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Ensemble of Single‐Layered Complex‐Valued 
Neural Networks for Classification Tasks 

Abstract 
This paper presents ensemble approaches in single-layered complex-valued 
neural network (CVNN) to solve real-valued classification problems. Each 
component CVNN of an ensemble uses a recently proposed activation function 
for its complex-valued neurons (CVNs). A gradient-descent based learning 
algorithm was used to train the component CVNNs. We applied two ensemble 
methods, negative correlation learning and bagging, to create the ensembles. 
Experimental results on a number of real-world benchmark problems showed a 
substantial performance improvement of the ensembles over the individual 
single-layered CVNN classifiers. Furthermore, the generalization performances 
were nearly equivalent to those obtained by the ensembles of real-valued 
multilayer neural networks. 

Keywords – activation function, classification, complex-valued neural network, 
ensemble. 

1. Introduction 
Complex numbers are inevitable from both the theoretical and application perspectives. 

In order to process such information by artificial neural networks, researchers have 

developed various complex-valued network (CVNN) models, such as feed-forward and 

recurrent CVNNs [11,12,21], complex-valued self-organizing map [6], and complex-

valued associative memories [14,20]. Recent developments are compiled in [7]. It is very 

natural that the CVNN would find its applications on the areas, such as 

telecommunications, speech recognition, image processing, and others, where data to be 

processed are complex-valued. However, some researchers recently have also applied 

CVNN to real-valued classification problems by representing and solving the problems in 

the complex domain. 

Researchers have investigated and found that a complex-valued neuron (CVN) could 

achieve better classification ability than a real-valued neuron (RVN). One of the earlier 

works [19] studied the discrimination ability of a complex perceptron on Boolean 

functions up to four inputs. It was shown that the complex perceptron could achieve 

twice the discrimination ability of a real perceptron. In [22], the real-valued inputs and 



the class labels were encoded by complex numbers, and then were processed by a CVN 

to solve the XOR and the symmetry detection problem. In [17], real-valued inputs were 

encoded by the phases of unity magnitude complex numbers. Depending on the 

magnitude of the CVN’s output, the class label of an input pattern was determined. The 

CVN could achieve an improvement of 135% over a real-valued neuron (RVN) for the 

three-input Boolean functions. 

There has been another recent approach that used multilayer feed-forward architecture of 

multi-valued neurons [1]. The approach also encoded the inputs by the phases of unity 

magnitude complex numbers, but the class labels were encoded by the roots of unity in 

the complex plane. They showed that their feed-forward multilayer network could 

successfully solve the parity n (2 ≤ n ≤9) problem and the two spirals problem, and could 

perform better in the “sonar” benchmark and the Mackey–Glass time series prediction 

problems. 

Most of the aforementioned approaches, however, have some shortcomings. The CVN 

models of [19] and [22], for example, require careful settings of the target outputs ({0, 1} 

in [19] and {1, 0, 1+i, i} in [22]) for different classes. Choosing an arbitrary output 

encoding scheme (0 = class A and 1 = class B, or the reverse setting) will not work for 

some problems since it was reported in [19] that the CVN could not realize several three-

input Boolean functions, while the complementary functions were realized. Assigning 

output values to different classes is even more complicated for the CVN model of [22]. 

The same problem exists in [17]. Moreover, the learning algorithm of the CVN [17] may 

suffer from instability due to a reciprocal of derivative, namely when the derivative 

approaches to zero. 

In order to minimize the shortcomings, we proposed a new class of activation functions 

[2], whose role is similar to the conventional RVN in the classification tasks. The 

functions combine the real and imaginary part of the complex numbers, and map complex 

values into bounded real values. Due to the differentiability of the activation functions, a 

gradient-descent learning algorithm can be easily derived (see [2] for the learning 

algorithm). We showed that a CVN with these activation functions could successfully 



solve several Boolean classification problems (including linear and nonlinear problems). 

We further studied the generalization ability of single-layered CVNN on several real-

world multiclass problems, and showed that the performance was comparable to that of 

the multilayer real-valued neural networks (RVNNs). 

It should be mentioned that a CVN or a single-layered CVNN (only one layer of 

computing neurons, each representing one class) can not match all possible problems’ 

complexity because of the fixed structure (determined by the number of inputs and 

number of classes). To improve the performance, one possibility is to use multiple layers 

of neurons as was done in [1]. However, it is well known that an ensemble of classifiers 

can achieve better classification ability than that of an individual classifier, provided that 

the individual classifiers do not make error on the same part of the data [24]. 

In this study, therefore, we investigate the ensemble methods in the single-layered 

CVNNs that were developed in our earlier work [2]. Among the ensemble creation 

methods, we examined two methods, negative correlation learning [15] and bagging [3]. 

The former is an explicit method, while the latter is an implicit method [4]. 

We show here that the ensemble methods can enhance the performance of single-layered 

CVNNs to a considerable extent. Furthermore, experimental results on various real-world 

benchmark problems show a comparable generalization performance of the single-

layered CVNN ensembles to that of the multilayer RVNN ensembles. 

It is noteworthy that any ensemble methods can be easily applied to our CVN model due 

to its gradient based learning rule. For example, the negative correlation learning requires 

each member in the ensemble to be trained with gradient-descent based learning [15]. So 

it is difficult to apply the negative correlation learning to the CVN models which can not 

be trained with a gradient based learning rule (e.g., the CVN model of [1]). 

The remainder of the paper is organized as follows. In Section 2, we briefly discuss the 

CVN model used in the ensembles of this study, along with the classification ability of a 

single CVN on some Boolean problems. Two methods for creating the ensembles of 

single-layered CVNNs, i.e., negative correlation learning and bagging, are discussed in 



Section 3. Experimental results on a number of real-world benchmark problems are 

presented in Section 4. Finally, we give our concluding remarks in Section 5. 

2. CVN Model and Its Classification Ability 
This section briefly discusses the CVN model and its classification ability, which we 

presented in our earlier work [2]. The discussion includes the representation of real-

valued input data to a CVN, the role of the activation function, and the classification 

ability of a CVN on some Boolean problems. 

2.1 Input data representation 

To present complex-valued information to a CVN, we encoded the real-valued data by 

the phases, between 0 and π, of the unity magnitude complex numbers. For example, if a 

real-valued number x ∈ [a, b], where a, b∈R, then the corresponding complex number 

, where )/()( abax −−π iez= 1−=  i . Clearly, in this representation, when the real-valued 

variable x moves along a line from a to b, the corresponding complex variable z moves 

over the upper half of a unit circle on the complex plane. In order to process the Boolean 

data, the values TRUE and FALSE were represented by ei π and ei 0, respectively. 

2.2 Activation function 

Our motivation for designing the activation function came from the role of the activation 

function in a real-valued output neuron for the classification tasks. The neuron has 

essentially two functional parts, an aggregation part and an activation part. The 

aggregation part maps a multidimensional input into a one dimensional output by 

multiplying each of the inputs to the neuron by the connection weights and then by 

summing up the weighted inputs. The other part, i.e., activation function does a threshold 

operation on the output given by the aggregator. As for instance, consider a threshold 

function given by 
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where v = wTx + b, w and x being the weight and the input vectors, and b is the bias of 

the neuron. Clearly, the threshold function divides its one dimensional domain into two 

disjoint parts; each part denotes one of the two classes. 

Thus the role of an activation function, in a real-valued output neuron, is to divide the 

function’s domain (defined by the output of the aggregator) into disjoint sets or regions 

for representing the corresponding classes. Hence forward, we call the output of the 

aggregator part as the net-input of a neuron, and the domain of an activation function as 

the net-input space of the neuron. 

Motivated by the role of an activation function in a real-valued output neuron, we 

formulated a family of activation functions for CVN in [2]. The functions map complex-

valued net-inputs into bounded real-values by combining the real and imaginary parts of 

the net-inputs. The purpose of such mapping is to divide the net-input space into different 

regions to represent the classes. 

Figure 1 shows one of the functions which we have used in this study of the ensembles. 

The function maps complex-values into bounded real values and has the form 

of  where fR(x) = 1/(1+e-x), u, v, x ∈ R, and2))()(()( vfufvuf RRRC −=+→    i  1−=  i . As can 

be seen from Fig. 1, the function saturates in four regions, R1, R2, R3, and R4. Among the 

regions, R1 and R3 denote one class, while R2 and R4 denote the other class. Note that the 

function is differentiable with respect to real and imaginary part of the net-input 

individually. Since the cost function (mean squared error) to be minimized is real-valued, 

this kind of differentiability is sufficient to derive a gradient-descent based learning 

algorithm by considering the real and imaginary parts of the weight parameters 

individually. See [2] and also the Section 3.1 for the details of the learning algorithm. 

Liouville’s theorem states that there is no complex-valued function which is bounded and 

differentiable in the entire complex domain except the constant. We can avoid this 

constraint by combining the real and imaginary part of the net-input meaningfully for the 

classification tasks, and this was our main objective of designing the activation functions. 



2.3 Classification ability of a CVN 

We studied the classification ability of a CVN with the new activation functions on 

several Boolean problems in [2]. Here we briefly discuss those results. It was shown that 

a CVN could solve all the two-input Boolean problems, which include both the linear 

(e.g., OR function) and nonlinear (e.g., XOR function) problems. As an illustration, we 

show how a CVN could solve the OR and the XOR problem in Fig. 2. 

In case of three-input Boolean functions, our CVN (with the activation function of Fig. 1) 

could solve 254 functions out of 256. Although in [2], we reported 253 functions, we 

later found that with a different random initialization, a CVN could solve 254 functions. 

The remaining two unsolved functions are complement to each other, and they form the 

three-input parity problem. Note that from the classification point of view, each Boolean 

function and its complement form a single classification tasks. 

For the three-input Boolean functions, Michel and Awwal [17] have reported that their 

CVN model could solve 245 functions out of 256, whereas our model could solve 254 

functions. Nemoto and Kono [19] showed that their complex perceptron could solve 127 

different dichotomies out of 128 (counting each function and its complement as one 

classification task or dichotomy). They, however, reported that several functions of the 

127 dichotomies could not be solved by their complex perceptron, while the 

complements were solved. In comparison, our CVN could solve both the functions and 

the complements of the 127 dichotomies. 

Symmetry detection problem in binary sequences is a linearly non separable problem, 

and thus can not be solved by an RVN. We have tested our CVN model on the symmetry 

problem from 2 to 10 bits, and a CVN could solve all the cases. Nitta [22] showed an 

example solution to the six bit symmetry detection problem by a CVN and mentioned 

that the other cases could be solved in the similar way. 

The above descriptions indicate that a CVN has better classification ability than an RVN. 

The reason might be due to the mapping ability of a CVN. As discussed in section 2.2, a 

neuron has essentially two functional parts, an aggregation part and an activation part. 



The aggregation part does a mapping from a multidimensional input space to the 

neuron’s net-input space which is one dimensional for an RVN and two dimensional for a 

CVN. The other part, i. e., activation function divides the net-input space into disjoint 

sets representing different classes. In the mapping by the aggregator, each input is 

multiplied by a connection weight and then added. If we consider ℑR as the set of all 

possible such mappings for an RVN and ℑC the set of all possible mappings for a CVN it 

can be seen that ℑR ⊂ ℑC. It is because a complex multiplication scales and rotates an 

input by any arbitrary amount, while a real multiplication does a scaling by an arbitrary 

amount but a rotation by only 0 or π. In other words, the mapping ability of a CVN is 

superior to an RVN and this might be reason for better classification ability of a CVN. 

We further studied the performance of single-layered CVNN on several real-world 

benchmark problems in [2]. The single-layered CVNN was composed of multiple CVNs, 

each represented one class in a winner-takes-all fashion.  It was shown that such CVNNs 

could achieve comparable generalization ability to that of the multilayer real-valued 

neural networks (RVNNs). 

3. Ensemble of Single-Layered CVNN 
Ensemble of classifiers has been widely used to improve the performance of the 

individual classifier. The key point of the ensemble method is to take the opinions from 

the experts, before making the final decision. The motivation came from the decision 

making process in our society. For example, we have parliaments, juries, committees, 

board of directors, and so on. It is trusted that taking opinions from a group of experts 

results in a better decision than the decision from an individual expert. Though the idea is 

a very simple one, researchers have proved its extensive benefit in the automated decision 

making applications. Ensemble is also known as other names, such as multiple classifier 

systems, committee of classifiers, or mixture of experts. 

Since our CVN model and single-layered CVNN showed impressive classification ability, 

we would like to investigate their performance enhancement by the ensemble methods. 

There are several methods for creating the ensembles, such as bagging [3], boosting [26], 

negative correlation learning [15], stacked generalization [28], mixture of experts [9,10], 



etc. Each of these methods has also different variations. The Design, implementations, 

and the issues of the ensemble methods can be found in [25]. 

The main goal of the ensemble methods is to create diversity among the classifiers, so 

that the classifiers do not make error on the same part of the data, i.e., one’s error can be 

compensated by the other members. Ensemble methods can be broadly divided into two 

categories, explicit and implicit methods [4]. The explicit methods incorporate a diversity 

measure into the cost function directly, while the implicit methods create diversity by 

presenting different data subsets to the member classifiers. In this study, we applied two 

methods, negative correlation learning [15] and bagging [3]. The former is an explicit 

method and the latter is an implicit method. We briefly discuss these two methods in the 

next subsections. 

3.1 Negative correlation learning 

Negative correlation learning (NCL) for designing the ensembles is used, especially, 

when the base learning systems are neural networks [15]. It has shown several empirical 

successes [5,8,16]. The key idea behind the NCL is to encourage the individual networks 

in an ensemble to learn different parts or aspects of a training data, so that the ensemble 

can learn the whole training data better. The NCL does so by introducing a correlation 

penalty term into the cost function. 

To formally represent the cost function, let there be M individual networks in an 

ensemble. Then, the loss function for each network j (1≤ j ≤M) is defined by  
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where ej(n) is the error of the network j for n-th training pattern, and N is the size of 

training set. Similarly, d(n), fj(n), and pj(n) are the desired output, actual output, and 

correlation penalty function for the n-th training pattern, respectively. In Eq. (1), the 

parameter λ is used to adjust the strength of the penalty. 

The penalty function pj has the following form 
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where⎯f(n) is the average over the outputs of individual networks, also known as the 

ensemble output when simple averaging is used to combine the individual network’s 

output. Second part of Eq. (2) follows from the fact that 0))()((
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Minimization of Eq. (1) implies that each network has to minimize the difference 

between the target output and its actual output, as well as the penalty term. Note that 

minimization of the penalty term in Eq. (1) results in the maximization of the distance of 

individual network’s output from the average value. It can be clearly understood from the 

second part of Eq. (2) since there is a negative sign before the distance term. Thus the 

penalty term encourages each network to be functionally different, and we can expect to 

get useful diversity among the networks. Since the NCL incorporates a diversity measure 

directly into the cost function, it is considered as an explicit method [4]. 

Learning refers to the weight adjustment of connection weights in the neural network 

paradigm. Supervised learning adjusts the weights by the optimization of some objective 

function. It is seen that in the practical implementation of NCL, a gradient-descent 

learning is used to minimize the cost function of Eq. (1) [5,8,15,16]. Since the CVN 

model of our earlier work can be trained by a gradient-descent based learning method [2], 

NCL can easily be applied to the ensemble of CVNNs. From Eqs. (1) and (2), it can be 

seen that the partial derivative of ej(n) with respect to the output of network j is: 
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Now for any complex-valued weight , the update of the weight is given by IR www  i     +=
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where η is the learning rate. In the above equation, 
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can be computed from the functional form of the activation 

function. 

As an illustration of how an ensemble can improve the classification ability, we present a 

solution of three-bit parity problem by an ensemble of three CVNs in Table 1. Note that 

this parity problem could not be solved by a CVN. When the ensemble was trained with 

the NCL algorithm, as can be seen from Table 1, each of the CVNs made error with one 

input pattern, which is shown as shaded. However, the errors of the CVNs are diverse, 

i.e., the CVNs made error on a single but different patterns. As a result one’s error can be 

compensated by the other CVNs. In other words, a majority voting or a simple average of 

the outputs can solve the three-bit parity problem completely. We further studied the 

parity n problem for , and found that an ensemble of CVNs could solve all the 

problems successfully. Higher-input parity problems, however, required higher number 

of CVNs in the ensemble. For example, the eight and nine-input parity problems required 

10 and 19 CVNs, respectively. 

It was shown by Ueda and Nakano [27] that the generalized error of an ensemble can be 

decomposed into bias, variance, and covariance terms. The NCL tries to reduce the 

covariance term without affecting the bias and the variance terms [5]. The expected result 

of making the outputs of the members negatively correlated is that the individual 

members will make error diversely. As explained for the three-bit parity problem, such 

diversity lets an ensemble achieve better classification ability.    



3.2 Bagging 

It is the short name for bootstrap aggregating, and one of the earliest algorithms for 

constructing an ensemble proposed by Breiman [3]. In this algorithm, diversity among 

the individual members is obtained by the bootstrapped replicas of the training data. 

Different training data subsets are randomly drawn, with replacement, from the entire 

training data. Each training data subset is used to train a different classifier. Individual 

classifiers are then combined usually by some combining scheme, such as majority voting 

or averaging the outputs (when the outputs are continuous and/or have an interpretation 

of posterior probabilities) of the classifiers. 

The algorithm for creating an ensemble of single-layered CVNN by bagging is shown in 

Fig. 3. The algorithm takes training data D, number of classifier T, and a fraction F as 

inputs. In each iteration t = 1 … T, a subset of training data Dt is created by randomly 

drawing, with replacement, F fraction of training samples from the original training data 

D. Then, each single-layered CVNNt is trained with the data subset Dt, and added to the 

ensemble. Since each of the data subsets are likely to be varied from each other, the 

individual members in the ensemble are likely to be diverse. In other words, it can be 

expected that the individual classifiers will make error on different parts of the data. Thus, 

the bagging algorithm, unlike the NCL, creates diversity implicitly by data sampling 

method, without incorporating any diversity term in the cost function. 

4. Experimental Studies 
To evaluate the performance enhancement of single-layered CVNN by ensemble methods, 

we carried out experiments on 13 real-world benchmark problems. The problems were 

taken from the UCI machine learning data repository. The data sets of our experiments 

vary in their characteristics; for example, the number and types of the features, the 

number of output classes, and the number of examples in the data sets. Table 2 shows the 

characteristics of the data sets. The details of the data sets can be found in the URL: 

http://archive.ics.uci.edu/ml/datasets.html. 



4.1 Experimental settings 

In the classification problems, one is interested on the prediction ability of the classifier 

model over unseen data, which is also known as generalization performance. We 

measured the generalization performance in terms of classification error on the unseen 

data. This means the lower the classification error the better the generalization 

performance. 

Since our purpose is to investigate the performance enhancement of single-layered 

CVNN using ensemble methods, we first applied single classifiers, i.e., single-layered 

CVNNs, to the problems. Then the NCL and the bagging algorithms were applied for 

creating the ensembles. We took ten CVNNs in the ensembles for both the NCL and the 

bagging algorithms. In a single-layered CVNN, the number of CVNs was similar to the 

number of classes for a given problem, and the CVN with the highest output designated 

the predicted class. 

To combine the decisions from the individual single-layered CVNNs, we used a simple 

average of the output values since the output of the activation function used in our 

experiments was continuous and bounded real valued in the range of (0, 1). This type of 

combining scheme is generally used when the outputs are continuous and/or have an 

interpretation of posterior probabilities [13]. After taking the averages of the single-

layered CVNNs (neuron by neuron basis) of the ensemble, the highest average value 

designated the predicted class. 

In case of bagging, when the data subsets were selected for the individual classifiers, we 

drew 75% examples randomly, with replacement, from the original training data set. For 

example, if a training data set was consisted of 100 items, 75 items were randomly drawn, 

with replacement, to create a subset. Such kind of fractions is generally used in the 

implementation of bagging algorithm as it does not allow much overlap among the data 

subsets [25]. 

During the training process we set the learning rate fixed at 0.15, and initialized the real 

and imaginary parts of the complex-valued weights by random numbers taken from a 



uniform distribution U(-0.5, 0.5). In case of NCL, we have an extra parameter λ or the 

penalty coefficient. We set λ as 0.5 in our experiments. Training epochs for each of the 

data sets are listed in Table 2. 

4.2 Experimental results 

In this section, we report the testing error rates of single-layered CVNN ensembles for 

the data sets presented in Table 2. Results were averaged over five standard 10-fold cross 

validation experiments. For each 10-fold cross validation, the data sets were first 

partitioned into 10 equal or nearly equal (since the number of examples may not be a 

multiple of 10) sized sets, and then each set was used in turn as the test or unseen data. 

Single classifiers (single-layered CVNNs) and the ensembles were trained on the 

remaining nine sets. 

Table 3 shows the testing error rates of single classifiers (single-layered CVNNs) and 

their ensembles trained with NCL. The error rates are presented in terms of percentage of 

misclassifications. We also show the error reductions by the ensembles in the rightmost 

column. The error reductions are presented in percentage relative to the error of a single 

classifier. For example, an error reduction from 2.5 to 1.25 indicates a 50% reduction, 

just as a reduction from 5 to 2.5 would also be a 50% reduction.  It can be seen from 

Table 3 that the ensembles could reduce the errors for all the data sets, except for the data 

set, iris. In many cases, the reductions were impressive. For example, in case of the glass, 

ionosphere, satellite, segmentation, sonar, and soybean problems, the classification errors 

were reduced by 13.0%, 19.3%, 18.7%, 22.1%, 19.4%, and 40.0%, respectively. 

Similar results for the bagging algorithm are shown in Table 4. Here the ensembles of 

single-layered CVNNs could reduce the testing error rates for all the data sets. Error 

reductions were noteworthy for the data sets glass, hepatitis, iris, segmentation, sonar, 

and soybean. Quantitatively, these reductions were 11.6%, 10.7%, 15.2%, 11.8%, 10.0%, 

and 35.6%, respectively. These results suggest that the ensemble methods can be applied 

to the CVNN for its performance improvement. 



We also compare the generalization abilities of the single-layered CVNN ensembles with 

that of the conventional multilayer RVNN ensembles. The comparison is made with the 

RVNN ensemble results reported in [23], where the authors evaluated the generalization 

abilities of multilayer RVNN ensembles and decision tree ensembles. Our purpose of 

comparing with the reported result is to see how much generalization can be achieved by 

the single-layered CVNN ensembles in comparison to that of the multilayer RVNN 

ensembles for the benchmark data sets.  

Table 5 shows the testing error rates of the single-layered CVNN ensembles and 

multilayer RVNN ensembles for both the NCL and bagging algorithms. The bagging 

results of the RVNN ensembles were taken from [23], while the NCL results of RVNN 

ensembles were taken from our experiments, since NCL results were not available in [23]. 

However, for the NCL results of RVNN ensembles, we used the similar experimental 

settings of [23], such as the number of hidden units in each RVNN of the ensembles, 

learning rate (0.15), momentum term (0.9), and initial weights (randomly between -0.5 

and 0.5). Table 6 shows the number of weight parameters of single-layered CVNNs and 

multilayer RVNNs used in the ensembles. Since for the multilayer RVNN ensembles we 

followed the neural networks’ structure of [23], the number of parameters of the single-

layered CVNNs was not same as that of multilayer RVNNs. Under this setting, Table 6 

shows that except for the soybean data set, multilayer RVNNs have more parameters than 

those of single-layered CVNNs. 

The results of single-layered CVNN ensembles, in Table 5, show that between the NCL 

and bagging methods, NCL could perform better for the data sets ionosphere, satellite, 

and sonar, while the bagging algorithm performed better for the iris data set. For the 

remaining most cases, the performances were more or less similar. Therefore, no method 

seems to be superior to the other, although each of the methods could reduce the error of 

the single classifiers. 

If we take the best result of single-layered CVNN ensembles between the NCL and 

bagging algorithms and the best result of multilayer RVNN ensembles similarly, for each 

of the data sets from Table 5, and then compare, we see that the performance of single-



layered CVNN ensembles is almost similar to that of the multilayer RVNN ensembles for 

most of the data sets. Moreover, for the data sets glass and sonar, CVNN ensembles 

could perform even better. This comparison indicates that the single-layered CVNN 

ensembles, even with only one computational layer in the individual classifiers, could 

achieve comparable performance to that of the multilayer RVNN ensembles. 

It is mentionable that from the computer simulation perspective, learning cost of single-

layered CVNN ensembles is expensive due to the reason that a complex multiplication 

requires four real multiplication and two real addition/subtraction operations. Exact 

leaning cost of single-layered CVNN ensemble and multilayer RVNN ensemble for one 

learning step (forward signal propagation and backward error propagation) depends on 

the number of connection weights of individual single-layered CVNN and multilayer 

RVNN, respectively, in the ensembles. Even if the number of connection parameters is 

equal for a single-layered CVNN (counting each complex-valued weight as two 

parameters due to its real and imaginary part) and a multilayer RVNN, the required 

number of real multiplication or division operations will be nearly twice for the single-

layered CVNN, assuming the computation of sigmoid function is done by lookup table. 

The number of addition/subtraction operations is also nearly twice in the single-layered 

CVNN for equal number of parameters. Here, extra addition and subtraction operations 

for the single-layered CVNN come from the complex multiplication operation. However, 

hardware implementations may reduce the learning cost of single-layered CVNN 

ensembles significantly [18].   

5. Conclusion 
We studied the ensembles of single-layered CVNNs in this paper. Although we applied 

two ensemble methods, NCL and bagging, any ensemble method can be easily applied to 

our CVN model, due to its gradient-descent based learning rule. 

We explained how an ensemble of CVNs could solve the three-input parity problem, 

which could not be solved by a single CVN. Solving the parity problem up to nine inputs, 

by the ensembles of CVNs, has also been reported. This indicates a substantial 

performance improvement by the ensembles. The essence of the performance 



improvement is that the individual classifiers should not make error on the same part of 

the data. 

For further investigation, two ensemble methods, NCL and bagging, were applied to 

several real-world multiclass problems. Experimental results showed that the ensemble 

methods could improve the performance of single-layered CVNN for almost all the data 

sets. However, none of the methods (NCL and bagging) seems to be superior to the other. 

In general, a single-layered CVNN, which has a fixed structure for a given problem 

(determined by the input and output dimensions of the problem), will not match with all 

possible problems’ complexities. Nevertheless, the generalization ability of the single-

layered CVNNs and their ensembles on several real-world benchmark problems reveals 

their high information processing capabilities, even with only one computing layer. 

Comparison with the multilayer RVNN ensembles supports this fact. Specifically, single-

layered CVNN ensembles could achieve almost similar generalization performance to 

that of the multilayer RVNN ensembles, and for some data sets even better. 

Solving the real-valued classification problems in the complex domain requires more 

researches. Extending our single-layered CVNN to multilayer and studying their 

ensembles for solving the classification problems can be a future research direction. 
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Table 1 
Input-output relationship of three-bit parity problem and the outputs of three CVNs. The 
rightmost column shows the averages of the outputs. 
 

Input 
pattern Output f1 f2 f3 

 
 

0 0 0 1 0.9959 0.9586 0.9685 0.9743 
0 0 1 0 0.0078 0.0037 0.0141 0.0085 
0 1 0 0 1.0000 0.0042 0.0012 0.3351 
0 1 1 1 0.9959 0.9600 0.9640 0.9733 
1 0 0 0 0.0000 0.0201 0.0015 0.0072 
1 0 1 1 0.9966 0.9920 0.0000 0.6629 
1 1 0 1 0.9966 0.0000 0.9933 0.6633 
1 1 1 0 0.0000 0.0151 0.0354 0.0168 

ffens =

 Shaded outputs indicate misclassifications. 



 
 
 
 
 
 
 
 
 
 
Table 2 
Characteristics of data sets and number of epochs.  

 
Features Data Set Cases Class 

Continuous Disc. 
Epochs 

cancer 699 2 9 – 60 
credit-a 690 2 6 9 60 
credit-g 1000 2 7 13 60 

glass 214 6 9 – 100 
heart-c 303 2 8 5 80 

hepatitis 155 2 6 13 100 
ionosphere 351 2 34 – 70 

iris 150 3 4 – 100 
satellite 6435 6 36 – 60 

segmentation 2310 7 19 – 60 
sonar 208 2 60 – 100 

soybean 683 19 – 35 60 
vehicle 846 4 18 – 60 

 



 
 
 
 
 
 
 
 
 
 
Table 3 
Average test set error rates (percentage of misclassifications on unseen data) of single-
layered CVNNs and their ensembles trained with negative correlation learning algorithm. 
Averages were taken over five standard 10-fold cross-validations. The rightmost column 
shows percentage of error reduction by the ensemble with respect to a CVNN’s error.  

 

Data Sets CVNN CVNN ENSEMBLE
(NCL) 

Error 
Reduction 

cancer 3.6 3.5 2.8 
card-a 14.3 13.7 4.2 
card-g 26.2 24.5 6.5 
glass 34.5 30.0 13.0 

heart-cleveland 17.1 15.7 8.2 
hepatitis 19.6 17.8 9.2 

ionosphere 10.9 8.8 19.3 
iris 3.3 3.3 0.0 

satellite 13.4 10.9 18.7 
segmentation 6.8 5.3 22.1 

sonar 16.0 12.9 19.4 
soybean 9.0 5.4 40.0 
vehicle 21.3 20.3 4.7 

 



 
 
 
 
 
 
 
 
 
 
Table 4 
Average test set error rates (percentage of misclassifications on unseen data) of single-
layered CVNNs and their ensembles trained with bagging algorithm. Averages were 
taken over five standard 10-fold cross-validations. The rightmost column shows 
percentage of error reduction by the ensemble with respect to a CVNN’s error. 
 

Data Sets CVNN CVNN ENSEMBLE
(Bagging) 

Error 
Reduction 

cancer 3.6 3.4 5.6 
card-a 14.3 13.7 4.2 
card-g 26.2 24.6 6.1 
glass 34.5 30.5 11.6 

heart-cleveland 17.1 15.7 8.2 
hepatitis 19.6 17.5 10.7 

ionosphere 10.9 10.3 5.5 
iris 3.3 2.8 15.2 

satellite 13.4 12.3 8.2 
segmentation 6.8 6.0 11.8 

sonar 16.0 14.4 10.0 
soybean 9.0 5.8 35.6 
vehicle 21.3 20.3 4.7 

 



 
 
 
 
 
 
 
 
 
 
Table 5 
Test set error rates of RVNN (having one hidden layer) ensembles and single-layered 
CVNN ensembles for two ensemble methods, NCL and bagging. 

 
CVNN ensemble RVNN ensemble Data Sets 

NCL Bagging NCL Bagging 
cancer 3.5 3.4 3.3 3.4 
card-a 13.7 13.7 13.9 13.8 
card-g 24.5 24.6 24.9 24.2 
glass 30.0 30.5 32.2 33.1 

heart-cleveland 15.7 15.7 15.5 17.0 
hepatitis 17.8 17.5 17.9 17.8 

ionosphere 8.8 10.3 8.8 9.2 
iris 3.3 2.8 2.7 4.0 

satellite 10.9 12.3 10.9 10.6 
segmentation 5.3 6.0 5.5 5.4 

sonar 12.9 14.4 15.1 16.8 
soybean 5.4 5.8 5.7 6.9 
vehicle 20.3 20.3 20.4 20.7 



 
 
 
 
 
 
 
 
 
Table 6 
Number of parameters of single-layered CVNNs and multilayer RVNNs (one hidden 
layer) used in the ensembles. Parameters include the connection weights and biases. For 
CVNN, each weight and bias was counted as two parameters as it has real and imaginary 
parts.   
 

CVNN RVNN Data Sets Input Output
Parameters Hidden units Parameters 

cancer 9 2 40 5 62 
card-a 51 2 208 10 542 
card-g 63 2 256 10 662 
glass 9 6 120 10 166 

heart-cleveland 35 2 144 5 192 
hepatitis 32 2 132 10 352 

ionosphere 34 2 140 10 372 
iris 4 3 30 5 43 

satellite 36 6 444 15 651 
segmentation 19 7 280 15 412 

sonar 60 2 244 10 632 
soybean 82 19 3154 25 2569 
vehicle 18 4 152 10 234 



 
 

Figure captions 
 
Fig. 1. Activation function with contour diagram. The function has the form f(u + i v) = 
(fR(u) – fR(v))2 where fR(x) = 1/(1+e-x), u, v, x ∈ R, and i = √(-1), and maps complex 
values into bounded real values in range of [0, 1]. It saturates in four regions R1, R2, R3, 
and R4. Among the regions, R1 and R3 denote one class, while R2 and R4 denote the other 
class. The function is drawn elevated to show the regions on the net-input space. 
 
Fig. 2. Net-inputs (sum of weighted inputs) of a trained complex-valued neuron for two-
input Boolean patterns: (a) the OR problem, and (b) the XOR problem. Contour lines 
show the output values of the activation function. An input pattern yielding an output 
value greater than or equal to 0.5 is assigned to class 1, otherwise class 0 is assigned. 
 
Fig. 3. Bagging algorithm for creating an ensemble of single-layered CVNN. 
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Algorithm: Bagging

Input:

§ Training data D with correct labels w i Î W = {w1, ¼, wC } representing C

classes

§ Integer T specifying number of iterations

§ Percentage F to create bootstrapped training data

Do t = 1, ¼, T

1. Take a bootstrapped replica Dt, by randomly drawing, with replacement,

F percent of training patterns from D.

2. Create and train CVNNt with the training subset Dt.

3. Add CVNNt to the ensemble.

End

Figure 3


