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This paper derives an efficient algorithm for constructing sparse kernel density (SKD) estimates. The

algorithm first selects a very small subset of significant kernels using an orthogonal forward regression

(OFR) procedure based on the D-optimality experimental design criterion. The weights of the resulting

sparse kernel model are then calculated using a modified multiplicative nonnegative quadratic

approach is an unsupervised construction algorithm and it does not require an empirical desired

response for the kernel selection task. The strength of the D-optimality OFR is owing to the fact that the

algorithm automatically selects a small subset of the most significant kernels related to the largest

eigenvalues of the kernel design matrix, which counts for the most energy of the kernel training data,

and this also guarantees the most accurate kernel weight estimate. The proposed method is also

computationally attractive, in comparison with many existing SKD construction algorithms. Extensive

numerical investigation demonstrates the ability of this regression-based approach to efficiently

construct a very sparse kernel density estimate with excellent test accuracy, and our results show that

the proposed method compares favourably with other existing sparse methods, in terms of test

accuracy, model sparsity and complexity, for constructing kernel density estimates.

& 2009 Elsevier B.V. All rights reserved.
1. Introduction

The problem of estimating probability density functions (PDFs)
is of fundamental importance to all fields of engineering [1–6]. A
powerful approach for density estimation is the finite mixture
model (FMM) [7]. If the number of mixture components in the
FMM is known, the problem is reduced to determine the FMM’s
parameters, and the maximum likelihood (ML) estimate of these
parameters can be obtained using the expectation-maximisation
(EM) algorithm [8]. The associated ML optimisation, in general, is
a highly nonlinear optimisation process requiring extensive
computation but for the Gaussian mixture model (GMM), the
EM algorithm can be derived in an explicit and simple iterative
form [9]. However, this ML estimation is well-known to be ill-
posed and, in order to tackle the associated numerical difficulties,
it is often required to apply resampling techniques such as the
bootstrap [10,11] or other Bayesian methods [12,13]. In general,
the correct number of mixture components is unknown, and
simultaneously determining the required number of mixture
ll rights reserved.

(C.J. Harris).
components as well as estimating the associated parameters of
the FMM is a challenging problem.

Alternatively, non-parametric techniques, which do not
assume a particular functional form for PDF, are widely used in
practical applications for density estimation. The classical Parzen
window (PW) estimate [14], a well-known non-parametric
density estimation technique, is remarkably simple and accurate.
As the PW estimate, also known as the kernel density (KD)
estimate, employs the full data sample set in defining density
estimate for subsequent observation, its computational cost for
testing scales directly with the sample size. In today’s data rich
environment, this may become a practical difficulty in employing
the PW estimator. It also motivates the research on the sparse KD
(SKD) estimation techniques. Various SKD estimation techniques
can be divided into the two approaches.

The first class of SKD estimators starts with the full training
data sample set as the kernel set and it then attempts to make as
many kernel weights to near zero values as possible based on
some chosen criteria. The corresponding kernels related to these
very small kernel weights can then be removed from the kernel
estimate, leading to a sparse representation. This class of SKD
estimators include the support vector machine (SVM) based SKD
estimation technique [15–17] and the related SKD estimator in
reproducing kernel space [18] as well as the SKD estimation

www.elsevier.com/locate/neucom
dx.doi.org/10.1016/j.neucom.2009.11.002
mailto:sqc@ecs.soton.ac.uk
mailto:x.hong@reading.ac.uk
mailto:cjh@ecs.soton.ac.uk


ARTICLE IN PRESS

S. Chen et al. / Neurocomputing 73 (2010) 727–739728
technique proposed in [19], which is known as the reduced set
density estimator (RSDE). The RSDE [19] is a typical representa-
tive of this first class of SKD estimation technique, which is said to
be based on minimisation of the integrated squared error (ISE)
between the unknown underlying density and the KD estimate,
calculated on the training set. A close examination of this training
based ISE criterion reveals that it is equivalent to the training
based ISE between the KD estimator and the PW estimator.

The second class of SKD estimation techniques by contrast
selects a small subset of significant kernels based on various
selection criteria. Subset kernel selection is typically carried out in
an orthogonal forward regression (OFR) to achieve computational
efficiency. A first regression-based SKD estimation method is
reported in [20]. By converting the kernels into the associated
cumulative distribution functions (CDFs) and using the empirical
distribution function calculated on the training data set as the
desired response, just like the SVM-based density estimation, this
technique transfers the KD estimation into a regression problem
and it selects SKD estimates based on an OFR algorithm that
incrementally minimises the training mean square error (MSE).
Motivated by our previous work on sparse regression modelling
[21,22], a SKD construction algorithm is developed in [23] using
the OFR based on the leave-one-out (LOO) test MSE and local
regularisation (LR). This method is capable of constructing very
sparse KD estimates with excellent generalisation capability.
Moreover, the process is automatic and the user is not required to
specify any additional criterion to terminate the density con-
struction procedure.

The OFR-based SKD estimation methods of [20,23] carry out
kernel selection on the associated CDF space, and they also adopt
some ad hoc mechanisms to ensure the nonnegative and unity
constraints for the kernel weights at the cost of increased
computation in the model construction procedure. Recently, an
interesting OFR-based SKD estimation alternative has been
proposed [24]. Using the PW estimate as the desired response,
this method performs SKD estimation directly in the PDF space
and it automatically selects a SKD estimate using the OFR
algorithm based on the LOO test MSE and LR. The nonnegative
and unity constraints required for the kernel weights are met by
updating the kernel weights of the selected SKD estimate using a
modified multiplicative nonnegative quadratic programming
(MNQP) algorithm of [25]. The MNQP algorithm has an additional
desired property of further reducing the model size, yielding an
even sparser density estimate. Extensive numerical results
reported in [24] demonstrate that this SKD estimation method
compares favourably with other existing SKD estimation meth-
ods, such as the SVM-based method [15–17] and the RSDE
method [19] as well as the SKD construction methods of [20,23],
in terms of model generalisation capability and model sparsity as
well as model construction complexity. A computationally
simpler method is also proposed for SKD estimation based on a
forward constraint regression algorithm coupled with jackknife
parameter estimator [26].

Optimal experimental designs [27] have been used for data
analysis to construct smooth model response surface based on the
setting of the experimental variables under well controlled
experimental conditions. In optimal experimental design, model
adequacy is evaluated by design criteria that are statistical
measures of goodness of experimental designs by virtue of design
efficiency and experimental effort. For regression models, quanti-
tatively model adequacy is measured as a function of the
eigenvalues of the design matrix, as it is known that the
eigenvalues of the design matrix are linked to the covariance
matrix of the least squares (LS) parameter estimate. There exist a
variety of optimal experimental design criteria based on different
aspects of experimental design [27], and the D-optimality
criterion is most effective in optimising the parameter efficiency
and model robustness via maximisation of the determinant of the
design matrix. In regression application, optimal experimental
designs have been adopted to construct sparse regression models
based on an OFR procedure [21,28–31]. These previous works
have demonstrated the effectiveness of optimal experimental
design methods in obtaining a robust and parsimonious model
structure with unbiased and accurate model parameter estimate.

Motivated by the success of applying optimal experimental
designs in constructing robust and sparse regression models, we
propose a simple yet effective regression-based method for SKD
estimation using the D-optimality criterion. Our proposed method
first selects a very small subset of significant kernels from the full
kernel set generated from the training data set. Note that the
problem of KD estimation is an unsupervised learning problem
and typically an ill-conditioned one. Our proposed OFR procedure
based on the D-optimality is a computationally efficient unsu-
pervised learning method and, unlike many other existing SKD
estimation methods, it does not require an empirical desired
response for selecting kernels. The most significant advantages of
the D-optimality based OFR are that the algorithm automatically
identifies a small subset of the most significant kernels related to
the largest eigenvalues of the kernel design matrix, which counts
for the most energy of the kernel training data, and as a
consequence this also guarantees the most accurate kernel weight
estimation for the selected SKD estimate. No existing SKD
estimator possesses these optimality properties. Therefore, this
D-optimality based OFR is well-suited to the problem of KD
estimation and it is capable of yielding robust and accurate as
well as very sparse kernel model structure. After obtaining a very
sparse kernel model structure, the associated kernel weights can
readily be calculated using a modified version of the MNQP
algorithm [25]. Because the size of the selected kernel model is
extremely small, this MNQP algorithm requires little extra
computational effort. Moreover, it can further set some kernel
weights to near zero, yielding an even sparser KD estimate. This
D-optimality based OFR algorithm has a lower computational
complexity for density estimation than the existing SKD estima-
tion methods [15–17,19,20,23,24]. Our experimental results also
demonstrate that this new algorithm is capable of constructing
much sparser KD estimates than the best existing SKD estimation
methods, with equally accurate test performance.
2. Kernel density estimation as regression

Let a finite data sample set DN ¼ fxkg
N
k ¼ 1 be drawn from a

density pðxÞ, where x¼ ½x1 x2 � � � xm�
T ARm and the data sample

xk ¼ ½x1;k x2;k � � � xm;k�
T . The non-parametric approach estimates

the unknown density pðxÞ using the KD estimate of the form

p̂ðx;bN ;rÞ ¼
XN

k ¼ 1

bkKrðx;xkÞ ð1Þ

with the constraints

bkZ0; 1rkrN ð2Þ

and

bT
N1N ¼ 1; ð3Þ

where bN ¼ ½b1 b2 � � � bN�
T is the kernel weight vector, 1N

denotes the vector of ones with dimension N, and Krð�; �Þ is a
chosen kernel function with the kernel width r. In this study, we
use the Gaussian kernel of the form

Krðx;xkÞ ¼ Grðx;xkÞ ¼
1

ð2pr2Þ
m=2

e�Jx�xkJ
2=2r2

: ð4Þ
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However, any other kernel functions, satisfying

Krðx;xkÞZ0; 8xARm; ð5Þ

Z
Rm

Krðx;xkÞdx¼ 1; ð6Þ

can also be used in the density estimate (1).

2.1. Parzen window estimate

The well-known PW estimate p̂Parðx;rParÞ is obtained by
setting all the elements of bN to 1=N in (1)

p̂Parðx;rParÞ ¼
1

N

XN

k ¼ 1

KrPar
ðx;xkÞ: ð7Þ

The kernel width rPar of the PW estimate is typically determined
via cross validation [32,33]. The PW estimate in fact can be
derived as the ML estimator using the divergence-based criterion
[7]. The negative cross-entropy or divergence between the true
density pðxÞ and the estimate p̂ðx;bN ;rÞ, calculated on the training
set, is defined asZ
Rm

pðuÞlog p̂ðu;bN ;rÞdu�
1

N

XN

k ¼ 1

log p̂ðxk;bN ;rÞ

¼
1

N

XN

k ¼ 1

log
XN

n ¼ 1

bnKrðxk;xnÞ

 !
: ð8Þ

Minimising this divergence subject to the constraints (2) and (3)
leads to bn ¼ 1=N for 1rnrN, i.e. the PW estimate. The PW
estimate (7) is known to process a mean ISE convergence rate at
order of N�1 [14] but it is nonsparse.

2.2. Existing sparse kernel density estimates

The density estimation problem (1) is an unsupervised
learning problem. In most of the SKD estimation techniques
[15–17,20,23], it is reformulated into a supervised regression
problem by using the empirical distribution function as the
desired response and converting the kernels into the associated
CDFs. The true CDF of the PDF pðxÞ is

FðxÞ ¼
Z x

�1

pðuÞdu; ð9Þ

and the CDF associated with the kernel Krðx;xkÞ is given by

qrðx;xkÞ ¼

Z x

�1

Krðu;xkÞdu: ð10Þ

Further define the empirical distribution function F̂ ðx;DNÞ on the
training set DN as

F̂ ðx;DNÞ ¼
1

N

XN

k ¼ 1

Ym
j ¼ 1

yðxj�xj;kÞ; ð11Þ

with

yðxÞ ¼
1; x40;

0; xr0;

(
ð12Þ

where xkADN . Using F̂ ðx;DNÞ as the desired response for FðxÞ, the
density estimation can be expressed as a regression modelling

F̂ ðx;DNÞ ¼
XN

k ¼ 1

bkqrðx;xkÞþ êðxÞ ð13Þ

subject to the constraints (2) and (3), where êðxÞ denotes the
modelling error at x. According to Glivenko-Cantelli theorem [34],
the empirical distribution function (11) converges to the true CDF
almost surely as the number of observations N-1, under the
assumption of independently identically distributed observations,
which provides some theoretical justification for using (11) as the
desired response of (9).

An alternative approach is proposed in [24] which directly
performs a regression modelling in the PDF space by using the PW
estimate (7) as the desired response of the true PDF pðxÞ. The PW
estimate can be viewed as the ‘‘observation’’ of the true density
contaminated by some ‘‘observation noise’’ p̂Parðx;rParÞ ¼

pðxÞþ ~eðxÞ. Thus the KD estimation problem (1) can be viewed
as the following regression problem with the PW estimate as the
desired response

p̂Parðx;rParÞ ¼
XN

k ¼ 1

bkKrðx;xkÞþeðxÞ ð14Þ

subject to the constraints (2) and (3), where eðxÞ is the modelling
error at x.

Define /ðkÞ ¼ ½Kk;1 Kk;2 � � � Kk;N�
T with Kk;i ¼ Krðxk;xiÞ,

yk ¼ p̂Parðxk;rParÞ, and ek ¼ eðxkÞ. Then the model (14) at the data
point xkADN is expressed as

yk ¼ ŷkþek ¼/T
ðkÞbNþek: ð15Þ

The model (15) over the training data set DN can be written in the
matrix form

y¼UNbNþe ð16Þ

with the following additional notations UN ¼ ½Ki;k�ARN�N ,
1r i; krN, e¼ ½e1 e2 � � � eN�

T , and y¼ ½y1 y2 � � � yN�
T . For con-

venience, we will denote the regression matrix
UN ¼ ½/1 /2 � � � /N� with /k ¼ ½K1;k K2;k � � � KN;k�

T . Note that
/k is the k-th column of UN , while /T

ðkÞ is the k-th row of UN .
The construction algorithm of [24] first selects a small subset

of Ns significant kernels from the full kernel model (16) and then
calculates the associated kernel weights using the MNQP algo-
rithm. Experimental results presented in [24] demonstrate that
this SKD estimator compares favourably with other existing SKD
estimation methods [15–17,19,20,23], in terms of test accuracy
and sparsity of constructed KD estimates. Therefore, we will use
this SKD estimator as a benchmark for comparison with our
proposed new method. Obviously, the SKD estimator of [24] is
equally applicable when using (13) in the supervised subset
kernel selection. A significant advantage of using (14) instead
of (13) in the supervised subset kernel selection is a
lower computational complexity, as it does not required to
evaluate numerically the CDFs associated with the kernels based
on (10).

A different SKD estimator that will be used as a benchmark for
comparison with our proposed new method is the RSDE [19],
which works on the full regression matrix UN and tries to make as
many kernel weights to near zero as possible based on the
empirical ISE criterion, thus yielding a sparse representation.
Specifically, with the Gaussian kernel (4), the kernel weight vector
of the RSDE estimator is obtained by solving the constrained
nonnegative quadratic programming

min
bN

f12b
T
NGNbN�p̂

T
NbNg

s:t: bT
N1N ¼ 1 and biZ0; 1r irN; ð17Þ

where GN ¼ ½gi;j�ARN�N with

gi;j ¼

Z
Rm

Grðx;xiÞGrðx;xjÞdx¼ G ffiffi
2
p rðxi;xjÞ ð18Þ

and

p̂N ¼ ½p̂Parðx1;rÞ p̂Parðx2;rÞ � � � p̂ParðxN ;rÞ�T ; ð19Þ
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i.e. the i-th element of p̂N is p̂Parðxi;rÞ, the PW estimate at the data
point xi with the same kernel width r as the KD estimate to be
determined. Note that the ISE between the unknown underlying
density and the KD estimate, calculated on the training set, is
equivalent to the ISE between the KD estimator and the PW
estimator, as is illustrated below:

min
bN

Z
Rm
jp̂Parðx;rParÞ�p̂ðx;bN ;rÞj2 dx

¼min
bN

Z
Rm

p̂
2
ðx;bN ;rÞdx�2

XN

i ¼ 1

biEp̂Par
½Krðx;xiÞ�; ð20Þ

where Ep̂Par
½�� denotes the expectation with respect to p̂Parðx;rParÞ.

Given, Krð�; �Þ ¼ Grð�; �Þ, the first term in the righthand side of (20)
is the first term of the cost function in (17), while the second term
in righthand side of (20) can be expressed as

XN

i ¼ 1

biEp̂Par
½Krðx;xiÞ� �

XN

i ¼ 1

bi

1

N

XN

k ¼ 1

Krðxk;xiÞ ¼
XN

i ¼ 1

bip̂Parðxi;rÞ;

ð21Þ

which is identical to the second term of the cost function in (17).
In order to solve the constrained nonnegative quadratic program-
ming (17), in particular to obtain a SKD estimate, the MNQP
algorithm [25] can be used. However, because the full kernel
matrix has a very high dimension of N � N, the MNQP algorithm
converges slowly. The RSDE [19] uses the alternative sequential
minimal optimisation (SMO) [35] to solve (17). Note that the
optimisation process can only drive many kernel weights to small
values and, therefore, a zero threshold has to be specified to
remove these weights. Appropriate zero threshold can only be
determined empirically.

2.3. Gaussian mixture model estimate

As we will also use the GMM as a benchmark to compare with
our new SKD estimator, this subsection briefly introduces the
GMM. The general FMM is described by

p̂FMMðx;XÞ ¼
XNs

l ¼ 1

blKCl
ðx; clÞ; ð22Þ

where Ns is the number of mixture components, and the kernel
weights satisfy the constraints blZ0 for 1r lrNs andPNs

l ¼ 1 bl ¼ 1. In this FMM, cl ¼ ½c1;l c2;l � � � cm;l�
T denotes the l-th

kernel centre vector, the l-th kernel’s covariance matrix takes a
diagonal form Cl ¼ diagfr2

1;l;r
2
2;l; . . . ;r

2
m;lg, and

X¼ fbl; cl;Clg
Ns

l ¼ 1 ð23Þ

denotes all the parameters of the FMM. When the Gaussian kernel
function KCðx; cÞ ¼ GCðx; cÞ, where

GCðx; cÞ ¼
1

ð2pÞm=2det1=2
½C�

e�ð1=2Þðx�cÞT C�1
ðx�cÞ; ð24Þ

is used, the FMM (22) is the GMM.
The EM algorithm for estimating the parameters of the GMM

takes an explicit iterative form [9]. Given a value of X, labelled as
Xold, define

Pðljxk;X
old
Þ ¼

bold
l KCold

l
ðxk; c

old
l ÞPNs

i ¼ 1 b
old
i KCold

i
ðxk; cold

i Þ
ð25Þ

for 1r lrNs and 1rkrN. Then a new value of X is obtained
according to [9]

bnew
l ¼

1

N

XN

k ¼ 1

Pðljxk;X
old
Þ; ð26Þ
cnew
l ¼

PN
k ¼ 1 xkPðljxk;X

old
ÞPN

k ¼ 1 Pðljxk;X
old
Þ
; ð27Þ

Cnew
l ¼

XN

k ¼ 1

Pðljxk;X
old
Þdiag

n
ðx1;k�cnew

1;l Þ
2; . . . ; ðxm;k�cnew

m;l Þ
2
o
=
XN

k ¼ 1

Pðljxk;X
old
Þ;

ð28Þ

where xi;k�cnew
i;l denotes the i-th element of xk�cnew

l .
This simple EM algorithm for the GMM, however, is generally

ill-posed. In particular, the updating Eq. (28) may cause numerical
problems, which leads to divergence. Often more complicated
robust techniques such as the bootstrap [10,11] may need to be
used to overcome numerical difficulties. The choice of the initial
X is also critical, as the algorithm can only converge to local
minima, and whether or not the algorithm converges may depend
on the initial parameter value. We find out in our previous
experience [11] that it is necessary to impose a minimum bound,
r2

min, for all the variances r2
i;l, 1r irm and 1r lrNs. During the

iteration process, any r2
i;l goes below the value r2

min is reset to this
minimum value. This helps to alleviate numerical problem and
improve the chance of convergence. Appropriate r2

min is problem
dependant and can only be found by experiment.
3. Proposed sparse density estimator

Our aim is to seek a sparse representation for p̂ðx;bN ;rÞ with
most elements of bN being zero and yet processing accurate test
performance or generalisation capability. As mentioned in the
Introduction section, two alternative methods can be adopted to
achieve this objective. The first approach works on the full
regression matrix UN and tries to make as many kernel weights to
near zero as possible based on some appropriate criteria, thus
yielding a sparse representation, as in [15–19]. The second
approach adopts the efficient OFR procedure to select a small
subset of significant kernels based on some relevant criteria, thus
constructing a sparse kernel model, as in [20,23,24]. We adopt the
second approach here. However, our subset kernel selection
method is very different from any of the previous works.

3.1. Subset kernel selection using D-optimality criterion

Consider the model (16) in the generic data modelling context.
In experimental design, the matrix UT

NUN is called the design
matrix. The LS estimate of bN is given by

b̂N ¼ ðU
T
NUNÞ

�1UT
Ny: ð29Þ

Under the assumption that (16) represents the true data
generating process and UT

NUN is nonsingular, the estimate b̂N is
unbiased and the covariance matrix of the estimate is determined
by the design matrix, namely,

E½b̂N � ¼ bN ;

Cov ½b̂N�pðU
T
NUNÞ

�1:

8<
: ð30Þ

It is well known that the model based on LS estimate tends to be
unsatisfactory for an ill-conditioned regression matrix, i.e. ill-
conditioned design matrix. The condition number of the design
matrix is given by

C ¼
maxfli;1r irNg

minfli;1r irNg
ð31Þ

with li, 1r irN, being the eigenvalues of UT
NUN . Too large a

condition number will result in unstable LS parameter estimate
while a small C improves model robustness. The D-optimality
design criterion [27] maximises the determinant of the design
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matrix for the constructed model. More specifically, let UNs
be a

column subset of UN representing a constructed Ns�term subset
model. According to the D-optimality criterion, the selected
subset model is the one that maximises detðUT

Ns
UNs
Þ. This helps

to prevent the selection of an oversized ill-posed model and the
problem of high parameter estimate variances. Thus, the D-
optimality design is aimed to optimise model efficiency and
robustness of parameter estimate. Moreover, the design matrix
does not depend on y explicitly. Hence, the D-optimality design is
an unsupervised learning, making it particularly suitable for
determining the structure of KD estimate, as the latter is also
essentially an unsupervised learning problem.

Let an orthogonal decomposition of the regression matrix UN

be UN ¼WNAN , where

AN ¼

1 a1;2 � � � a1;N

0 1 & ^

^ & & aN�1;N

0 � � � 0 1

2
6664

3
7775 ð32Þ

and WN ¼ ½w1 w2 � � � wN� with orthogonal columns satisfying
wT

i wj ¼ 0, if ia j. Similarly, the orthogonal matrix corresponding
to UNs

is denoted as WNs
. It is straightforward to verify that

maximising detðUT
Ns

UNs
Þ is identical to maximising detðWT

Ns
WNs
Þ

or, equivalently, minimising �log detðWT
Ns

WNs
Þ. In fact,

detðUT
NUNÞ ¼

YN
i ¼ 1

li: ð33Þ

But

detðUT
NUNÞ ¼ detðAT

NÞdetðWT
NWNÞdetðANÞ ¼ detðWT

NWNÞ ¼
YN
i ¼ 1

li:

ð34Þ

We also have

�log detðWT
NWNÞ ¼

XN

i ¼ 1

�logðwT
i wiÞ: ð35Þ

Denote the design matrix as BN ¼UT
NUN ¼ ½bi;j�ARN�N . The fast

algorithm for the modified Gram–Schmidt orthogonalisation
procedure [36] can readily be used to orthogonalise BN and to
calculate the AN matrix. For the notational convenience, we will
use the same notation BN ¼ ½bi;j� to denote the design matrix after
its first n� n block has been orthogonalised. We can now
summarise the D-optimality based OFR procedure. The n-th stage
of the selection procedure is given as follows.

D-optimality based OFR. Begin: For nr jrN, calculate
JðjÞn ¼�logðbj;jÞ and find

Jn ¼ JðjnÞn ¼minfJðjÞn ;nr jrNg:
�
 If

Jn4x; ð36Þ

where x is a threshold value that determines the size of the
subset model, goto Stop.

�
 Otherwise, the jn- th column of BN is interchanged from the n-

th row upwards with the n-th column of BN , and then the jn- th
row of BN is interchanged from the n-th column upwards with
the n-th row of BN .
The jn�th column of AN is interchanged up to the ðn�1Þ- th
row with the n-th column of AN .
This effectively selects the jn- th candidate as the n-th
regressor in the subset model.
�
 For nþ1r jrN, compute an;j ¼ bn;j=bn;n, and for nþ1r jrN

and jr lrN, compute

bj;l ¼ bj;l�an;jan;lbn;n;

bl;j ¼ bj;l:

(

Set n¼ nþ1 and go to Begin.

Stop: This selects n�1 most significant kernels according to the
D-optimality criterion to form the selected subset model.

The desired threshold value x is problem dependent, and it can
typically be determined by simply observing the values of
�logðwT

i wiÞ ¼�logðbi;iÞ for i¼ 1;2; . . . ; and terminating the selec-
tion when it is appropriate. Alternatively, one can simply set a
maximum number Ns for the selected significant kernels, where
Ns5N. It does not really matter if Ns is set to be larger than
necessary, as the MNQP algorithm [25] used to compute the
kernel weights will automatically make some of the kernel
weights to near zero, and thus reduces the model size to an
appropriate level. It can be seen that the computational complex-
ity of this D-optimality based OFR algorithm is no more than
OðN2Þ. In fact, it can easily be shown that the complexity of this
D-optimality based OFR for subset kernel selection is lower than
any of the existing SKD estimators [15–20,23,24].

Specifically, the computational complexity of the proposed
D-optimality based SKD algorithm can be expressed by

Cprop:SKD ¼Ns � tprop:SKD � N
2;

where Ns is the number of kernels selected and tprop:SKD is a
scaling factor. Similarly, the complexity of the previous SKD
algorithm [24] can be expressed by

Cprev:SKD ¼Ns
0 � tprev:SKD � N

2;

with Ns
0 denoting the number of selected kernels and tprev:SKD the

related scaling factor, while the complexity of the RSDE algorithm
[19] can be written as

CRSDE ¼Ns
00 � tRSDE � N

2;

with Ns
00 denoting the number of selected kernels and tRSDE the

corresponding scaling factor. It can easily be shown that tprop:SKD

is much smaller than tprev:SKD and tRSDE. Furthermore, the
proposed D-optimality based SKD algorithm typically yields
sparser PDF estimates than the previous SKD algorithm [24] and
the RSDE [19], as will be confirmed in the simulation study. Thus,
Ns is smaller than Ns

0 and Ns
00 . Therefore, the proposed method is

computationally simpler than the previous methods of [19,24].
The unsupervised D-optimality based OFR possesses two

remarkable optimality properties for SKD construction. The
‘‘evidence’’ of the unknown underlying density distribution is
given in the data sample set DN , i.e. in the full kernel matrix UN .
The D-optimality based OFR algorithm automatically identifies a
small subset of the Ns most significant kernels related to the
largest eigenvalues of UN , which counts for the most energy of the
kernel training data. This is similar to kernel principal component
analysis (KPCA) which constructs the Ns eigenvector bases that
counts for the most energy of the full kernel matrix. However, in a
conventional KPCA, each constructed orthogonal base is a linear
combination of all the original regressors and, therefore, it does
not provide a sparse representation with respect to the given
training data set DN . This first optimality property is not
guaranteed in any of the existing SKD estimators [15–20,23,24].
As a consequence of this ‘‘optimal sparse property’’, we will
demonstrate later in the numerical experiment that the
D-optimality based SKD estimator is capable of producing sparser
KD estimates, compared with some existing benchmark SKD
estimation techniques. As a direct result of this first optimality
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property, the subsequent kernel weight vector estimate has the
minimum estimation variance, i.e. the most accurate estimate,
among all the Ns�term subset models of the full kernel matrix
UN . Note that, unlike regularisation aided techniques which
sacrifice the bias in parameter estimate for the reduction in
estimation variance, the D-optimality criterion does not sacrifice
the estimation bias in order to reduce the estimation variance.

3.2. Calculating kernel weights

After the structure determination using the D-optimality based
OFR, we obtain a Ns- term subset kernel model, where Ns5N. The
resulting regression modelling problem is re-written in the
following:

y¼UNs
bNs
þe ð37Þ

subject to the constraints

bT
Ns

1Ns
¼ 1 and biZ0; 1r irNs; ð38Þ

where bT
Ns
¼ ½b1 b2 � � � bNs

�. The kernel weight vector can be
obtained by solving the following constrained nonnegative
quadratic programming

min
bNs

f12b
T
Ns

BNs
bNs
�vT

Ns
bNs
g

s:t: bT
Ns

1Ns
¼ 1 and biZ0; 1r irNs; ð39Þ

where BNs
¼UT

Ns
UNs
¼ ½bi;j�ARNs�Ns and vNs

¼UT
Ns

y¼ ½v1 v2 � � �

vNs
�T . This constrained optimisation can of course be solved using

the SMO [35]. Because the subset kernel matrix size Ns � Ns is so
small, we find this optimisation problem can be solved efficiently
using a modified version of the MNQP algorithm [25].

Since the elements of BNs
and vNs

are strictly positive, the
auxiliary function [25] for the above problem is given by

1

2

XNs

i ¼ 1

XNs

j ¼ 1

bi;j

bðtÞj ðb
ðtþ1Þ
i Þ

2

bðtÞi

�
XNs

i ¼ 1

vib
ðtþ1Þ
i ; ð40Þ

and the Lagrangian associated with this auxiliary problem can be
formed as [19]

L¼ 1

2

XNs

i ¼ 1

XNs

j ¼ 1

bi;j

bðtÞj ðb
ðtþ1Þ
i Þ

2

bðtÞi

�
XNs

i ¼ 1

vib
ðtþ1Þ
i �ZðtÞ

XNs

i ¼ 1

bðtþ1Þ
i �1

 !
;

ð41Þ

where the superindex ðtÞ denotes the iteration index and Z is the
Lagrangian multiplier. Setting

@L
@bðtþ1Þ

i

¼ 0 and
@L
@ZðtÞ ¼ 0 ð42Þ

leads to the following updating equations:

cðtÞi ¼ bðtÞi

XNs

j ¼ 1

bi;jb
ðtÞ
j

0
@

1
A
�1

; 1r irNs; ð43Þ

ZðtÞ ¼
XNs

i ¼ 1

cðtÞi

 !�1

1�
XNs

i ¼ 1

cðtÞi vi

 !
; ð44Þ

bðtþ1Þ
i ¼ cðtÞi ðviþZðtÞÞ: ð45Þ

It is easy to check that, if bðtÞNs
meets the constraints (38), bðtþ1Þ

Ns

updated according to (43)–(45) also satisfies (38). The initial
condition can thus be set as bð0Þi ¼ 1=Ns, 1r irNs.

During the iterative procedure, some of the kernel weights
may be driven to near zero, particularly when the subset model
size Ns is chosen to be larger than really necessary. The
corresponding kernels can then be removed from the kernel
model, leading to a reduction in the subset model size. It is due to
this desired property that the setting of the maximum selected
subset model size is not too critical in the D-optimality based OFR.
Because Ns is typically very small, this MNQP algorithm imposes
only a very small extra amount of computational. Thus, the
overall complexity of the proposed method is still no more than
OðN2Þ.
4. Numerical experiments

Several examples were used in the simulation to test the
proposed SKD estimator using the D-optimality based OFR with
the MNQP updating and to compare its performance with the PW
estimator, the previous SKD estimator [24], the RSDE estimator
[19] and the GMM estimator. Majority of the cases were the
density estimation problems. In each of these cases, a data set of N

randomly drawn samples was used to construct KD estimates, and
a separate test data set of Ntest ¼ 10;000 samples was used to
calculate the L1 test error for the resulting estimate according to

L1 ¼
1

Ntest

XNtest

k ¼ 1

jpðxkÞ�p̂ðxk;bNs
;rÞj; ð46Þ

with Ns denoting the number of kernels in the estimate. The
experiment was repeated by Nrun different random runs for each
example. Two of the examples were two-class classification
problems.

The Kullback–Leibler divergence (KLD) is a measure of the
difference between the two probability distributions, pðxÞ and
p̂ðx;bNs

;rÞ, and is defined by

DKLðpjp̂Þ ¼

Z
Rm

pðxÞlog
pðxÞ

p̂ðx;bNs
;rÞ

dx: ð47Þ

For the one-dimensional and two-dimensional problems, the KLD
was also used to test the resulting estimates. For a one-
dimensional problem, the KLD can be approximated accurately
by partitioning the integration range ½xmin; xmax� into the Np small
equal-length intervals and computing the summation

DKLðpjp̂Þ �
XNp

k ¼ 1

pðkÞlog
pðkÞ

p̂ðkÞ
Dx; ð48Þ

where Dx¼ ðxmax�xminÞ=Np, pðkÞ ¼ pðxminþkDxÞ and p̂ðkÞ ¼

p̂ðxminþkDx;bNs
;rÞ. In the experiment, we chose NpZ10;000 to

ensure the accuracy of the approximation. Similarly, for a two-
dimensional problem, the KLD is approximated by partitioning
the integration range ½x1;min; x1;max� � ½x2;min; x2;max� into the
Np � Np small equal-area intervals and calculated the double
summation

DKLðpjp̂Þ �
XNp

k ¼ 1

XNp

l ¼ 1

pðk; lÞlog
pðk; lÞ

p̂ðk; lÞ
ðDxÞ2; ð49Þ

where Dx¼ ðx1;max�x1;minÞ=Np ¼ ðx2;max�x2;minÞ=Np, pðk; lÞ ¼ pðx1;min

þkDx; x2;minþ lDxÞ and p̂ðk; lÞ ¼ p̂ðx1;minþkDx; x2;minþ lDx;bNs
;rÞ.

To ensure the accuracy of the approximation, we chose
Np4100. For higher-dimensional problems, calculation of the
KLD becomes computationally too expensive.

The Gaussian kernel function was employed. The value of
kernel width r used for a KD estimator was determined via cross
validation. For the GMM, instead of exhaustedly trying different
values for the number of mixing components, Ns, based on cross
validation, we determined the number of mixing components for
the GMM according to the average model size obtained for the
proposed SKD estimate. For the EM algorithm, all the initial
mixing weights bl were set to 1:0=Ns, the initial centre vectors cl
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Fig. 1. A PW estimate (solid) in comparison with the true density (dashed) for the

one-dimensional example of eight-Gaussian mixture.

Table 1
Performance comparison of the PW estimator, previous SKD estimator [24], proposed SKD estimator, RSDE estimator [19] and GMM estimator for the one-dimensional

example of eight-Gaussian mixture over 200 runs.

Estimator PW Previous SKD [24] Proposed SKD RSDE [19] GMM

Kernel type Fixed, rPar ¼ 0:17 Fixed, r¼ 0:30 Fixed, r¼ 0:31 Fixed, r¼ 0:56 Tunable

L1 test error �102 4:11971:351 4:18971:346 4:09171:392 5:81670:836 5:22971:574

KLD �102 4:47872:774 8:211711:28 6:87575:409 6:95672:522 7:02274:590

Kernel no. 200 10:271:7 8:770:9 14:074:3 8

Maximum 200 15 11 32 8

Minimum 200 5 6 6 8
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Fig. 2. A previous SKD estimate [24] (solid) in comparison with the true density

(dashed) for the one-dimensional example of eight-Gaussian mixture.
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were randomly chosen from the region ½a; b�mARm, and all the
initial variances r2

i;l were set to the same value r2
ini. A minimum

bound, r2
min, for the variances was also assigned. If some runs of

the EM algorithm were observed to diverge, the region ½a; b�m, the
values of r2

ini and/or r2
min were re-chosen until all the Nrun of the

EM algorithm were converged.

4.1. One-dimensional examples
0

0.1

0.2

0.3

-4 -3 -2 -1 0 1 2 3

p 
(x

)

x

Fig. 3. A proposed SKD estimate (solid) in comparison with the true density

(dashed), for the one-dimensional example of eight-Gaussian mixture.
Example 1. The density to be estimated was the mixture of eight
Gaussian distributions given by

pðxÞ ¼
1

8

X7

i ¼ 0

1ffiffiffiffiffiffi
2p
p

si

e�ðx�miÞ
2=2s2

i ð50Þ

with

si ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2

3

� �i
s

; mi ¼ 3
2

3

� �i

�1

 !
; 0r ir7: ð51Þ

The number of data points for density estimation was N¼ 200.
The experiment was repeated Nrun ¼ 200 times. The optimal
kernel widths were found to be rPar ¼ 0:17, r¼ 0:30, r¼ 0:31 and
r¼ 0:56 empirically for the PW estimator, the previous SKD
estimator [24], the proposed SKD estimator and the RSDE
estimator [19], respectively.

We observed that the significant kernels according to the D-
optimality criterion were in the range of 8–10 and the threshold
value could be set to x¼�1:0. However, we simply set the
maximum number of selected kernels by the D-optimality based
OFR to be Ns ¼ 16. The maximum and minimum values of nonzero
kernel weights obtained by the MNQP algorithm over the 200
runs were 11 and 6, respectively, and the average model size for
the proposed SKD estimator was Ns ¼ 8:7. We used Ns ¼ 8 for the
GMM. After considerable experiments, all the Nrun ¼ 200 runs of
the EM algorithm converged with the initialisation ½a; b� ¼ ½�4;3�,
r2

ini ¼ 0:1 and r2
min ¼ 0:01. Table 1 compares the performance of

the five density estimates, where it can be seen that the proposed
SKD estimator yielded sparser estimates with better test accuracy
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than our previous SKD estimator [24] as well as the RSDE
estimator [19]. Figs. 1–5 depict the five density estimates
obtained in a typical experimental run.

Example 2. The density to be estimated was the mixture of
Gaussian and Laplacian defined by

pðxÞ ¼
1

2
ffiffiffiffiffiffi
2p
p e�ðx�2Þ2=2þ

0:7

4
e�0:7jxþ2j: ð52Þ
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Fig. 4. A RSDE estimate [19] (solid) in comparison with the true density (dashed)

for the one-dimensional example of eight-Gaussian mixture.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

-4 -3 -2 -1 0 1 2 3

p 
(x

)

x

true PDF
GMM

Fig. 5. A GMM estimate (solid) in comparison with the true density (dashed) for

the one-dimensional example of eight-Gaussian mixture.

Table 2
Performance comparison of the PW estimator, previous SKD estimator [24], proposed

example of Gaussian and Laplacian mixture over 1000 runs.

Estimator PW Previous SKD [24]

Kernel type Fixed, rPar ¼ 0:54 Fixed, r¼ 1:1

L1 test error �102 2:01170:621 2:01170:649

KLD �102 8:09075:198 8:65775:122

Kernel no. 100 5:271:2

Maximum 100 10

Minimum 100 2
The number of data points for density estimation was N¼ 100.
The optimal kernel widths were found to be rPar ¼ 0:54 for the PW
estimator, r¼ 1:1 for our previous SKD estimator [24] as well as
the proposed SKD estimator, and r¼ 1:2 for the RSDE estimator
[19], respectively. The experiment was repeated Nrun ¼ 1000
times.

According to the D-optimality criterion, only three kernels were
significant and the threshold value could be set to x¼ 0:0. But we
simply set the maximum number of selected kernels by the
D-optimality based OFR to be Ns ¼ 10 and let the MNQP algorithm
to further reduce the model size. The maximum and mini-
mum numbers of nonzero kernel weights determined over
the 1000 runs were 5 and 2, respectively, and the average model
size was Ns ¼ 4:5. We chose Ns ¼ 5 for the GMM, while appro-
priate initialisation was found to be ½a; b� ¼ ½�12;7�, r2

ini ¼ 0:1
and r2

min ¼ 0:01, which ensured the convergence for all
the Nrun ¼ 1000 runs. Table 2 compares the performance of the
five density estimators, while Figs. 6–10 plot the five density
estimates obtained in a typical run, in comparison with the
true density. For this example, the RSDE estimator achieved
better test performance than the proposed D-optimality
based SKD estimator but the latter arrived at a much sparser
solution.
4.2. Two-dimensional examples
Example 3. The density to be estimated was defined by the
mixture of Gaussian and Laplacian given as follows:

pðx; yÞ ¼
1

4p e�ðx�2Þ2=2e�ðy�2Þ2=2þ
0:35

8
e�0:7jxþ2je�0:5jyþ2j: ð53Þ

The estimation data set contained N¼ 500 samples, and the
empirically found optimal kernel widths were rPar ¼ 0:42 for the
PW estimator, r¼ 1:1 for our previous as well as proposed SKD
estimators, and r¼ 1:2 for the RSDE estimator [19], respectively.
The experiment was repeated Nrun ¼ 100 times.

We simply set the maximum selected kernels by the
D-optimality based OFR to be Ns ¼ 16, and let the MNQP
algorithm to determine the final model size. The maximum and
minimum numbers of nonzero kernel weights turned out to be 14
and 5, respectively, over the 100 runs, while the average model
size was Ns ¼ 11:0. For the GMM, the number of mixture
components was chosen as Ns ¼ 11. After serval tries, an
appropriate initialisation was found to be ½a; b�2 ¼ ½�8;8�2,
r2

ini ¼ 0:4 and r2
min ¼ 0:01 for the EM algorithm to converge in

all the Nrun ¼ 100 runs. Table 3 lists the performance of the five
density estimators, where it can be seen that the proposed
D-optimality based SKD estimator obtained the sparsest density
estimate with similarly good test performance in comparison
with the other three benchmark KD density estimators.
SKD estimator, RSDE estimator [19] and GMM estimator for the one-dimensional

Proposed SKD RSDE [19] GMM

Fixed, r¼ 1:1 Fixed, r¼ 1:2 Tunable

1:94570:644 1:88670:586 2:51170:904

8:30973:931 5:60073:771 12:0877:885

4:570:8 9:774:6 5

5 44 5

2 2 5
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Fig. 6. A PW estimate (solid) in comparison with the true density (dashed) for the

one-dimensional example of Gaussian and Laplacian mixture.
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Fig. 7. A previous SKD estimate [24] (solid) in comparison with the true density

(dashed) for the one-dimensional example of Gaussian and Laplacian mixture.
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Fig. 8. A proposed SKD estimate (solid) in comparison with the true density

(dashed) for the one-dimensional example of Gaussian and Laplacian mixture.
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Fig. 9. A RSDE estimate [19] (solid) in comparison with the true density (dashed)

for the one-dimensional example of Gaussian and Laplacian mixture.
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Fig. 10. A GMM estimate (solid) in comparison with the true density (dashed) for

the one-dimensional example of Gaussian and Laplacian mixture.

S. Chen et al. / Neurocomputing 73 (2010) 727–739 735
Example 4. The true density to be estimated was defined by the
mixture of five Gaussian distributions given as

pðx; yÞ ¼
X5

i ¼ 1

1

10p
e�ðx�mi;1Þ

2=2e�ðy�mi;2Þ
2=2 ð54Þ

and the means of the five Gaussian distributions, ½mi;1 mi;2�,
1r ir5, were ½0:0 �4:0�, ½0:0 �2:0�, ½0:0 0:0�, ½�2:0 0:0�, and
½�4:0 0:0�, respectively. The number of data points for density
estimation was N¼ 500. The optimal kernel widths were found to
be rPar ¼ 0:5, r¼ 1:1, r¼ 1:0 and r¼ 1:2 for the PW, previous
SKD, proposed SKD and RSDE estimators, respectively. The
experiment was repeated Nrun ¼ 100 times.

The maximum number of selected kernels by the D-optimality
based OFR was set to Ns ¼ 16. The maximum and minimum
numbers of nonzero kernel weights found by the MNQP algorithm
over the 100 runs were 9 and 6, respectively, and the average
model size was Ns ¼ 7:9. We then used Ns ¼ 8 for the GMM, with
the initialisation ½a; b�2 ¼ ½�8;4�2, r2

ini ¼ 0:1 and r2
min ¼ 0:01 for the

EM algorithm. Table 4 compares the performance of the five
density estimators studied, where it can be seen that the new SKD
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Table 3
Performance comparison of the PW estimator, previous SKD estimator [24], proposed SKD estimator, RSDE estimator [19] and GMM estimator for the two-dimensional

example of Gaussian and Laplacian mixture over 100 runs.

Estimator PW Previous SKD [24] Proposed SKD RSDE [19] GMM

Kernel type Fixed, rPar ¼ 0:42 Fixed, r¼ 1:1 Fixed, r¼ 1:1 Fixed, r¼ 1:2 Tunable

L1 test error �103 4:03670:693 3:83870:780 3:69470:851 4:05370:446 3:47470:990

KLC �10 1:46670:228 1:40370:534 1:46371:067 0:89670:411 0:60870:172

Kernel no. 500 15:373:9 11:071:6 16:273:4 11

Maximum 500 25 14 24 11

Minimum 500 8 5 9 11

Table 4
Performance comparison of the PW estimator, previous SKD estimator [24], proposed SKD estimator, RSDE estimator [19] and GMM estimator for the two-dimensional

example of five-Gaussian mixture over 100 runs.

Estimator PW Previous SKD [24] Proposed SKD RSDE [19] GMM

Kernel type Fixed, rPar ¼ 0:5 Fixed, r¼ 1:1 Fixed, r¼ 1:0 Fixed, r¼ 1:2 Tunable Gaussian

L1 test error �103 3:62070:439 3:61070:503 3:23670:558 3:63170:362 3:67570:672

KLC �102 3:42270:548 3:66570:920 3:47471:298 3:53770:485 3:39270:870

Kernel no. 500 13:272:9 7:970:8 13:273:0 8

Maximum 500 22 9 21 8

Minimum 500 8 6 6 8

Table 5
Performance comparison for the two-class two-dimensional classification example.

Estimator Kernel type p̂ð�jC0Þ Kernel width p̂ð�jC1Þ Kernel width Test error rate (%)

PW Fixed Gaussian 125 kernels 0.24 125 kernels 0.23 8.0

Previous SKD [24] Fixed Gaussian 6 kernels 0.28 5 kernels 0.28 8.0

Proposed SKD Fixed Gaussian 2 kernels 0.38 2 kernels 0.38 7.9

RSDE [19] Fixed Gaussian 3 kernels 0.30 2 kernels 0.30 7.9

GMM Tunable Gaussian 2 kernels – 2 kernels – 9.1
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Fig. 11. Decision boundary of the PW estimator for the two-class two-dimensional

classification example, where circles represent the class-1 training data and

crosses the class-0 training data.
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estimator had a similar test performance as the other two
benchmark SKD estimators but it achieved a much sparser
density estimate. The proposed SKD estimator had a further
advantage of a much simpler computational complexity in the
density construction process.

Example 5. This was a two-class classification problem in a two-
dimensional feature space [37] and we obtained the data from
[38]. The training set contained 250 samples with 125 points for
each class, and the test set had 1000 points with 500 samples for
each class. The optimal Bayes error rate based on the true
underlying probability distribution for this example was known
to be 8%. We first estimated the two conditional density functions
p̂ðx;bNs

;rjC0Þ and p̂ðx;bNs
;rjC1Þ from the training data, and then

applied the Bayes decision rule

if p̂ðx;bNs
;rjC0ÞZ p̂ðx;bNs

;rjC1Þ; xAC0

else; xAC1

)
ð55Þ

to the test data set and calculated the corresponding error rate.
Table 5 compares the results obtained by the five density
estimates investigated, where the values of the kernel width r
were determined by cross validation. Except for the GMM
method, the other four methods all achieved the optimal Bayes
classification performance. This clearly demonstrated the
accuracy of these density estimates. The proposed SKD
estimation method was seen to produce sparser density
estimates than our previous SKD estimation method of [24] as
well as the RSDE estimator of [19]. Figs. 11–15 illustrate the
decision boundaries of the classifier (55) for the five density
estimation methods investigated, respectively.
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Fig. 12. Decision boundary of the previous SKD estimator [24] for the two-class

two-dimensional classification example, where circles represent the class-1

training data and crosses the class-0 training data.
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Fig. 13. Decision boundary of the proposed SKD estimator for the two-class two-

dimensional classification example, where circles represent the class-1 training

data and crosses the class-0 training data.
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Fig. 14. Decision boundary of the RSDE estimator [19] for the two-class two-

dimensional classification example, where circles represent the class-1 training

data and crosses the class-0 training data.
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Fig. 15. Decision boundary of the GMM estimator for the two-class two-

dimensional classification example, where circles represent the class-1 training

data and crosses the class-0 training data.
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4.3. Multi-dimensional examples
Example 6. In this six-dimensional example, the underlying
density to be estimated was given by

pðxÞ ¼
1

3

X3

i ¼ 1

1

ð2pÞ6=2

1

det1=2
jCij

e�ð1=2Þðx�liÞ
T C�1

i ðx�liÞ ð56Þ
with

l1 ¼ ½1:0 1:0 1:0 1:0 1:0 1:0�T ;

C1 ¼ diagf1:0;2:0;1:0;2:0;1:0;2:0g; ð57Þ

l2 ¼ ½�1:0 �1:0 �1:0 �1:0 �1:0 �1:0�T ;

C2 ¼ diagf2:0;1:0;2:0;1:0;2:0;1:0g; ð58Þ
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Table 6
Performance of the PW estimator, previous SKD estimator [24], proposed SKD estimator, RSDE estimator [19] and GMM estimator for the six-dimensional example of

three-Gaussian mixture over 100 runs.

Estimator PW Previous SKD [24] Proposed SKD RSDE [19] GMM

Kernel type Fixed, rPar ¼ 0:65 Fixed, r¼ 1:2 Fixed, r¼ 1:2 Fixed, r¼ 1:2 Tunable

L1 test error �105 3:52070:162 3:11370:534 2:78270:227 2:73970:500 1:74370:285

Kernel no. 600 9:471:9 8:470:9 14:273:6 8

Maximum 600 16 10 25 8

Minimum 600 7 6 8 8

Table 7
Performance comparison for the Titanic classification data set, quoted as mean 7
standard deviation over 100 realisations.

Estimator Kernel no. p̂ð�jC0Þþ p̂ð�jC1Þ Test error rate (%)

PW 15070 22:4870:43

Proposed SKD 7:874:4 22:3470:34

RSDE [19] 36:975:7 22:5770:93

GMM 870 23:8673:22
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l3 ¼ ½0:0 0:0 0:0 0:0 0:0 0:0�T ;

C3 ¼ diagf2:0;1:0;2:0;1:0;2:0;1:0g: ð59Þ

The estimation data set contained N¼ 600 samples. The optimal
kernel widths were found empirically to be r¼ 0:65 for the PW
estimator and r¼ 1:2 for the three SKD estimators, respectively.
The experiment was repeated Nrun ¼ 100 times. The number of
kernels selected by the D-optimality based OFR was again set to
Ns ¼ 16. The maximum and minimum numbers of nonzero
kernels weights determined by the MNQP algorithm were 10
and 6, respectively, over the Nrun ¼ 100 runs and the final average
model size was Ns ¼ 8:4. The number of mixture components used
for the GMM was therefore Ns ¼ 8. An appropriate initialisation
for the EM algorithm was found to be ½a; b�6 ¼ ½�5;5�6, r2

ini ¼ 0:1
and r2

min ¼ 0:01. The results obtained by the five density
estimators are summarised in Table 6. It can be seen from Table
6 that the proposed SKD estimator achieved a similar test
accuracy with much sparser estimates than our previous SKD
estimator [24] as well as the RSDE estimator [19]. For this
example, the GMM estimator achieved the best test accuracy.

Example 7. This was a two-class classification data set, Titanic,
and we obtained the data set from [39]. The feature space
dimension was m¼ 3, and there were 100 realisations of the data
set. Each realisation contained 150 training samples and 2051 test
data samples. Note that the two-class data samples were
imbalanced, with the class-0 training samples approximately
twice of the class-1 training samples. In [40], a range of classifiers
were applied to this data set, and the best classification test error
rate in %, obtained by the SVM classifier, averaged over the 100
realisations was 22:4271:02.

We first estimated the two conditional density functions
p̂ðx;bNs

;rjC0Þ and p̂ðx;bNs
;rjC1Þ from the training data, and then

applied the Bayes decision rule (55) to the test data and calculated
the corresponding error rate. Four density estimation methods,
the PW, proposed SKD, RSDE and GMM estimators, were tested.
The values of kernel width for the first three density estimators
were determined via cross validation. For the GMM method, we
use four mixture components for each conditional density
estimation. The results obtained by the four methods are listed
in Table 7, where it can be seen that the proposed density
estimation method produced the best result. The optimal sparsity
property of the proposed D-optimality based SKD estimator was
demonstrated by the fact that it produced the sparsest density
estimates and furthermore the two conditional density estimates
had approximately equal numbers of kernels, despite the highly
imbalanced two class training data sets. This desired property for
example was not observed for the RSDE estimator, which
produced the class-0 density estimate having much larger
number of kernels than the class-1 density estimate.

5. Conclusions

An efficient D-optimality based construction algorithm has
been proposed for obtaining SKD estimates. A very small subset of
significant kernels are first selected using the OFR procedure
based on the D-optimality criterion. The associated kernel weights
are then calculated using a modified version of the MNQP
algorithm, which can further reduce the kernel model size by
making some of the kernel weights to zero. The proposed method
possesses a highly desired optimal sparsity property owing to the
ability of the D-optimality based OFR algorithm to automatically
identify a very small subset of the most significant kernels related
to the largest eigenvalues of the kernel matrix, which counts for
the most energy of the kernel training data. As a consequence of
this optimal property, the subset kernel weight vector estimate is
guaranteed to be the most accurate estimate. Furthermore, the
proposed method is simple to implement and computationally
efficient in comparison with other existing SKD estimation
methods. The experimental results obtained have demonstrated
that the proposed method compares favourably with other
existing sparse kernel density estimation methods, in terms of
test accuracy and sparsity of the estimate as well as complexity of
density estimation process. Thus it provides a viable alternative to
these existing state-of-the-art methods for constructing sparse
kernel density estimates in practical applications.

Recently, research effort has also been directed to construct
the RBF network or kernel model with tunable nodes [41–47]. In
particular, the work [48] has investigated the application of the
tunable RBF network to the PDF estimation. Further work is
warranted to compare the proposed efficient sparse fixed-kernel
density estimation approach with the nonlinear optimisation
aided tunable-kernel density estimation method of [48].
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