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Abstract

In research of time series forecasting, a lot of uncertainty is still related to the task of

selecting an appropriate forecasting method for a problem. It is not only the individ-

ual algorithms that are available in great quantities; combination approaches have been

equally popular in the last decades. Alone the question of whether to choose the most

promising individual method or a combination is not straightforward to answer. Usu-

ally, expert knowledge is needed to make an informed decision, however, in many cases

this is not feasible due to lack of resources like time, money and manpower. This work

identifies an extensive feature set describing both the time series and the pool of in-

dividual forecasting methods. The applicability of different meta-learning approaches

are investigated, first to gain knowledge on which model works best in which situation,

later to improve forecasting performance. Results show the superiority of a ranking-

based combination of methods over simple model selection approaches.

Key words: Forecasting, Forecast combination, Time series, Time series features,

Meta-learning, Diversity

1. Introduction

Time series forecasting has been a very active area of research since the 1950’s,

with research on the combination of time series forecasts starting a few years later.

During this time, many empirical studies on forecasting performance have been con-

ducted to assess performance of the continuously growing numbers of available algo-

rithms, for example in [41] and [32]. These studies however fail to provide consistent
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results as to which actual method performs best, which is not surprising considering the

variety in investigated time series forecasting problems. Robert J. Hyndman described

the future challenges for time series prediction [35] in the following words: ”Now it is

time to identify why some methods work well and others do not”.

But what is it that determines the success or failure of a forecasting model? The

well-known no-free-lunch theorem, for example described in [48], states that there

are no algorithms that generally perform better or worse than random when looking

at all possible data sets. This implies, that no assumptions on the performance of an

algorithm can be made if nothing is known about the problem that it is applied to. Of

course, there will be specific problems for which one algorithm performs better than

another in practice. In accordance to this, this work investigates approaches to relax the

assumption that nothing is known about a problem by automatically extracting domain

knowledge from a data, linking it to well-performing methods and drawing conclusions

for a similar set of time series.

Traditionally, experts visually inspect time series characteristics and fit models ac-

cording to their judgement. This work investigates an automatic approach, since a

thorough time series analysis by humans is often not feasible in practical applications

that process a large number of time series in very limited time.

A classic and straightforward classification for time series has been given by Pegels

[36]. Time series can thus have patterns that show different seasonal effects and trends,

both of which can be additive, multiplicative or non-existent. Gardner [19] extended

this classification by including damped trends. Time series analysis in order to find

an appropriate ARIMA model has been discussed since the seminal paper of Box and

Jenkins [6]. Guidelines are summarised in [33] and rely heavily on visually examining

autocorrelation and partial autocorrelation values of a series.

The idea of using characteristics of univariate time series to select an appropriate

forecasting model has been pursued since the 1990’s. The first systems were rule based

and built on a mix of judgemental and quantitative methods. Collopy and Armstrong

use time series features to generate 99 rules [12] for weighting four different models;

features were obtained judgementally, by both visually inspecting the time series and

using domain knowledge. Adya et al. later modify this system and reduced the neces-
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sary human input [1][2], yet did not abandon expert intervention completely. Vokurka

et al. [46] extract features automatically to weight between three individual models

and a combination in a rule-base that was built automatically, but required manual re-

view of the outputs. Completely automatic systems have been proposed in [4], where

a generated rule base selects between six forecasting methods. Discriminant analysis

to select between three forecasting methods using 26 features is used in [40].

The phrase ”meta-learning” in the context of time series was first used in [38] and

represents a new term for describing the process of automatically acquiring knowl-

edge for time series forecasting model selection that was adopted from the general

machine learning community. Two case studies are presented in [38]: In the first one,

a C4.5 decision tree is used to link six features to the performance of two forecasting

methods; in the second one, the NOEMON approach [25] is used for ranking three

methods. The most recent and comprehensive treatment of the subject can be found

in [47], where time series are clustered according to their data characteristics and rules

generated judgementally as well as using a decision tree. The approach is then ex-

tended to determine weights for a combination of individual models based on data

Year Authors Features Meta-learning
method

Time
Series

Model pool

1992 Collopy and
Armstrong
[12]

18 (judge-
mental)

rule base (judge-
mental)

126
(M1)

exp. smoothing (Holt and
Brown), random walk, lin-
ear regression

1996 Vokurka et al.
[46]

5 rule base (partly
automatic)

126
(M1)

exp. smoothing (single and
Gardner), structural and a
combination of the three

1997 Arinze et al.
[4]

6 rule base 67 exp. smoothing (Holt and
Winter), adaptive filtering,
three ”hybrids” of the previ-
ous

1997 Shah [40] 26 discriminant
analysis

203
(M1)

exp. smoothing (single and
Holt-Winter), structural

2000 Adya et al. [2] 26 (mainly
automatic)

rule base (judge-
mental)

3003
(M3)

exp. smoothing (Holt and
Brown), random walk, lin-
ear regression

2004 Prudencio and
Ludermir [38]

6 / 7 decision tree /

NOEMON
99 / 645
(M3)

exp. smoothing, neural net-
work / random walk, Holt’s
smoothing, auto-regressive

2009 Wang et al.
[47]

9 decision tree 315 random walk, smoothing,
ARIMA, neural network

Table 1: Time series model selection - overview of literature
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characteristics. Table 1 summarises some facts about the related work presented here

for better overview of approaches and methods used. The calculation of features and

meta-learning method listed are implemented automatically if not otherwise stated.

Some time series features presented in this work are similar to the ones used in

literature, but new and different features are introduced extending previous work pub-

lished in [28]. In particular, features concerning the diversity of the pool of algorithms

are included, which is facilitated by adding a number of popular forecast combination

algorithms to the feature pool. In addition to the original question of which model

to select, this work also tries to find evidence for features being useful for guiding

the choice of whether to pick an individual model or a combination. In an initial ex-

ploratory experiment, decision trees are generated to find evidence for the existence

of a link between time series characteristics and the performance of models. Leaving

aside the requirement for interpretable rules and recommendations, four meta-learning

techniques are compared in another empirical experiment, assessing potential perfor-

mance improvements.

The paper is structured as follows: Section two will present the underlying empiri-

cal experiments and results. Section three begins treating the model selection problem

as a classification task and describes an extensive number of time series characteristics

which are necessary to link performances of algorithms to the nature of the time series.

The different experiments using meta-learning techniques are evaluated in section four.

2. Performance of forecasting and forecast combination methods

This part of this work presents empirical experiments that provide the basis for

further meta-learning analysis. Individual predictors are diverse, but are kept relatively

simple and, more importantly, automatic. These methods perform often just as well as

more complex methods [32], are more efficient in terms of computational requirements

and also more likely to be employed in practical applications, especially when no expert

advice is available.

2.1. Data sets

Two data sets both consisting of 111 time series have been used in this study; they

were obtained from the NN3 [13] and NN5 [14] neural network forecasting competi-
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tions. NN3 data includes monthly empirical business time series with 52 to 126 obser-

vations, while the NN5 series are daily time series from cash machine withdrawals with

735 observations each. The competition task was to predict the next 18 or 56 obser-

vations, respectively. While NN3 data did not need specific preprocessing, NN5 data

included some missing values, which were substituted by taking the mean of the value

of the corresponding weekday of the previous and the following week. The last 18 or

56 values of each series were not used for training the models to enable out-of-sample

error evaluation.

2.2. Forecasting Methods

Available forecasting algorithms can be roughly divided into a few groups. Simple

approaches are often surprisingly robust and popular, for example those based on expo-

nential smoothing [20], [32]. Statisticians and econometricians tend to rely on complex

ARIMA models and their derivatives [6]. The machine learning community mainly

looks at neural networks, either using Multi-Layer-Perceptrons with time-lagged time

series observations as inputs as, for example, in [49] and [16], or recurrent networks

with a memory, see, for example, [26]. As not all of the algorithms provide native

multi-step-ahead forecasting, some of them are implemented using two approaches:

An iterative approach, where the last prediction is fed back to the model to obtain the

next forecast, or a direct approach, where n different predictors are trained for each of

the 1 to n steps ahead problem. The selection of models used in this work is presented

in the next paragraphs.

2.2.1. Simple forecasting models

Many algorithms for forecasting time series are considered simple, yet they are

usually very popular and can be surprisingly powerful. In the latest extensive M3 com-

petitions [32], an exponential smoothing approach was considered a good match for the

most successful complex method while providing a better trade-off between prediction

accuracy and computational complexity. Simple methods used for this experimental

study are listed below, where ŷt+1 denotes the one-step-ahead prediction and yi the

observation of the time series at time i.
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• For the moving average, the arithmetic mean of the last k observations accord-

ing to equation 1 is calculated. An appropriate time window is found by grid-

searching k-values from 1 to 20 and choosing the k with the lowest mean squared

error on a validation set prior to the test set.

ŷt+1 =
1
k

t∑
i=t−k+1

yi (1)

• Single exponential smoothing is the simplest representative of smoothing meth-

ods and it is calculated by adjusting the previous forecast by the error it produced.

The parameter α controls the extent of the adjustment and is determined again

by minimising errors on a validation set that was separated from the training set.

ŷt+1 = αyt + (1 − α)ŷt (2)

• Taylor’s exponential smoothing is a more recently introduced exponential smoo-

thing algorithm with a trend dampened by a factor φ, using a multiplicative ap-

proach and a growth rate R [42]. It is given by equation 3, where h is the number

of periods ahead to be forecasted and lt denotes the estimated level of the series

at time t. The parameters α and β are smoothing constants taking values between

zero and one, which are again determined by grid search.

ŷt+h = ltr
∑h

i=1 φ
i

t ,

lt = αyt + (1 − α)(lt−1rφt−1) (3)

rt = β(lt/lt−1) + (1 − β)rφt−1

• Polynomial regression fits a polynomial to the time series by regressing time

series indices against time series values. In this experiment, a suitable order

of the polynome between two and six is grid-searched and the resulting curve

extrapolated into the future; equation 4 shows the example of a regression of

order three, where ωi are parameters estimated using the training set and t is the

current time index.
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ŷt = ω0 + ω1t + ω2t2 + ω3t3 (4)

• The Theta-model was introduced in [5]. It decomposes series into short and

long term components by applying a coefficient θ to the second order differences

of the time series, thus modifying the curvature of the time series. Here, it is

employed using formulas given by [23]. The general equation for a theta-curve

is

ŷt+1(θ) = ât + b̂tt + θyt. (5)

Values ât and b̂t are constants determined according to [23] and t is again the

time index. In the original setup in [5], two curves are used and the obtained

forecasts averaged. The first forecast is calculated using θ = 0 which results in a

linear regression problem where the linear part of formula 5 is extrapolated into

the future. The second forecast for θ = 2 is calculated using formula

ŷt+1(2) = α

t−1∑
i=0

(1 − α)iyt−i(2) + (1 − α)ny1(2), (6)

which is a single exponential smoothing applied to series yt(2)

2.2.2. Automatic Box-Jenkins Models

Autoregressive integrated moving average models (ARIMA) according to [6] are

a complex tool of modelling and forecasting time series. They are described by the

notation ARIMA (p,d,q) and consist of the following three parts:

• AR(p) denotes the autoregressive part of order p. Autoregression defines a re-

gression yt = ω0 +ω1yt−1 + ...ωpyt−p + εt where the target variable depends on p

time-lagged values of itself weighted by weights ωi.

• I(d) defines the degree of differencing involved. Differencing is a method of

removing non-stationarity in a time series by calculating the change between

each observation. The first difference of a time series is thus given by y′t =

yt − yt−1.
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• MA(q) indicates the order of the moving average part of the model, which is

given as a moving average of the error series ε. It can be described as a regression

against the past error values of the series yt = ω0 + ω1εt−1 + ...ωqεt−q + εt

The identification of an appropriate ARIMA model for a specific time series is

not straightforward [33] and usually involves expert knowledge and intervention. Two

automatic approaches have been implemented for this study:

• The original time series as well as two series representing its first and second dif-

ferences are submitted to the automatic ARMA selection process of a MATLAB

toolbox published in [15], subsequently choosing the approach that produced the

lowest MSE on the validation set. The maximum number of time lags used is

an input parameter of the toolbox and has been set to two, which is sufficient in

practice according to [33]. Furthermore, the same authors state, that it is almost

never necessary to generate more than second-order differences of a time series,

because data usually only involves nonstationarity of the first or second level.

• An alternative automatic approach for ARMA-modelling is included in the State-

Space-Models Toolbox [37]. In this case, an appropriate order for p and q was

chosen using the Akaike’s Information criterion (AIC), while a suitable order of

differencing was determined by the log-likelihood of a model given the corre-

sponding differenced series.

2.2.3. Structural time series

The structural approach formulates a time series as a number of directly inter-

pretable components such as trends or cycles. Structural models fit into the statistical

framework of state space models, which allows usage of well established algorithms

like the Kalman filter and Kalman smoother [22]. The State-Space-Models Toolbox

[37] has been used for implementation of a local level model with a dummy seasonal

component of either twelve or seven, depending on the data set used. A basic local

level consists of a random walk with noise as described by the following formulas:

yt = µt + εt, εt ∼ NID(0, σ2
ε ) (7)

µt = µt−1 + ηt, ηt ∼ NID(0, σ2
η), (8)
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where εt and ηt are normally and independently distributed error terms. Variable

µt represents a stochastic trend component in the more general structural time series

definition, for the random walk it simply denotes last time series observations.

2.2.4. Computational Intelligence models

Looking at the pool of available methods belonging to computational intelligence

models, it is neural networks that have most frequently and successfully been used

for forecasting purposes. An extensive summary of work done in this area can be

found in [49], which is somewhat outdated but still very relevant in terms of guidelines

given. According to these, a feed-forward neural network was implemented. It has

one hidden layer with twelve neurons, training is carried out with a backpropagation

algorithm with momentum. Input variables were the latest observations up to a lag of

seven or twelve to catch weekly or yearly seasonality depending on the data set used.

Ten neural networks have been trained and their predictions averaged to obtain the final

forecasts.

Furthermore, a recurrent neural network of the Elman-type has been employed.

There seem to be no general guidelines in literature about the architecture of a recurrent

network for time series forecasting, but one thing seems to be a common agreement:

They need more hidden nodes than the feedforward neural network because the tempo-

ral relationship has to be modelled as well. In these experiments, the number of hidden

nodes was set to 24 (double the amount of hidden nodes for the feedforward network).

2.3. Forecast Combinations

Combinations of forecasts are motivated by the fact that all models of a real world

data generation process are likely to be misspecified and picking only one of the avail-

able models is risky, especially if the data and consequently the performance of models

change over time. It is a reliable method of decreasing model risk and aims at improv-

ing forecast accuracy by exploiting the different strengths of various models while also

compensating their weaknesses. The following methods have been implemented for

the experiments here:

• Using simple average, all available forecasts are averaged, which has proven to

be a successful and robust method ([43]).
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• The simple average with trimming averages individual forecasts as well, but

without taking the worst performing 20% of the models into account. This is in

accordance with guidelines given in [24], where 10-30% are recommended.

• In the variance-based model, weights for a linear combination of forecasts are

determined using past forecasting performance according to [34].

• The outperformance method was proposed in [10] and determines weights

based on the number of times a method performed best in the past.

• In variance-based pooling, past performance is used to group forecasts into two

or three clusters by a k-means algorithm as suggested by Aiolfi and Timmermann

in [3]. Forecasts of the historically better performing cluster are then averaged

to obtain a final forecast.

Literature in the area of nonlinear forecast combination is quite sparse, which is

probably due to the lack of evidence of success as stated in [43]. Only linear combina-

tions are considered here.

2.4. Results

The following tables present result averages of the individual and combined meth-

ods for the two data sets. The symmetric mean absolute percentage error (SMAPE)

has been used for evaluating and comparing methods. It is a relative error measure that

enables comparisons between different series and also comparison with the results of

the forecasting competitions that provided the data sets. It is given by

SMAPE =
1
n

n∑
t=1

|yt − ŷt |

(yt + ŷt)/2
∗ 100, (9)

where n denotes the forecasting horizon. The standard deviation for each method

is given to provide a measure of variability across the different time series.

Concerning individual methods in the NN3 competition in table 2, the feedforward

neural networks perform quite well, together with the direct moving average. For the

NN5 competitions, results in general are considerably worse, which can be attributed to

the the longer period to be forecasted, where errors can accumulate quite quickly. The
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NN3 NN5
method SMAPE σ SMAPE σ

1. Iterated moving average 19.2 18.8 35.8 8.4
2. Iterated single exponential smoothing 19.3 15.5 35.3 7.6
3. Iterated Taylor smoothing 22.8 19.3 41.1 12.0
4. Direct regression 27.1 23.2 49.4 108.7
5. Iterated Theta 20.5 16.7 35.4 7.8
6. Direct Theta 20.4 16.0 34.4 7.6
7. ARIMA v1 20.9 18.5 49.5 131.7
8. ARIMA v2 25.3 36.7 41.5 13.2
9. Structural model 18.0 17.7 26.5 13.1
10. Iterated neural network 17.2 13.1 34.2 6.8
11. Iterated elman neural network 19.5 14.5 34.6 7.2
12. Direct moving average 17.2 12.9 33.4 7.2
13. Direct single exponential smoothing 19.1 14.9 34.2 7.1
14. Direct Taylor 18.0 14.4 33.5 7.6
15. Direct neural network 17.9 14.7 29.1 6.3

Table 2: Performances averaged per data set and standard deviations for forecasting methods, best SMAPE
printed in bold.

local level model with seasonality is the clear-cut winner here, closely followed by the

direct neural network. ARIMA models suffer from outliers indicated by high standard

deviation values and can only be fitted well in some cases. The three-cluster pooling

approach outperforms the best individual method in both data sets, as can be observed

in table 3 and has also been shown in previous work [29]. If this approach would have

been submitted to the original NN3 competition, it would have ranked sixth out of 26

participants. The result for the NN5 competition looks less convincing, where it would

have ranked 12th out of 20 participants. This shows that the longer series might require

more complex algorithms due to their length and complexity.

NN3 NN5
method SMAPE σ SMAPE σ

1. simple average 17.5 13.8 32.2 7.2
2. simple trimmed average 17.4 13.6 31.8 7.1
3. outperformance 16.6 12.4 29.5 6.9
4. variance-based 18.1 13.2 26.5 6.8
5. pooling (2) 16.4 12.1 29.0 9.7
6. pooling (3) 16.8 12.3 25.7 10.5
7. regression 20.4 32.5 27.5 12.3

Table 3: Performances averaged per data set and standard deviations for combination methods, best SMAPE
printed in bold.
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Figure 1: Histogram showing the number of times a particular method performs best for the NN3 data, left:
individual methods, right: combinations

A look at the histograms of the best performing methods in figures 1 and 2 show

some interesting facts as well: While the best performing individual methods are well

spread on the NN3 data set, it is almost only the structural model and the direct neural

network that perform best for NN5. Simple average combinations consequently per-

form badly on the NN5 data set, as there are many predictors that comparatively do

not perform well. The regression combination does not have an outstanding average

performance, but performs best for the largest number of the individual series. This

illustrates why it might be beneficial to identify conditions in which one or the other

method is more likely to perform well, which will be investigated in the next sections.
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Figure 2: Histogram showing the number of times a particular method performs best for the NN5 data, left:
individual methods, right: combinations
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3. Creating a feature pool

In the next step, the question of which individual forecasting method or combina-

tion to choose for which time series will be treated as a classification problem. This

requires the extraction of a number of features from the available time series, which

will be discussed in this section. Finding suitable time series features for classification

is not straightforward, as time series analysis is a complex area of research in itself

[11]. The features used in this work were selected for their automatic detectability and

their diversity and, as a group, aim to describe the nature of a time series as accurately

as possible. Features describing diversity of the pool of individual methods have been

added to provide information possibly relevant to combining approaches. This section

introduces different groups of features before summarising them in a table within each

paragraph.

3.1. General statistics

For calculation of some of the descriptive statistics, the original time series has

been detrended using a polynomial regression of up to order three. The residuals of this

regression e are then subjected to a Durbin-Watson test that checks their autocorrelation

with the formula

d =

∑
t(et − et−1)2∑

t e2
t

. (10)

General descriptive statistics in the feature set are standard deviation, skewness

and kurtosis of the detrended series as well as its length. The quotient of the standard

deviation of the original and the detrended series is calculated to provide a measure of

how much of the variability of the series can be accounted for with the trend curve.

Turning points and step changes are adapted from [40], to capture oscillating be-

haviour and structural breaks, respectively. A turning point for series with observa-

tions yi = {y1...yt} is given if yi is a local maximum or minimum for its two closest

neighbours. A step change is counted whenever
∣∣∣∣yi − {y1...yi−1}

∣∣∣∣ > 2σ(y1...yi−1), where

{y1...yt−1} is the mean and σ(y1...yi−1) the standard deviation of the series up to point

i−1. Both measures are divided by the number of observations to ensure comparability.

Two measures of interest have been published in [21]: The deterministic compo-

nent of a time series measure is measured by representing a time series as a number of
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delay vectors of embedding dimension m, denoted by yt = [yt−1...yt−m]. Delay vectors

are grouped according to their similarity, so that the variances of the targets provides

an inverse indication of predictability. Furthermore, nonlinearity is estimated by gen-

erating surrogate time series as the realisation of the null hypothesis that the series is

linear. If the delay vector representations of original and surrogate series are signifi-

cantly different, the time series is considered to be nonlinear.

General statistics
abbreviation description
std standard deviation of detrended series
skew skewness of series
kurt kurtosis of series
length length of series
trend standard deviation(series)/standard deviation(detrended series)
dw durbin-watson statistic of regression residuals
turn turning points
step step changes
pred predictability measure
nonlin nonlinearity measure
lyap largest Lyapunov exponent

Table 4: Feature Pool - general statistics

The largest Lyapunov exponent is a measure for the separation rate of state-space

trajectories that were initially close to each other and quantifies chaos in a time series.

The average of the Lyapunov exponents calculated using software provided in [44] was

added to the feature set.

3.2. Frequency domain

A number of features have been extracted from the fast fourier transform of the

detrended series. The frequencies at which the three maximum values of the power

spectrum occur are intended to give an indication of seasons and cycles, the maximum

value of the power spectrum should give an indication of the general strength of the

strongest seasonal or cyclic component. The number of peaks in the power spectrum

that have a value of at least 60% of the maximum value quantify how many strong

recurring components the time series has.
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Frequency domain
abbreviation description
ff[1-3] power spectrum frequencies of three biggest values
ff[4] power spectrum: maximal value
ff[5] number of peaks not lower than 60% of the maximum

Table 5: Feature pool - frequency domain

3.3. Autocorrelations

Autocorrelation and partial autocorrelation give indications on stationarity and sea-

sonality of a time series; both of the measures have been included for the lags one and

two. Furthermore, domain knowledge on seasonality is exploited by including partial

autocorrelation of lag 12 for the NN3 data set which consists of monthly data and the

partial autocorrelation of lag 7 for the NN5 data, which consists of weekly time series.

Autocorrelations
abbreviation description
acf[1,2] autocorrelations at lags one and two
pacf[1,2] partial autocorrelations at lags one and two
season seasonality measure, pacf[7] for NN5, pacf[12] for NN3

Table 6: Feature pool - autocorrelations

3.4. Diversity features

When dealing with combinations of forecasts, it is crucial to look at characteristics

of the available individual forecasts. It is desirable to have a diverse pool of individual

predictors, ideally with the strengths of one forecast compensating weaknesses of an-

other. Additionally, if there is one extremely superior forecast in the pool of available

methods, it is unlikely that it will be outperformed in a combination with other fore-

casts. Diversity is a well known concept in ensemble learning, which is a term normally

used to describe strategies for training a number of models sharing the same functional

approach. A few concepts have been successful in this area, for example bagging [8],

boosting [17] or negative correlation learning [30]. However, since the predictors used

here are also diverse in their functional approach and most of them cannot be ”trained”

in a machine-learning fashion, these concepts are not applicable.
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The standard ways to look at diversity for a number of methods is examining cor-

relation coefficients. The feature pool here includes mean and standard deviation of

the error correlation coefficients of the forecast pool. Other diversity measures have

mainly been discussed in the context of classification tasks, for example in [27] and

[18]. One of the few publications dealing with diversity in a regression context is [9],

where an error function e for training regression ensembles is introduced following the

formula

e =
1
M

∑
i

(ŷi − y)2 − κ ∗
1
M

∑
i

(ŷi − ¯̂y)2, (11)

where ŷi denotes the prediction of the ith of M models, y the actual observation and

¯̂y the mean of the output of all ensemble members. It has been shown, that the first

term of this equation contains the bias and variance error terms, while the second error

term includes the covariance of the ensemble members in addition to these. Hence,

parameter κ controls the extent of the covariance impact on the error. To exploit these

findings in form of time series features, two values have been added to the feature set:

The proposed error measure in its original form and the quotient of the mean error

(first term of equation) and the variability between the members in the method pool

(second term). In this way, the trade off between individual accuracy and diversity can

be measured.

Diversity features
abbreviation description
div1 mean(SMAPEs)-mean(SMAPEs deviation from average SMAPE)
div2 mean(SMAPEs)/mean(SMAPEs deviation from average SMAPE)
div3 mean(correlation coefficients in the method pool)
div4 std(correlation coefficients in the method pool)
div5 number of methods in top performing cluster
div6 distance top performing cluster to second best

Table 7: Feature pool - diversity

The clustering combination method inspires a different approach on quantifying

diversity. A k-means clustering algorithm is used to group individual forecasts in three

groups. The number of methods in the top performing cluster is then taken as a feature,
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that will identify if there are few or many equally well performing methods, or even

just a single one. Additionally, the distance of the mean of the top performing cluster

to the mean of the second best is added, to put the two performances into relation.

4. Meta-learning

According to [45], the goal of meta learning is to ”..understand how learning it-

self can become flexible according to the domain or task under study.” There have

been different more detailed interpretations of the term in the literature; in this work,

meta-learning is referred to as the process of linking knowledge on the performance

of so-called base-learners to the characteristics of the problem [39]. One difference

to general perception of meta-learning is that the base-learners used here are not nec-

essarily machine learning algorithms, but include other approaches as well. Many

meta-learning approaches are available as reviewed in [45]; this section presents three

different experiments: In the first step, decision trees using meta-features described

in the previous section have been built as a machine learning method giving readable

results. The second experiment compares a number of approaches and evaluates pos-

sible performance improvements. In the last part of this section, performance of one

approach is tested under competition conditions for the NN5 data set.

4.1. Experiment one - decision trees for data exploration

Decision trees were built using the Matlab statistics toolbox, choosing the minimum-

cost-tree after a ten-fold crossvalidation. Features were determined on the whole time

series, as the nature of this work is exploratory. Using all available methods as class

labels did not yield interpretable results, which is why, concentrating on the best per-

forming approaches in the underlying experiments, the classification problem has been

reduced to three different questions:

• When does an individual method perform better, when a combination, when does

it not matter? (three class labels)

• When should a structural model, a direct neural network, a pooling combination

or a regression combination be used? (four class labels)
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• How to decide between pooling and regression for the combination models? (two

class labels)

Results given in this section do not claim to be universally applicable, they merely

provide an insight on the existence of rules for the specific data set used. However, if

the meta-features describe the series well and a series with similar characteristics can

be found, it is probable that the guidelines are generalisable, but there is, of course, no

guarantee.

In the figures given in the following results, the leaf to the left of a node represents

the data that fulfils its condition, the leaf to the right hand side represents data that does

not. The numbers following the methods in the leafs denote the number of times this

particular method performed best on the data subset. The first classification problem

concerned the use of combinations and individual methods; the generated tree can be

seen in Figure 5.

Figure 3: Decision tree 1

The first node of the tree divides the series into more and less chaotic series, indi-

cated by the Lyapunov exponent. The majority of the less chaotic series to the left of the

tree are best treated with an individual model, combination models are only suggested

for series where the first and second best performing cluster do not have a huge perfor-
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mance difference. Looking at the right part of the tree, three more diversity measures

appear in the nodes together with the kurtosis and the turning point measure. Results

include, amongst others, the suggestion that individual models should not be used for

series with a high kurtosis, and for these a combination method is likely to perform

well if the number of well performing methods is high or correlation coefficients are

similar, otherwise, they tend to perform just as well as an individual model. The whole

tree misclassifies 53 of the 222 data instances, which equals to a rate of 23% as op-

posed to a misclassification rate of 49% when picking the class with the most training

examples (individual method).

The same experiment was run only using features from the diversity feature set,

to see how especially these affect combination performance. Additionally, the class

label ”undecided” was replaced with combinations: As they have the reputation for

being less risky, it seems like a straightforward approach to pick them whenever their

performance is equal or better in comparison to individual methods.

Figure 4: Decision tree 2

In the top node of the tree given in figure 4, instances with a smaller variability

in correlation coefficients (diversification measure four) are sent to the left side of the

tree, where combination methods work best. This is counter-intuitive, as a bigger di-

versity in individual forecasts should favour combinations, it however illustrates the

fact that diversity has to be traded off with individual accuracy and is not beneficial

for combinations at all times. In the right part of the tree, most of the instances fall

in rightmost leaf, which suggests individual approaches for individual pools with more
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than two methods in the top performing cluster and a big distance between this cluster

and the second best. Diversity measure two, the quantification of the actual trade-off

between individual accuracy and diversity is another node of the subtree, claiming that

if diversity is big in relation to individual accuracy (small value of the measure), an

individual method should be used, and combinations otherwise. The misclassification

rate of the tree is 26%, which is worse compared to the previous tree, indicating that the

diversity features do not work optimally on their own. However, it is still considerably

better than the rate of 49% that is obtained when just picking individual methods.

The second classification problem deals with the decision between the two best

individual (structural model, neural network) and the two best combination models

(pooling, regression), producing the tree shown in Figure 5.

Figure 5: Decision tree 3

The first node sends instances with three or fewer methods per cluster to a leaf sug-

gesting to use a structural model. This shows, that the structural model will most likely

be among the top three methods of the top performing cluster with such a superior

performance that neither the neural network nor the combinations can beat. Structural

models are also recommended for higher autocorrelation values at lag two. Pooling
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performs well in the middle subtree, if the series only shows a low seasonality or if

there are many well performing methods. Neural networks are suggested for in a con-

figuration where other predictors have a higher individual accuracy compared to their

diversity. This tree misclassifies 37% of the instances compared to 50% that would be

misclassified using the most frequently appearing class label.

The third problem investigated is how to decide between using a pooling or a re-

gression combination approach, the corresponding tree can be found in Figure 6. The

features selected here differ from the ones selected in the previous experiment, and the

tree is not easily interpretable. However, it misclassifies only 24% compared to 44%

that would be misclassified in only using the pooling approach.

Figure 6: Decision tree 4

4.2. Experiment two - comparing meta-learning approaches

In this experiment, a number of machine learning algorithms for meta learning

have been tested adopting the leave-one-out methodology that has, for example, been

applied in [38]. Of the 222 series, only 221 are used as a training set before the remain-

ing one is used to test the resulting meta-model. This process is repeated 222 times,

until every series has been the test series once. To move away from the exploratory

nature of the previous experiments, features for the test series were now only calcu-

lated using the training set, which means that the last 18 or 56 observations were held

back from the series. For the diversity features of the test series, only the validation set

forecasts were used.

Classic machine learning approaches have been tested using this methodology,
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dealing with the classification problem of linking time series features to the class label

of one of the most promising forecasting algorithms including the structural model,

the direct neural network, variance-based pooling and the regression combination as

investigated in the second problem of the last section. Three algorithms have been

implemented:

• A feedforward neural network with one hidden layer and 30 hidden nodes,

• a decision tree obtained by picking the minimum cost tree after a ten-fold cross

validation and

• a support vector machine with a radial basis function as kernel function.

Only selecting one model that is applied to a problem as in the three more tradi-

tional meta-learning approaches presented above has the obvious limitation of bearing

a certain risk, even if one of the selected algorithms is a combination of predictors

as in the case of our experiments. A newer approach that facilitates combinations on

a higher level, the meta learning level, is presented in [7] and applied to time series

forecasting in [31]. It allows taking relations of individual performances into account

by providing a ranking of methods for a particular problem. The problem space is di-

vided using clustering on a distance measure that was calculated using the time series

features. Details of this so-called zoomed ranking and our implementation of it follow.

In the first step of the zoomed ranking algorithm, distances in the set of time series

are calculated. With the normalised features fx, where x is the meta-attribute number,

the distance of two series is given by the unweighted L1 norm:

dist(si, s j) =
∑

x

∣∣∣ fx,si − fx,s j

∣∣∣
maxk,i( fx,sk ) − mink,i( fx,sk )

(12)

The distances are then clustered using the k-means algorithm, and the series in the

cluster closest to the test series are identified for further inspection. The ranking is

then generated by a variation of the Adjust Ratio of Ratios (ARR), which is applied

in a classification context in the original paper [7] and extended by a penalty for time

intensity in [31], however, in this experiment, the time dimension was discarded and
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the SMAPE measure was used instead of classifier success rates to adapt the ranking

to regression problems. The pairwise ARR for models mp and mq on series si is

ARRsi
mp,mq

=
S MAPEmq

S MAPEmp

. (13)

A high ARR indicates that model p performs better than model q. To aggregate all

rankings over the selected series and the pairwise ranking to one number per method,

the following formula is used:

ARRmp =

∑
mq

n
√∏

si
ARRsi

mp,mq

m
(14)

The method with the best ranking then gets selected, or, in an alternative approach,

the rankings are then used to calculate convex weights for the four algorithms consid-

ered in this experiment. One of the open questions using this approach is determining

the number of clusters to use for the k-means algorithm. However, trying different val-

ues for the number of clusters, it becomes clear that the impact on the performance is

small as can be seen in figure 7, so that it is safe to set the number arbitrarily, within

reason.
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Figure 7: Average performance in relation to number of clusters

Performance results of all of the approaches presented in this section can be found

in table 4.2. Experiments were run on the whole data set, but results are given sep-

arately for the NN3 and the NN5 competition, to allow better comparison with the

performances given in section two. However, it has to be stated that the performances
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given in the table cannot be compared to the competition results, as the whole time

series were used in the training set for building the models. The ranking approach

combining four methods outperforms all other meta-learning approaches and also im-

proves upon the best individual predictors. It can thus be seen, that combinations of

models outperformed model selection on a meta-learning level, which underlines the

need for approaches that provide a ranking of models as opposed to just recommending

one of the available approaches.

Method NN3 NN5
neural network 17.0 27.3
decision tree 18.0 26.5
support vector machine 18.0 26.5
zoomed ranking, best method 17.5 26.6
zoomed ranking, combination 15.5 23.8

Table 8: Performances applying different meta-learning techniques

4.3. Experiment 3 - simulating NN5 competition conditions

For the last experiments, time series observations that were not yet available at the

time of the competition were used for training the meta-models. In this experiment,

the zoomed ranking approach presented in the previous section was evaluated on fea-

tures that were calculated excluding the test data, hence the obtained forecast could

have participated in the competition. This caused problems for the NN3 data set, as the

necessary validation periods for the combination approaches would reduce the obser-

vations available for individual model building to only 15 for the shortest of the series,

which is too few for some of the methods to work. This experiment therefore only

considers the NN5 competition.

Applying the zoomed ranking approach, the resulting out-of-sample SMAPE of

23.8 is similar to the performance in the previous experiment, showing that the ap-

proach was successful also in competition conditions and improving the twelfth rank

of the best individual method to rank nine of twenty competitors.
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5. Conclusions

This work investigated meta-learning for time series prediction with the aim to link

problem-specific knowledge to well performing forecasting methods and apply them

in similar situations. Initially, an extensive pool of features for describing the nature of

time series was identified. Along with features that have been used in previous publi-

cations, several new ones have been added, for example a measure for nonlinearity and

predictability and characteristics of the frequency spectrum. Furthermore, measures

have not only been calculated for the time series themselves, but also for describing

the behaviour of the pool of available individual forecasting methods. In that way, the

following characteristics could be quantified: diversity in the method pool, the trade-

off between individual accuracy and diversity, the size of the group of best performing

individual methods and the distance to the group of second best performing methods.

Decision trees have been built to gain knowledge which of the chosen features are

important for method selection. Some time series characteristics that lead to good re-

sults in previous work did not seem to be significant for the time series and methods

used here. However, the newly introduced diversity measures gave some interesting in-

sights, quantifying some intuitive perceptions on mechanisms that make a combination

more successful. One of the lessons that has been illustrated quite well is that diversity

alone is not the key to a successful combination of methods, it is individual accuracy

as well. Other easily interpretable results for the given data set include that individual

methods in general work better on less chaotic time series and the pooling approach in

particular works well if there are many well performing methods with a good ratio of

accuracy and diversity in the method pool. It is not claimed that all of these guidelines

are universally applicable to all data sets, however, it was shown that they do exist and

can be successfully exploited for meta-learning experiments as illustrated in the other

empirical experiments.

Furthermore, neural networks, decision trees and support vector machines have

been implemented, building meta-models in a leave-one-out cross-validation method-

ology, which did not lead to convincing results. A ranking approach to determine

combination weights was however able to clearly improve upon the performance of the
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best individual predictors, showing that a combination strategy can outperform a model

selection one even on the meta-level. The last experiment was designed in a way that

the result could have taken part in the NN5 competition and again clearly outperformed

all individual predictors.

An interesting approach for a deeper understanding of the connection between the

nature of a time series and mechanisms that work best for forecasting could be the

clustering of series in a self-organising map as pursued in [47]. Future work will also

be concerned with extending the data set used and identifying and implementing further

ranking algorithms as they have proven to be a very promising strategy in this work.
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