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Abstract

We present a general framework of semi-supervised dimensionality reduction for
manifold learning which naturally generalizes existing supervised and unsuper-
vised learning frameworks which apply the spectral decomposition. Algorithms
derived under our framework are able to employ both labeled and unlabeled
examples and are able to handle complex problems where data form separate
clusters of manifolds. Our framework offers simple views, explains relationships
among existing frameworks and provides further extensions which can improve
existing algorithms. Furthermore, a new semi-supervised kernelization frame-
work called “KPCA trick” is proposed to handle non-linear problems.

Keywords: Semi-supervised Learning, Transductive Learning, Spectral Meth-
ods, Dimensionality Reduction, Manifold Learning, KPCA Trick.

1 Introduction

In many real-world applications, high-dimensional data indeed lie on (or near)
a low-dimensional subspace. The goal of dimensionality reduction is to reduce
complexity of input data while some desired intrinsic information of the data
is preserved. The desired information can be discriminative [T1 [2] 3], [4] [5] [6],
geometrical [7, [8, @] T0] or both [I1]. Fisher discriminant analysis (FDA) [12] is
the most popular method among all supervised dimensionality reduction algo-
rithms. Denote c as the number of classes in a given training set. Provided that
training examples of each class lie in a linear subspace and do not form several
separate clusters, i.e. do mot form multi-modality, FDA is able to discover a
low-dimensional linear subspace (with at most ¢ — 1 dimensionality) which is
efficient for classification. Recently, many works have improved the FDA algo-
rithm in several aspects [I1] [ 2, B, 4, 5L [6]. These extended FDA algorithms
are able to discover a nice low-dimensional subspace even when training exam-
ples of each class lie in separate clusters of complicated non-linear manifolds.
Moreover, a subspace discovered by these algorithms has no limitation of ¢ — 1
dimensionality.

Although the extended FDA algorithms work reasonably well, a considerable
number of labeled examples is required to achieve satisfiable performance. In
many real-world applications such as image classification, web page classification
and protein function prediction, a labeling process is costly and time consuming;
in contrast, unlabeled examples can be easily obtained. Therefore, in such
situations, it can be beneficial to incorporate the information which is contained
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in unlabeled examples into a learning problem, i.e., semi-supervised learning
(SSL) should be applied instead of supervised learning [13].

In this paper, we present a general semi-supervised dimensionality reduction
framework which is able to employ information from both labeled and unlabeled
examples. Contributions of the paper can be summarized as follows.

e As the extended FDA algorithms, algorithms developed in our framework
are able to discover a nice low-dimensional subspace even when training exam-
ples of each class form separate clusters of complicated non-linear manifolds.
In fact, those previous supervised algorithms can be casted as instances in our
framework. Moreover, our framework explains previously unclear relationships
among existing algorithms in a simple viewpoint.

e We present a novel technique called the Hadamard power operator which
improves the use of unlabeled examples in previous algorithms. Experiments
show that the Hadamard power operator improves the classification performance
of a semi-supervised learner derived from our framework.

e We show that recent existing semi-supervised frameworks applying spec-
tral decompositions known to us [I4] [I5] can be viewed as special cases of our
framework. Moreover, empirical evidence shows that semi-supervised learners
derived from our framework are superior to existing learners in many standard
problems.

e A new non-linearization framework, namely, a KPCA trick framework [16]
is extended into a semi-supervised learning setting. In contrast to the standard
kernel trick, the KPCA trick does not require users to derive new mathematical
formulas and to re-implement the kernel version of the original learner.

2 The Framework

Let {x;,y;}!_, denote a training set of £ labeled examples, with inputs x; € R
generated from a fixed but unknown probability distribution Py, and corre-

sponding class labels y; € {1,...,c} generated from P,. In addition to the

L+
i=0+1

erated from Pyx. Denote X € R9%*(+%) a5 a matrix of the input examples
(X1, e, X4u)- We define n = £+ u. The goal of semi-supervised learning (SSL)
dimensionality reduction is

labeled examples, let {x; denote a set of u unlabeled examples also gen-

Goal. Using the information of both labeled and unlabeled examples, we want
to map (x € R%) — (z € R?) where d < dp, such that in the embedded space
Py|z can be accurately estimated ( i.e., unknown labels are easy to predict) by
a simple classifier.

Here, following the previous works in the supervised setting [11} [T, 2], the near-
est meighbor algorithm is used for representing a simple classifier mentioned in
the goal. Note that important special cases of SSL problems are transductive
problems where we only want to predict the labels {yi}fiéﬁrl of the given un-
labeled examples. In order to make use of unlabeled examples in the learning
process, we make the following so-called manifold assumption [13]:

Semi-Supervised Manifold Assumption. The support of Py is on a low-
dimensional manifold. Furthermore, Py is smooth, as a function of x, with
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respect to the underlying structure of the manifold.

At first, to fulfill our goal, we linearly parameterize z; = Ax; where A €
R¥do Thus, AX = (Axy, ..., AX,,) € R¥™ is a matrix of embedded points. An
efficient non-linear extension is presented in Section In our framework, we
propose to cast the problem as a constrained optimization problem:

A" = argmin f*(AX) +7f*(AX), (1)
AeA

where f%(-) and f*(-) are objective functions based on labeled and unlabeled
examples, respectively, v is a parameter controlling the weights between the two
objective functions and A is a constraint set in R9*9 . The two objective func-
tions determine “how good the embedded points are”; thus, their arguments are
AX, a matrix of embedded points. Up to orthogonal and translational transfor-
mations, we can identify embedded points via their pairwise distances instead
of their individual locations. Therefore, we can base the objective functions
on pairwise distances of embedded examples. Here, we define the objective
functions to be linear with respect to the pairwise distances:

fHAX) = Z cfj dist(Ax;, Ax;) and f*(AX) = Z cyy dist(Ax;, Ax;),
i,j=1 1,5=1

where dist(+,-) is an arbitrary distance function between two embedded points,
cf] and cj; are costs which penalize an embedded distance between two points
i and j. A specification of cfj and c;; are based on the label information and
unlabel information, respectively, as described in Section 211

If we restrict ourselves to consider only the cases that (I) dist(,-) is a squared
Euclidean distance function, i.e. dist(A4x;, Ax;) = ||Ax; — Ax;[|?, (II) Cw’ and
¢y are symmetric, and (ITI) A € A is in the form of ABAT = I where B is
a positive semidefinite (PSD) matrix, Eq.(d)) will result in a general framework
which indeed generalizes previous frameworks as shown in Section Bl Define
cij = c ; + ¢ We can rewrite the weighted combination of the objective

funtlons in Eq. (III) as follows:

FHAX) + S (AX)

Z ]dlst Ax;, Ax;) + Z i dist(Ax;, Ax;)

3,7=1 1,5=1

n

= Z (cfj + yeiy)dist(Ax;, Ax;) = Z cijdist(Ax;, Ax;)

i,j=1 ,5=1
n n
= Z cijl| Ax; — Ax;||? = Z cij(xI AT Ax; — xT AT Ax;)
i,j=1 1,5=1
n n
= 2trace A( Z (xicijxiT) — Z (xicijxjr))AT
,j=1 4,j=1

= 2trace(AX (D — C)XTAT),
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where C' is a symmetric cost matrix with elements c¢;; and D is a diagonal matrix
with Dy; = > y cijﬂ. Thus, the optimization problem () can be restated as

A* = argmin trace(AX (D — C)X T AT), (2)
ABAT=]

Note that the constraint ABAT = I prevents trivial solutions such as every
Ax; is a zero vector. If B is a positive definite (PD) matrix, a solution of the
above problem is given by the bottom d eigenvectors of the following generalized
eigenvalue problem [12] [17]

X(D—-0)XTay) = )\;Bal), j=1,..,d. (3)
Then the optimal linear map is
A= (@W . ad)T, (4)

Note that, in terms of solutions of Eq.(3), it is more convenient to represent A*
by its rows a(?) than its columns a;. Moreover, note that

lz— 2| = |[A"™x — A™X'|. (5)

Therefore, kNN in the embedded space can be performed. Consequently, an
algorithm implemented under our framework consists of three steps as shown
in Figure [l

Input: 1. training examples: {(x1,Y1), .-, (Xe, ), Xo41, vy Xofu }
2. a new example: x’
3. a positive-value parameter:
Algorithm:
(1) Construct cost matrices, C*, C* and C' = C* + yC*,
and a constraint matrix B (see Section 2.T]).
(2) Obtain an optimal matrix A* by solving Eq.(3]).
(3) Perform kNN classification in the obtained subspace by using Eq.(&l).

Figure 1: Our semi-supervised learning framework.

2.1 Specification of the Cost and Constraint Matrices

In this section, we present various reasonable approaches of specifying the two
cost matrices, C* and C*, and the constraint matrix, B, by using the label
and unlabel information. We use the two words “unlabel information” and
“neighborhood information” interchangeably in this paper.

2.1.1 The Cost Matrix C¢ and the Constraint Matrix B

Normally, based on the label information, classical supervised algorithms usu-
ally require an embedded space to have the following two desirable conditions:

1To simplify our notations, in this paper whenever we define a cost matrix C’ having

elements c;;, we always define its associated diagonal matrix D’ with elements D}, = j c} -
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Figure 2: An example when data form a multi-modal structure. An algorithm,
e.g. FDA, which imposes the condition (1) will try to discover a new subspace
(a dashed line) which merges two clusters A and B altogether. An obtained
space is undesirable as data of the two classes are mixed together. In contrast,
an algorithm which imposes the condition (1*) (instead of (1)) will discover
a subspace (a thick line) which does not merge the two clusters A and B as

there are no nearby examples (indicated by a link between a pair of examples)
between the two clusters.

(1) two examples of the same class stay close to one another, and
(2) two examples of different classes stay far apart.

The two conditions are imposed in classical works such as FDA. However, the
first condition is too restrictive to capture manifold and multi-modal structures
of data which naturally arise in some applications. Thus, the first condition
should be relaxed as follows:

(1*) two nearby examples of the same class stay close to one another

where “nearby examples”, defined by using the neighborhood information, are
examples which should stay close to each other in both original and embedded
spaces. The specification of “nearby examples” has been proven to be successful
in discovering manifold and multi-modal structure [T}, [T, 2 B, 4 [5l [6, 18, 19,
20, 211, 22]. See Figure 2] for explanations. In some cases, it is also appropriate
to relax the second condition to

(2*) two nearby examples of different classes stay far apart.

In this section, we give three examples of cost matrices which satisfy the
conditions (1*) and (2) (or (2*)). These three examples are recently introduced
in previous works, namely, Discriminant Neighborhood Embedding (DNE) [2],
Marginal Fisher Analysis (MFA) [I] and Local Fisher Discriminant Analysis
(LFDA) [11], with different presentations and motivations but they can be uni-
fied under our general framework.

Firstly, to specify nearby examples, we construct two matrices C! and CF
based on any sensible distance (Euclidean distance is the simplest choice). For
each x;, let Neig! (i) be the set of k nearest neighbors having the same label y;,
and let Neig”(i) be the set of k nearest neighbors having different labels from
y;. Define C! and CF as follows: let cfj = cﬁ = 0 if points x; and/or x; are
unlabeled, and

o 1, if j € Neig'(i) Vi € Neig'(j),
* 0, otherwise, and

E 1, if j € Neig®(i) Vi€ Neig®(j),
I 0, otherwise.
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The specification c{j =1 and 05 = 1 represent nearby examples in the condi-
tions (1*) and (2*). Then, C* and B of existing algorithms (see Eq. (2))) are:

Discriminant Neighborhood Embedding (DNE)
ct=cl-cF B =TI (an identity matrix)

Marginal Fisher Analysis (MFA)
Cc'=-CF B =X (D' -CchHXT

Local Fisher Discriminant Analysis (LFDA)
Let nq, ..., ne be the numbers of examples of classes 1, ..., ¢, respectively. Define
matrices C*** and CV* as:
Il 1 e
C?;t _ Cz‘jl(a - 5)a if y; = .yy =k, and ¢
—= otherwise,

n’

1T ifa o
wit _ ) ny, Cijo ify; =y; =k,
* 0, otherwise,

CZ — Cbet B = X(Dwit o Cwit)XT

Within our framework, relationships among the three previous works can be
explained. The three methods exploit different ideas in specifying matrices C*
and B to satisfy two desirable conditions in an embedded space. In DNE, C*
is designed to penalize an embedded space which does not satisfy the condition
(1*) and (2*). In MFA, the constraint matrix B is designed to satisfy the
condition (1*) and C* is designed to penalize an embedded space which does
not satisfy the condition (2%).

Things are not quite obvious in the case of LFDA. In LFDA, the constraint
matrix B is designed to satisfy the condition (1*) since elements C* are pro-
portional to CT; nevertheless, since weights are inversely proportional to ng,
elements in a small class have larger weights than elements in a bigger class, i.e.
a pair in a small class is more likely to satisfy the condition (1*) than a pair in
a bigger class. To understand C*, we recall that

trace(AX (D' — CO)XTAT) =" cl)|| Ax; — Ax,|

%,
1 1 1
= > ij(n— — ) Ax; — Axj]| = D~ Axi — Ax;|
k n n
Yi=y; YiFY;
1
=d-- S clllAxi — Axgll + > [ Ax; — Axgl |
Yi=Y; YiFY;

where at the third equality we use the constraint AXBXT AT = I and hence

I
trace(AX (D"t — CiXTAT) = 37 ) Ax; — Ax)]
ng
Yi=Y;
= trace(I) = d.

Hence, we observe that every pair of labeled examples coming from different

classes has a corresponding cost of f%. Therefore, C*¢ is designed to penalize

an embedded space which does not satisfy the condition (2). Surprisingly, in
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LFDA, nearby examples of the same class (having c{j = 1) also has a cost of
—L. As a cost proportional to f% is meant to preserve a pairwise distance

ber‘éween each pair of examples (see Section [31]), LEFDA tries to preserve a local
geometrical structure between each pair of nearby examples of the same class,
in contrast to DNE and MFA which try to squeeze nearby examples of the same
class into a single point

We note that other recent supervised methods for manifold learning can also
be presented and interpreted in our framework with different specifications of C*,
for examples, Local Discriminant Embedding of Chen et al. [5] and Supervised

Nonlinear Local Embedding of Cheng et al [6].

2.1.2 The Cost Matrix C* and the Hadamard Power Operator

One important implication of the manifold assumption is that “nearby examples
are likely to belong to a same class”. Hence, by the assumption, it makes sense
to design C* such that it prevents any pairs of nearby examples to stay far apart
in an embedded space.

Among methods of extracting the neighborhood information to define C*,
methods based on the heat kernel (or the gaussian function) are most popular.
Beside using the heat kernel, other methods of defining C* are invented, see
[13, Chap. 15] and [17] for more details. The simplest specifications of nearby
examples based on the heat kernel are:

lx: — ;1

> ) (6)

Each pair of nearby examples will be penalized with different costs depended on
their similarity, and a similarity between two points is based on the Euclidean
distance between them in the input space. Incidentally, with this specification
of C*, the term f“(AX) in Eq. () can be interpreted as an approximation of
the Laplace-Beltrami operator on a data manifold. A learner which employs
C = C" (C* = 0) is named Locally Preserving Projection (LPP) [9].

The parameter o is crucial as it controls the scale of a cost ¢j;. Hence, the
choice of o must be sensible. Moreover, an appropriate choice of ¢ may vary
across the support of Px. Hence, the local scale o; for each point x; should be
used. Let x! be the k*" nearest neighbor of x;. A local scale is defined as

iy = exp( .

oi =[x} = xi,

and a weight of each edge is then defined as

%). (7)

Using this local scaling method is proven to be efficient in previous experiments
[23] on clustering. A specification of k to define the local scale of each point
is usually more convenient than a specification of ¢ since a space of possible
choices of k is considerably smaller than that of o.

Instead of proposing yet another method to specify a cost matrix, here we
present a novel method which can be used to modify any existing cost matrix.
Let @ and R be two matrices of equal size and have ¢;; and r;; as their elements.
Recall that the Hadamard product P [24] between @ and R, P = Q ® R, has
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elements p;; = ¢;;7;;. In words, the Hadamard product is a pointwise product
between two matrices. Here, we define the Hadamard o® power operator as

o a times
(DR=Q0Q0..0Q. (8)

Given a cost matrix C'** and a positive integer «, we define a new cost matrix

e4

C% as

e
-O¢ To e ®)

where ||| denotes the Frobenius norm of a matrix. The multiplication of

H(%a CU“H make ||C""||F = ||C%||r. Note that if C* is symmetric and non-

negative, C*" still has these properties.

The intuition of C*" will be explained through experiments in Section Ml
where we show that C*" can further improve the quality of C* so that the
classification performance of a semi-supervised learner is increased.

Any combinations of a label cost matrix C* of those in previous works such
as DNE, MFA and LFDA with an unlabel cost matrix C* result in new SSL
algorithms, and we will call the new algorithms SS-DNE, SS-MFA and SS-
LFDA.

2.2 Non-Linear Parameterization Using the KPCA Trick

By the linear parameterization, however, we can only obtain a linear subspace
defined by A. Learning a non-linear subspace can be accomplished by the stan-
dard kernel trick [25]. However, applying the kernel trick can be inconvenient
since new mathematical formulas have to be derived and new implementation
have to be done separately from the linear implementations. Recently, Chat-
patanasiri et al. [I6] have proposed an alternative kernelization framework called
the KPCA trick, which does not require a user to derive a new mathematical
formula or re-implement a kernelized algorithm. Moreover, the KPCA trick
framework avoids troublesome problems such as singularity, etc.

2.2.1 The KPCA-Trick Algorithm

In this section, the KPCA trick framework is extended to cover learners im-
plemented under our semi-supervised learning framework. Let k(-,-) be a PSD
kernel function associated with a non-linear function ¢(-) : R% — H such that
k(x,x") = (¢p(x), p(x')) [26] where H is a Hilbert space. Denote ¢; for ¢(x;)
fori=1,..,0 4+ u and ¢ for ¢(x’). The central idea of the KPCA trick is to
represent each ¢; and ¢’ in a new “finite”-dimensional space, with dimensional-
ity bounded by ¢ + u, without any loss of information. Within the framework,
a new coordinate of each example is computed “explicitly”, and each example
in the new coordinate is then used as the input of any existing semi-supervised
learner without any re-implementations.

To simplify the discussion, we assume that {¢;} is linearly independent and
has its center at the origin, i.e. >, ¢; = 0. Since we have n = ¢ + u total
examples, the span of {¢;} has dimensionality n by our assumption. According

o [16], each example ¢; can be represented as y; € R™ with respect to a new
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orthonormal basis {1;}7_; such that span({;}7_,) is the same as span({¢; }7_;)
without loss of any information. More precisely, we define

P = <<¢i,¢1>, ey <¢ia¢n>) =0T, (10)

where ¥ = (41, ...,%,). Note that although we may be unable to numerically
represent each t;, an inner-product of (¢;, ;) can be conveniently computed by
KPCA where each 1); is a principal component in the feature space. Likewise,
a new test point ¢’ can be mapped to ¢’ = ¥T¢’. Consequently, the mapped
data {¢;} and ¢’ are finite-dimensional and can be explicitly computed.

The KPCA-trick algorithm consisting of three simple steps is shown in Fig-
ure [3 All semi-supervised learners can be kernelized by this simple algorithm.
In the algorithm, we denote a semi-supervised learner by ssl which outputs the
best linear map A*.

Input: 1. training examples: {(X1,Y1), -, (X¢,Ye)s Xo415 s Xou }
2. a new example: x’
3. a kernel function: k(-,-)
4. a linear semi-supervised learning algorithm: ssl (see Figure[I)
Algorithm:
(1) Apply kpca(k, {x;}1%, x') such that {x;} — {@;} and x' — ¢/
(2) Apply ssl with new inputs {(p1,41), - (s Ye)s o1y oer Potu}
to achieve A*.
(3) Perform kNN based on the distance ||A*p; — A*¢'||.

Figure 3: The KPCA-trick algorithm for semi-supervised learning.

2.3 Remarks

1. The main optimization problem shown in Eq.(2) can be restated as follows:
2]

arg min trace((ABAT)_lAX(D - C’)XTAT) .
AeRdxdo

Within this formulation, the corresponding optimal solution is invariant under
a non-singular linear transformation; i.e., if A* is an optimal solution, then
TA* is also an optimal solution for any non-singular 7' € R¥*¢ [12, pp.447].
We note that four choices of T" which assign a weight to each new axis are
natural: (1) T =1, (2) T is a diagonal matrix with T;; = ”a(—li)”, i.e. T nor-
malizes each axis to be equally important, (3) T is a diagonal matrix with
Ty = VN as v/\; determines how well each axis a(® fits the objective function
a®lTX(D —C)XTa®, and (4) T is a diagonal matrix with Tj; = i e o a

Ta®1p?
combination of (2) and (3).

2. The matrices B defined in Subsection 2] of the two algorithms, SS-MFA
and SS-LFDA, are guarantee to be positive semidefinite (PSD) but may not be
positive definite (PD), i.e., B may not be full-rank. In this case, B is singular
and we cannot immediately apply Eq.([@]) to solve the optimization problems.
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One common way to solve this difficulty is to use (B + eI), for some value
of €, which is now guaranteed to be full-rank instead of B in Eq.[@). Since
€ acts in a role of regularizer, it makes sense to set ¢ = ~, the regularization
parameter specified in Section 2.1l Similar settings of € have also been used by
some existing algorithms, e.g. [27, [14].

Also, in a small sample size problem where X (D —C)X7 is not full-rank, the
obtained matrix A* (or some columns of A*) lie in the null space of X (D—C)X7T.
Although this matrix does optimize our optimization problem, it usually overfits
the given data. Omne possible solution to this problem is to apply PCA to the
given data in the first place [28] so that the resulted data have dimensionality
less than or equal to the rank of X (D — C)X7T. Note that in our KPCA trick
framework this pre-process is automatically accomplished as KPCA has to be
applied to a learner as shown in Figure [Bl

3 Related Work: Connection and Improvement

As we already described in Section 2.1} our framework generalizes various exist-
ing supervised and unsupervised manifold learners [111 [T}, 2] B}, [, [5] [6], 177} @} 23].
The KPCA trick is new in the field of semi-supervised learning.

There are some supervised manifold learners which cannot be represented
in our framework [I8, [19] 20] 211, 22] because their cost functions are not linear
with respect to distances among examples. Extension of these algorithms to
handle semi-supervised learning problems is an interesting future work.

Yang et al. [29] present another semi-supervised learning framework which
solves entirely different problems to problems considered in this paper. They
propose to extend unsupervised algorithms such as ISOMAP [7] and Laplacian
Eigenmap [13, Chapter 16] to cases to which information about exact locations
of some points is available.

To the best of our knowledge, there are currently two existing semi-supervised
dimensionality reduction frameworks in literatures which have similar goal to
ours; both are very recently proposed. Here, we subsequently show that these
frameworks can be restated as special cases of our framework.

3.1 Sugiyama et al. [14]

Sugiyama et al. [14] extends the LEFDA algorithm to handle a semi-supervised
learning problem by adding the PCA objective function f7¢4(A) into the ob-
jective function f¢(A) of LFDA described in Section 2l To describe Sugiyama
et al.’s algorithm, namely ‘SELF’, without loss of generality, we assume that
training data are centered at the origin, i.e. > I x; = 0, and then we can
write fPOA(A) = — Y1 [|Ax;]|2. Sugiyama et al. propose to solve the follow-
ing problem:

L n
A* = argmin | Y chllAx; — Ax;)? — ) [l Ax| (11)

ABAT=1 \ /5T Pt

Interestingly, it can be shown that this formulation can be formulated in our
framework with unlabel cost ¢j; being negative, and hence our framework sub-
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sumes SELF. To see this, let ¢j; = —1/2n, for all 4,5 = 1,...,n. Then, the
objective f“(A) is equivalent to fFC4(A):

fU(A) = i]z::1 — g, Il4xi — Ax; | = _%ij:1<AXi — Axj, Ax; — Ax;)

1

Z (Ax;, Ax;) — 2 Z (Ax;, Ax;)

1,j=1 3,7=1

’in ( nZHAxZHQ <Ain,Aij>
“A(4)

where we use the fact that 2?21 x; = 0. This proves that SELF is a special
case of our framework.

Note that the use of negative unlabel costs cf; = —1/2n results in an al-
gorithm which tries to preserve a global structure of the input data and does
not convey the manifold assumption where only a local structure should be pre-
served. Therefore, when the input unlabeled data lie in a complicated manifold,
it is not appropriate to apply f*(A) = fFC4(A).

3.2 Song et al. [15]

Song et al. propose to extend FDA and another algorithm named mazimum
margin criterion (MMC) [30] to handle a semi-supervised learning problem.
Their idea of semi-supervised learning extension is similar to ours as they add
the term f“(-) into the objective of FDA and MMC (hence, we call them,
SS-FDA and SS-MMC, respectively). However, SS-FDA and SS-MMC cannot
handle problems where data of each class form a manifold or several clusters as
shown in Figure 2l because SS-FDA and SS-MMC satisfy the condition (1) but
not (1*). In fact, SS-FDA and SS-MMC can both be restated as instances of
our framework. To see this, we note that the optimization problem of SS-MMC
can be stated as

A* = argmin ~'trace(AS, AT) — trace(AS, AT) + v fU(A), (12)
AAT=]

where S, and S, are standard between-class and within-class scatter matrices,
respectively [12]:

c

S —Z > (x — )" and Sy = (- ) — )"

1=1 ]ly]—z =1

where p = % o X, Yy = ni >, x; and n; is the number of examples in the
ith class. It can be checked that trace(AS, AT) = Z” L sl Ax; — Ax|* and

trace(AS,AT) = ij L 2 Axi — Ax;||? where
cl_)_: (%7%)7 lfyz:y]:kv and ¥ — %; lfyz:y]:kv
K — % , otherwise, * 0, otherwise.
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Figure 4: The first toy example. The projection axes of three algorithms, namely
FDA, LFDA, and LPP, are presented. Big circles and big crosses denote labeled
examples while small circles and small crosses denote unlabeled examples. Their
percentage accuracy over the unlabeled examples are shown on the top.

Hence, by setting cfj = 7’0%’;- — ci-’j we finish our proof that SS-MMC is a special
case of our framework. The proof that SS-FDA is in our framework is similar
to that of SS-MMC.

3.3 Improvement over Previous Frameworks

In this section, we explain why SELF and SS-FDA proposed by Sugiyama et al.
[14] and Song et al. [I5] described above are not enough to solve some semi-
supervised learning problems, even simple ones shown in Figured and Figure

In Figure [4 three dimensionality reduction algorithms, FDA, LFDA and
LPP are performed on this dataset. Because of multi-modality, FDA cannot
find an appropriate projection. Since the two clusters do not contain data of
the same class, LPP which tries to preserve the structure of the two clusters
also fails. In this case, only LEFDA can find a proper projection since it can cope
with multi-modality and can take into account the labeled examples. Note that
since SS-FDA is a linearly combined algorithm of FDA and LPP, it can only
find a projection lying in between the projections discovered by FDA and LPP,
and in this case SS-FDA cannot find an efficient projection, unlike LFDA and,
of course, SS-LFDA derived from our framework.

A similar argument can be given to warn an uncareful use of SELF in some
situations. In Figure [l four dimensionality reduction algorithms, FDA, PCA,
LFDA and LPP are performed on this dataset. Because of multi-modality, FDA
and PCA cannot find an appropriate projection. Also, since there are only a
few labeled examples, LFDA fails to find a good projection as well. In this case,
only LPP can find a proper projection since it can cope with multi-modality
and can take the unlabeled examples into account. Note that since SELF is a
linearly combined algorithm of LFDA and PCA, it can only find a projection
lying in between the projections discovered by LFDA and PCA, and in this case
SELF cannot find a correct projection, unlike a semi-supervised learner like SS-
LFDA derived from our framework which, as explained in Section 2Tl employs
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Figure 5: The second toy example consisting of three clusters of two classes.

the LPP cost function as its C“.

Since a semi-supervised manifold learner derived from our framework can be
intuitively thought of as a combination of a supervised learner and an unsuper-
vised learner. One may misunderstand that a semi-supervised learner cannot
discover a good subspace if neither is a supervised learner nor an unsupervised
learner able to discover a good subspace. The above two toy examples may
also mislead the readers in that way. In fact, that intuition is incorrect. Here,
we give another toy example shown in Figure [6] where only a semi-supervised
learner is able to discover a good subspace but neither is its supervised and un-
supervised counterparts. Intuitively, a semi-supervised learner is able to exploit
useful information from both labeled and unlabeled examples.

4 Experiments

In this section, classification performances of algorithms derived from our frame-
work are demonstrated. We try to use a similar experimental setting as those
in previous works [I4] [I3, Chapter 21] so that our results can be compared to
them.

4.1 Experimental Setting

In all experiments, two semi-supervised learners, SS-LFDA and SS-DNE, de-
rived from our framework are compared to relevant existing algorithms, PCA,
LPP*, LFDA, DNE and SELF [14]. In contrast to the standard LPP which
does not apply the Hadamard power operator explained in Section 1] we de-
note LPP* as a variant of LPP applying the Hadamard power operator.

Non-linear semi-supervised manifold learning is also experimented by apply-
ing the KPCA trick algorithm illustrated in Figure[l Since it is not our intention
to apply the “best” kernel but to compare efficiency between a “semi-supervised”
kernel learner and its base “supervised” (and “unsupervised”) kernel learners,
we simply apply the 2"¢-degree polynomial kernel k(x,x’) = (x,x')? to the
kernel algorithms in all experiments.
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Figure 6: (Left) The third toy example where only a semi-supervised learner is
able to find a good projection. (Right) An undirected graph corresponding to
the values of C* used by LPP and SS-LFDA. In this figure, a pair of examples i
and j has a link if and only if ¢j; > 0.1. This graph explains why LPP projects
the data in the axis shown in the left figure; LPP, which does not apply the label
information, tries to choose a projection axis which squeezes the two clusters as
much as possible. Note that we apply a local-scaling method, Eq.(), to specify
cv.

By using the nearest neighbor algorithm on their discovered subspaces,
classification performances of the experimented learners are measured on five
standard datasets shown on Table [Il the first two datasets are obtained from
the UCI repository [31], the next two datasets mainly designed for testing a
semi-supervised learner are obtained from http://www.kyb.tuebingen.mpg.de/ssl-
book/benchmarks.html [I3, Chapter 21]. The final dataset, extended Yale B [32],
is a standard dataset of a face recognition task. The classification performance
of each algorithm is measured by the average test accuracy over 25 realizations
of randomly splitting each dataset into training and testing subsets.

Three parameters are needed to be tuned in order to apply a semi-supervised
learner derived from our framework (see Section [21)): ~, the regularizer, a, the
degree of the Hadamard power operator and k, the k*"-nearest neighbor param-
eter needed to construct the cost matrices. To make our learners satisfy the
condition (1*) described in Section 2] it is clear that k should be small com-
pared to n., the number of training examples of class ¢. From our experience,
we found that semi-supervised learners are quite insensitive to various small
values of k. Therefore, in all our experiments, we simply set ¥ = min(3,n.)
so that only two parameters, v and «, are needed to be tuned. We tune these
two parameters via cross validation. Note that only « is needed to be tuned for
LPP* and only « is needed to be tuned for SELF.

The ‘GoOD NEIGHBORS’ score shown in Table [Tl is due to Sugiyama et al.
[14]. The score is simply defined as a training accuracy of the nearest neighbor
algorithm when all available data are labeled and are given to the algorithm.
Note that this score is not used by a dimensionality reduction algorithm. It
just clarifies a usefulness of unlabeled examples of each dataset to the readers.
Intuitively, if a dataset gets a high score, unlabeled examples should be useful
since it indicates that each pair of examples having a high penalty cost ¢;; should
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Table 1: Details of each dataset: do,c,¢,u and t denote the numbers of input
features, classes, labeled examples, unlabeled examples and testing examples,
respectively. ‘*’ denotes the transductive setting used in small datasets, where
all examples which are not labeled are given as unlabeled examples and used as
testing examples as well. d, determined by using prior knowledge, denotes the
target dimensionality for each dataset. “GOOD NEIGHBORS” denotes a quantity
which measures a goodness of unlabeled data for each dataset.

NAME do c lH+u+t V4 u d GOoOD NEIGHBORS
LINEAR KERNEL

IONOSPHERE | 34 2 351 10/100 * 2 0.866 0.843

BALANCE 4 3 625 10/100 300 | 1 0.780 0.760

BCI 117 2 400 10/100 * 2 0.575 0.593

Usps 241 2 1500 10/100 300 | 10 | 0.969 0.971
5

M-EYALE 504

320 20/100 * 10 | 0.878 0.850

belong to the same class. Note that on Table [1 there are two scores for each
dataset: LINEAR is a score on a given input space while KERNEL measures a
score on a feature space corresponding to the 2"¢-degree polynomial kernel.

4.2 Numerical Results

Numerical results are shown in Table [ for the case of £ = 10 (except M-
EYALE where ¢ = 20) and Table [ for the case of £ = 100. In experiments,
SS-DNE and SS-LFDA are compared their classification performances to their
unsupervised and supervised counterparts: LPP* and DNE for SS-DNE, and
LPP* and LFDA for SS-LFDA. SELF is also compared to SS-LFDA as they
are related semi-supervised learners originated from LFDA. Our two algorithms
will be highlighted if they are superior to their counterpart opponents.

From the results, our two algorithms, SS-LFDA and SS-DNE, outperform
all their opponents in 32 out of 40 comparisons: in the first setting of small ¢
(Table[2), our algorithms outperform the opponents in 18 out of 20 comparisons
while in the second setting of large ¢ (Table B]), our algorithms outperform the
opponents in 14 out of 20 comparisons. Consequently, our framework offers
a semi-supervised learner which consistently improves its base supervised and
unsupervised learners.

Note that as the number of labeled examples increases, usefulness of unla-
beled examples decreases. We will subsequently discuss and analyze the results
of each dataset in details in the next subsections.

4.2.1 Ionosphere

IONOSPHERE is a real-world dataset of radar pulses passing through the iono-
sphere which were collected by a system in Goose Bay, Labrador. The targets
were free electrons in the ionosphere. “Good” radar returns are those showing
evidence of some type of structure in the ionosphere. “Bad” returns are those
that do not. Since we do not know the true decision boundary of IONOSPHERE,
we simply set the target dimensionality d = ¢ = 2. It can be observed that
non-linearization does improve the classification performance of all algorithms.
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Table 2: Percentage accuracies of SS-DNE and SS-LFDA derived from our
framework compared to existing algorithms (¢ = 10, except M-EYALE where
¢ = 20). SS-LFDA and SS-DNE are highlighted when they outperform their
opponents (LPP* and DNE for SS-DNE, and LPP*, LFDA and SELF for SS-
LFDA). Superscripts indicate %-confidence levels of the one-tailed paired t-test
for differences in accuracies between our algorithms and their best opponents.
No superscripts denote confidence levels which below 80%.

LINEAR PCA LPP* DNE LFDA SELF SS-DNE  SS-LFDA
[ONOSPHERE | 71+1.2 82+1.3  70+1.2 71+1.1 70+1.5 75+1.0 78.1+.9
BALANCE 49+41.9 614+1.9  63+2.2 704+2.2 69+2.3 | 71+1.8%°  73+2.3%°
BCI 49.8+.6 53.4+.3 51.3+.6 52.6+.5 52.1+.5 | 57.1+.6%° 55.2+.3%
Usps 79+1.2  74+1.0 79.6+.6 80.6+.9 81.7+.8 | 81.8+.5%° 83.0+.5%
M-EYALE 44.6+.7 67+1.1  66+1.2 71.6+1.0 67.2+.8 | 76.9+.8%° 75.7+.9%°
KERNEL PCA LPP* DNE LFDA SELF SS-DNE  SS-LFDA
IONOSPHERE | 70+1.8 83.2+.9 70£1.6 71+1.3 74+1.5 | 87.2+.9%° 88+1.0%°
BALANCE 41.7+.8 47.9+.9 62+2.5 66+2.0  60+2.8 | 66+1.8%°  69+1.9%
BCI 49.7+.3 53.7+.3 50.1 +.4 50.3+.6 50.5+.4 | 53.8+.3 54.1+.3%
UsPs 77411 76+1.1  79.9+.5 80.3+.8 80.9+.8 | 82.0+.4%° 83.7+.6%°
M-EYALE 42.1+.9 63.2+.7 58.0+.9 60.3+.8 58.8+.7 | 69.9+.7"° 73.2+.8%
Table 3: Percentage accuracies of SS-DNE and SS-LFDA compared to existing
algorithms (¢ = 100).

LINEAR PCA LPP* DNE LFDA SELF SS-DNE  SS-LFDA
IONOSPHERE | 72.84+.6 83.7+.6 77.9+.7 74+1.0 77.8+.5 | 84.5+.65° 84.9+.4%
BALANCE 5742.2 80+1.3 86.4+.5 87.9+.3 87.2+.4 | 88.2+.5%°  86.3+.6
BCI 49.5+.5 54.9+.5 53.1+.7 67.9+.5 67.6+£.6 | 63.1+.5°° 67.5+.6
Usps 91.4+.3 75.7+£.3 91.1+.3 89.3+.4 92.2+.3 | 92.24+.4% 91.6+.3
M-EYALE 69.4+.4 84.1+.4 92.3+.4 95.4+.3 94.3+.2 | 93.5+.4°°  95.7+.2
KERNEL PCA LPP* DNE LFDA SELF SS-DNE  SS-LFDA
IONOSPHERE | 79.8+.4 89.7+.5 78.7+.9 81.3+.7 81.1+.5 | 93.6+.2%° 93.7+.3%
BALANCE 42.5+.3 46.9+.5 84.0+.7 87.8+.7 T79+1.6 | 86.5+.7%°  87.7+.9
BCI 49.7+.5 54.5+.4 51.6+.6 51.0+.8 52.4+.6 | 57.6+.2%° 57.0+.4%°
Usps 91.1+.3 81.5+.6 91.4+.4 91.24+.4 92.7+.3 | 92.3+.3°>  91.9+.3
M-EYALE 66.3+.3 81.9+.5 91.2+.3 89.1+.5 85.8+.6 | 91.2+.3  94.3+.3%

It can be observed that LPP* is much better than PCA on this dataset,
and therefore, unlike SELF, SS-LFDA much improves LFDA. In fact, the main
reason that SS-LFDA, SS-DNE and LPP* have good classification performances
are because of the Hadamard power operator. This is explained in Figures [7 [§]
and[@ From Figures[ll and B defining “nearby examples” be a pair of examples
with a link (having (e 0.36), we see that almost every link connects nearby
examples of the same class (i.e. connects good nearby examples). This indicates
that our unlabel cost matrix C'* is quite accurate as bad nearby examples rarely
have links. In fact, the ratio of good nearby examples per total nearby examples
(shortly, the good-nearby-examples ratio) is 394/408 ~ 0.966. Nevertheless, if
we re-define “nearby examples” be a pairs of examples having, e.g., ¢j; > 0.01,
the same ratio then reduces to 0.75 as shown in Figure [ (Left). This indicates
that many pairs of examples having small values of ¢;; are of different classes
(i.e. bad nearby examples).
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Correct links are 394 from 408 (according to the threshold 0.36)
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Figure 7: The undirected graph corresponding to C* constructed on IONO-
SPHERE. Each link corresponds to a pair of nearby examples having ¢;; > 0.36.
The number ‘0.36 is just chosen for visualizability.

Since an algorithm derived from our framework minimizes the cost-weighted
average distances of every pair of examples (see Eq. (@) and its derivation),
it is beneficial to further increases the cost of a pair having large cj; (since it
usually corresponds to a pair of the same class) and decreases the cost of of a
pair having small c};. From Eq. (@), it can be easily seen that the effect of the
Hadamard power operator is exactly what we need. The good-nearby-examples
ratios after applying the Hadamard power operator with a = 8 are illustrated
in Figure [@ (Right). Notice that, after applying the operator, even pairs with
small values of ¢;; are usually of the same class.

4.2.2 Balance

BALANCE is an artificial dataset which was generated to model psychological
experimental results. Each example is classified as having the balance scale tip
to the right, tip to the left, or be balanced. The 4 attributes containing in-
teger values from 1 to 5 are LEFT_WEIGHT, LEFT_DISTANCE, RIGHT_WEIGHT,
and RIGHT_DISTANCE. The correct way to find the class is the greater of
(LEFT_DISTANCE X LEFT_WEIGHT) and (RIGHT_DISTANCE X RIGHT_WEIGHT).
If they are equal, it is balanced. Therefore, there are 5% = 625 total exam-
ples and 3 classes in this dataset. Moreover, the correct decision surface is
1-dimensional manifold lying in the feature space corresponding to the (-,-)?
kernel so that we set the target dimensionality d = 1.

This dataset illustrates another flaw of using PCA in a classification task.
After centering, the covariance matrix of the 625 examples is just a multiple
of I, the identity matrix. Therefore, any direction is a principal component
with largest variance, and PCA is just return a random direction! Hence, we
cannot expect much about the classification performance of PCA in this dataset.
Thus, PCA cannot help SELF improves much the performance on LFDA, and
sometimes SELF degrades the performance of LEFDA due to overfitting. In
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Figure 8: Zoom-in on the square area of Figure 8l

contrast, SS-LFDA often improves the performance of LFDA. Also, SS-DNE is
able to improve the classification performance of DNE and LPP* in all settings.

4.2.3 BCI

This dataset originates from the development of a Brain-Computer Interface
where a single person performed 400 trials in each of which he imagined move-
ments with either the left hand (the 15! class) or the right hand (the 2"¢ class).
In each trial, electroencephalography (EEG) was recorded from 39 electrodes.
An autoregressive model of order 3 was fitted to each of the resulting 39 time
series. The trial was represented by the total of 117 = 39*3 fitted parameters.
The target dimensionality is set to the number of classes, d = ¢ = 2. Similar
to the previous datasets, SS-LFDA and SS-DNE are usually able to outperform
their opponents. Again, PCA is not appropriate for this real-world dataset, and
hence SELF is inferior to SS-LFDA.

4.2.4 USPS

This benchmark is derived from the famous USPS dataset of handwritten digit
recognition. For each digit, 150 images are randomly drawn. The digits ‘2’ and
‘5’ are assigned to the first class, and all others form the second class. To prevent
a user to employ a domain knowledge of the data, each example is rescaled, noise
added, dimension masked and pixel shuffled [I3] Chapter 21]. Although there
are only 2 classes in this dataset, the original data presumably form 10 clusters,
one for each digit. Therefore, the target dimension d is set to 10.

Often, SS-LFDA and SS-DNE outperform their opponents. Nevertheless,
note that SS-LFDA and SS-DNE do not improve much on LFDA and DNE
when ¢ = 100 because 100 labeled examples are quite enough to discriminating
the data and therefore unlabeled examples offer relatively small information to
semi-supervised learners.
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Figure 9: For each number z in the the x-axis, its corresponding value on the
y-axis is the ratio between the number of good nearby examples (having Gy >
and belonging to the same class) and the number of nearby examples (having
ciy > ). The ratios with respect to C"" are demonstrated where (Left) a = 1
(the standard LPP), and where (Right) o = 8 (LPP*).

4.2.5 M-Eyale

This face recognition dataset is derived from extended Yale B [32]. There are 28
human subjects under 9 poses and 64 illumination conditions. In our M-EYALE
(Modified Extended Yale B), we randomly chose ten subjects, 32 images per
each subject, from the original dataset and down-sampling each example to be
of size 21x24 pixels.

M-EYALE consists of 5 classes where each class consists of images of two
randomly-chosen subjects. Hence, there should be two separated clusters for
each class, and we should be able to see the advantage of algorithms employing
the conditions (1*) and (2*) explained in Section 21 In this dataset, the
number of labeled examples of each class is fixed to % so that examples of all
classes are observed. Since this dataset should consist of ten clusters, the target
dimensionality is set to d = 10.

It is clear that LPP* performs much better than PCA in this dataset. Re-
call that PCA captures maximum-variance directions; nevertheless, in this face
recognition task, maximum-variance directions are not discriminant directions
but directions of lighting and posing [28]. Therefore, PCA captures totally
wrong directions, and hence PCA degrades the performance of SELF from
LFDA. In contrast, LPP* much better captures local structures in the dataset
and discover much better subspaces. Thus, by cooperating LPP* with LFDA
and DNE, SS-LFDA and SS-DNE are able to obtain very good performances.

5 Conclusion

We have presented a unified semi-supervised learning framework for linear and
non-linear dimensionality reduction algorithms. Advantages of our framework

are that it generalizes existing various supervised, unsupervised and semi-supervised

learning frameworks employing spectral methods. Empirical evidences showing
satisfiable performance of algorithms derived from our framework have been re-
ported on standard datasets.
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