with 5-
frames spacing. 



 34

                                                             
                                  JADE                          HP-JADE                       IN-JADE                         SDICA 

Givens Rotation:      (2224)                            (3859)                             (4617)                             (54) 
Laplacian Metric:   (1.8032)                         (1.3576)                          (1.3456)                       (1.4796)    

Fig. 10.  Restored images from ICA and three DCA algorithms when using 20 frames with 5-
frames spacing. 

                                                             
                                   JADE                          HP-JADE                       IN-JADE                         SDICA 

Givens Rotation:        (369)                              (254)                               (216)                              (49) 
Laplacian Metric:    (1.6712)                          (1.3836)                          (1.3828)                        (1.3896) 

Fig. 11.  Restored images from ICA and three DCA algorithms when using 10 frames with 10-
frames spacing. 

                                                               
                                  JADE                           HP-JADE                       IN-JADE                        SDICA 

Givens Rotation:        (46)                                 (40)                                 (44)                               (99) 
Laplacian Metric:   (1.4856)                          (1.4236)                         (1.4248)                         (1.5424) 

Fig. 12.  Restored images from ICA and three DCA algorithms with 20-frames spacing. 
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Fig. 13.  A reconstructed frame for further enhancement. 

 

                         
 

                         
 

                         
 

                         
Fig. 14.  Multi-channel version of the original image in Fig. 13 produced by the 2D Gabor filter 
bank with two spatial frequencies and four orientations. 
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                                            s1                                   s2                                 s3                                 s4 

Predictability Metric:     (2.4874)                       (2.8756)                      (2.7367)                        (2.6140) 

(a)  Gabor + Wavelet + ICA (4 sources) 

 

                                                              
                                            s1                                   s2                                  s3                                s4 

Predictability Metric:     (2.0453)                       (2.7177)                         (2.8131)                     (2.1752) 

(b)  Gabor + Innovation + ICA (4 sources) 

 

 
(c)  Gabor + Innovation + ICA (1 source) 

Fig. 15.  Image enhancement for Fig. 13 using single-frame multi-channel filtering. 
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(a) an original frame 

 

                              
(b) restored image (JADE)          (c) restored image (HP-JADE)     (d) restored image (IN-JADE)   
 

  
(e) enhanced image for (d) 

 
Fig. 16.  Results for real data experiment 2 
 


