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Abstract

In many real world problems, the existence of irrelevantinfriables (features) hinders the predictive qualityhef tnodels used
to estimate the output variables. In particular, time sepieediction often involves building large regressors tifieial variables
that can contain irrelevant or misleading information. Maechniques have arisen to confront the problem of accwaiable
selection, including both local and global search strat®gThis paper presents a method based on genetic algothhtistends
to find a global optimum set of input variables that minimize Delta Test criterion. The execution speed has been eatidryc
substituting the exact nearest neighbor computation apisoximate version. The problems of scaling and projacaifozariables
have been addressed. The developed method works in coojundth MATLAB's Genetic Algorithm and Direct Search Toalk.
The goodness of the proposed methodology has been evalrassleral popular time series examples, and also gerextdtiz
other non-time-series datasets.

Key words: Genetic algorithm, Delta test, Variable selection, Appmtatek-nearest neighbors, Variable scaling, Variable
projection, Time series

1. Introduction on the Box-Jenkins methodology [1]. They include autore-
] . ] ) i o gressive (AR) models, integrated () models, and moving av-

In many fields like science, industry and finance it is NeceSgrage (MA) models. Their combination has given rise to au-
sary to accurately predict future values of a time seriesné&o toregressive moving average (ARMA) models, autoregressiv
examples of problems that would benefit from an accurate Préhtegrated moving average (ARIMA) models and their seasona

diction are: industrial processes, that can be modelediqiggl  generalization (SARIMA) [2]. However, these models are too
and controlled based on sensory data; natural phenomesi®, SUimited and simplistic for the average complexity of a tinge s

as daily rainfall or seismic events; medical applicatioksthe o5 |y contrast, nonlinear methods are more suitabledor-c
modeling of biological signals such as EEG or ECG; and finanyey series that contain irregularities and noise, sucthastic
cial problems like the prediction of stock market prices. time series. There is abundant literature on nonlinear tsode
The correct estimation of future values of time series is USUsq; time series forecasting [3, 4, 5, 6, 7, 8]. Among the émgst
ally affected by complex processes like random fluctuationsyethods are neural networks [9, 10, 11, 12, 13, 14, 15], radia
sudden trend changes, volatility and noise. The horizomef p |,55is function networks [11, 16, 17, 18], support vector ma-
diction and the number of available samples to obtain one oghines [19, 20, 21, 22], self organizing maps [23, 24] anébth
more future estimations are important issues too. Whembuil | 5riants of these models [11, 25, 26, 27, 28]. However, ngld
ing a regressor, which can be understood as the number of pagse models takes considerable computational time cadpar
events used to predict their next one, the number of inputs tq, jinear models. Recently, several hybrid methods (ARIMA

the model (which is translated as the size of the regressar) ¢ fuzzy or neural networks) have been employed in the liteeatu
become very large, depending on the periodicity of the parti [29, 30, 31].

lar time series. With large regressors, the learning procedf
the involved predictive models becomes slow and tedious.
Historically, the diferent models employed to estimate time
series have beenfirentiated in two groups: linear and non-
linear methods. The most popular linear methods are bas

Both linear, nonlinear, and hybrid methods have the same
purpose: to gather enough information from past samples
to give a reliable prediction of the immediate future sam-

es (short-term prediction) or give estimations abouftiure

mples (long-term prediction). Long term prediction. (pee-
dicting multiple steps ahead towards the future) is usuatye
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utive regressor instances, while the output is the nextevatu [35]. The DT is a nonparametric noise estimator, i.e. it aims

values of the series that have to be predicted after eackssgr to estimate the variance of the noise at the output, or thexmea

instance. squared error (MSE) that can be achieved without overfitting
Normally, the size of the regressor is chosen according t@Given N input-output pairsX,y;) € R? x R, the relationship

the periodicity components of the time series. Consequentl betweerx; andy; can be expressed as

time series with long periodic components may yield vergéar

regressors that can be troublesome to handle by predicade m ¥i = f(X) +m, i=1..,N, 1)

els. Most modeling techniques do not deal well with datasets , ) , ,

having a high number of input variables, due to the so called’heref is the unknown function anglis the noise. The DT

curse of dimensionality33]. As the number of dimensions ©Stimates the variance of the noise _ _

grows, the number of input values required to sample the so- The _DT is useful for evalgatlng the nonl_lnear correlation be

lution space increases exponentially. Many real life peots tween input a_nd outpu_t varla_bles. According to the DT, the se

present this drawback since they have a considerable arabunt!€ctéd set of input variables is the one that representsethe r

variables to be selected in comparison to the small number d{onship between the input variables and the output vagiabl

observations. Thereforeffigient variable selection procedures e Most deterministic way.

are required to reduce the complexity while also improviigt 1€ DT is based on the hypothesis of continuity of the re-
interpretability [34] of multidimensional problems. gression function. If two point&; andX; are close in the input

Recently, it has been shown that Delta Test (DT) can bé(ariable space, the continuityof regressionfunct.ioniarqﬁhat
a powerful tool to determine the quality of a subset of vari-th€ CUtputsf (X1) and f(xz) will be close enough in the output
ables by estimating the variance of the noise at the outijt [3 SPaCe: If this is not accomplished, it is due to the influerfce o
Several studies related to feature selection using the & ha the noise. _ _ L
been developed using both local search strategies such-as fo_ /1€ DT can be interpreted as a particularization of the

ward search (FS) [36] and forward-backward selection (FBsﬁa‘_mma Test [44] considering only the first nearest neighbor.
[37, 38] and also global search techniques like tabu searc his yields a fully nonparametric method as it removes tHg on

[37, 39] and Genetic Algorithm (GA) [37]. Global search meth hyperparameter (number of neighbors) that had to be chosen f

ods have the advantage of being able to escape from local mif€ G%mma Test. Let us denote the nearest neighbor of a point
ima, to which local methods are prone to converge [40]. % € R% asxng). The nearest neighbor formulation of the DT

This paper presents a global search technique based on GRStimates Varf] by
that manages not only to select, but also scale and project th N
input_variables in order to minimize the DT criter_ion. Therco Var[] ~ 6 = 1 Z(yi — yang)? » 2)
putation of the DT has been accelerated by using the approxi- 2N &
matek-nearest neighbor approach [41]. The designed method
makes use of MATLAB'’s Genetic Algorithm and Direct SearchWhere ynng is determined from the input-output pair
toolbox for the GA-based search. This methodology can b&ni): Ynn). For a proof of convergence the reader should
generalized to all regression problems. In this study weyare efer to [44].
ing to focus mainly on time series processing, but we hawe als
included non-time series datasets to show that the metbggol 3 Approximate k-nearest neighbors
can be generalized to all regression problems regardlebeiof

nature. The predictive study of the time series is not gairtaget Nearest neighbor search is an optimization technique for
addressed, as the methodology only provides reduced tiataséinding closest points in metric spaces. Specifically, gigen
for their later modeling. set ofn reference point® and query poing, both in the same

This paper is organized as follows: Section 2 explains the Dmetric spacé/, we are interested in finding the closest or near-
criterion and its role in the present study. Section 3 prissitie  est pointc € Rto g. Usually,V is ad-dimensional spaci¢,
approximatek-nearest neighbors algorithm that has been usewhere distances are measured using Minkowski metrics (e.g.
to speed up the DT calculation. Section 4 introduces the moEuclidean distance, Manhattan distance, max distance).
tivation for the GA and the fithess function optimization met The simplest solution to this neighbor search problem is to
ods, such as scaling, projection and their variations wftkel ~ compute the distance from the query point to every othertpoin
number of variables. Section 5 describes the datasetgltestdn the reference set, while registering and updating thé&ipos
preprocessing and hardwgseftware specifications for the per- of the nearest ok-nearest neighbors of every point. This al-
formed experiments, and finally, Section 6 discusses thé mogorithm, sometimes referred to as the naive approach oe-brut

relevant results obtained. force approach, works for small datasets, but quickly bexom
intractable as either the size or the dimensionality of ttedp
2 Delta Test lem becomes large, because the running ting@(@n). In prac-

tice, computing exact nearest neighbors in dimensions much
Delta Test was introduced by Pi and Peterson for time sehigher than 8 seems to be a veryhdiult task [41].
ries [42] and recently further analyzed by Liitiainehal. [43]. Few methods allow to find the nearest neighbor in less time
However, its applicability to variable selection was prepdin  than the brute-force computation of all distances does9#v1



Friedmaret al. [45] showed tha©(n) space an@(logn) query  4.1. Scaling (S)
time are achievable through the usekdftrees. However, even  The target of performing scaling is to optimize the value of
these methods fiier as dimension increases. The constant facthe DT beyond the minimum value that can be obtained with

tors hidden in the asymptotic running time grow at least a6 fa pyre selection. When performing scaling, the variables are

as 2 (depending on the metric). weighted according to their influence on the output variable
In some applications it may be acceptable to retrieve a “goodet us consideff as the unknown function that determines the

guess” of the nearest neighbor. In those cases one may use @hationship between thl input-output pairs of a regression

algorithm which does not guarantee to return the actuaksséar problem,y = f(X) + n, with x € R4,y € Randy € Ris a

neighborin every case, in return forimproved speed or mgmorrandom variable that represents the noise. Thus, the dstha

saving. Such an algorithm will find the nearest neighbor & th the outputy’e R, can be expressed gs-"g(x%), wherex® € RY

majority of cases, but this depends strongly on the dataset bis the modified sample with scaling weigtds= [s;, S, ..., S]

ing queried. It has been shown [41] that by computing nearesindg is the model that best approximates the functiorThe

neighbors approximately, it is possible to achieve sigaifity  objective is to find a scaling vectgre RY such that

faster running times (on the order of tens to hundreds) often

with relatively small actual errors. ¥ =g(s1X1, 2%, - . - » SuXa) 3)

The authors [41] state that given any positive reah data
point p is a (1+ €)-approximate nearest neighboraif its dis-
tance fromq is within a factor of (1+ €) of the distance to the
true nearest neighbor. It is possible to preprocess a set of
points inR® in O(dnlogn) time andO(dn) space, so that given
a query poinig € RY, ande > 0, a (1+ €)-approximate near-
est neighbor of can be computed i®(cq logn) time, where
Cde < dr1+6d/€]% is a factor depending only on dimension and
e. In general, it is shown that given an integer 1, (1+ €) ap-
proximations to thé-nearest neighbors af can be computed
in additionalO(kdlogn) time.

This faster neighbor search has been applied to the computa-Thus, for a population op individuals the same number
tion of the DT as expressed in Eg. 2 with high computationahew datasets will be created. The DT is calculated by obtain-
savings. ing the Euclidean distances among the weighted input sample
X5, After composing the new datas¥t, the first approximate
nearest neighbor of each point is selected using the metrod d
scribed in Section 3 and the DT is obtained from th&edlence
between their corresponding outputs, according to Eq. 22iWh
a predefined number of generations has been evaluated, the GA
Jeturns the fittest individual and its corresponding DT ealu

minimizes Varp] for the given problem.

In the existing variable selection literature there areesalv
applications of scaling to minimize the DT, but often keegpin
discrete number of weights [36, 37, 38] instead of using nanco
strained real values like in this study. In each generatfdh®
GA, every input sampl& = [Xi1, X2, . . . Xiq] from the dataset
Xinxa) is multiplied element by element by an individu(ar-

ray of scaling factors), forming a new datah’ﬁ@xd]:

X =siXj, 1=1..,N j=1...d. 4)

4. Using genetic algorithms for global search

To date, the GA has been successfully applied for variable s
lection in many publications [37, 46, 47, 48, 49, 50]. Theics . L . .
cess stems from the fact that they manage to carry out a globélz' Scf51||n9+ projection to k dimensions (SP-k) .
optimization of the selected set of variables. In such anggtt A projection can be used to reduce the number of variables by
convergence of GA will depend on the available time, but thePplying a linear (idempotent) transformation, represetiny a
diversity of solutions produced in each generation allomes t MatrixPyaxiq, to the matrix of input sample$xq, resulting in

search to reach good solutions. a lower dimensional matriX['?\lxk], k < d:
The purpose of the GA in this work is the global optimiza- _x P 5
tion of the scaling weights and projection matrix that miiden ~ “INxkj — 2Nxd] Fldxk] - (5)

the DT When applied to datasets built from time sgries déta, a Although it might seem counterproductive, the idea of the
thrt])_ugh t:'S. app:joachf.m;yhapply. to ?ther rtTgre_SS|ofr_1 p(rjOblemaeveloped method that combines scaling and projection is to
This study Intends to find the optima DT valueéinafixe r,‘um'add new variables to the input space (the projection of the in
ber of generations. Pure selection (i.e. assigning onlgr0l put vectors ork dimensions). Eq. 6 describes how these new

_sca_llng factors 1o each variable) would clear_ly outperfer.ml-_ variables are attached to the input matrix as new columns:
ing in terms of speed, but the best DT found is often suboptima

: o © Usp ~ 0
Scaling or prOJectlon are necessary to get closer to .thamﬂ)tl Xbe@ei] = [x[sNxd]’ X[ka]] , (6)
set of solutions. For that reason, a real-coded GA is prapose

to optimize a population of chromosomes that encode arrays avhereXs is the scaled version of as calculated in Eq. &P is
potential solutions. The following subsections descriteedif-  the projected version of and X®P is the new scaleggrojected

ferent types of variable preprocessing: scaling, scalimgo-  input matrix. In this case, the length of the chromosome in-
jection, and their corresponding versions with fixed numdfer creases linearly with paramet&r indicating that this value
variables. should be kept low to attain reasonable running times.



With a combination of both scaling and projection, the op-
timization problem should be able to reach a DT value tha
is not larger than the value obtained for scaling or projec:
tion alone. Consider the following two special cases. In the
first special case, projection columns are set to zero value
X3P = [X5,Onxig]. This special case is just a scaling problem
with additional zero columns that do not influence the searcl
process, but only increase computational time. The seqoed s
cial case is similar, with all elements of set to zero, i.e.
X3P = [Onxap. XP], leading to a pure projection problem with
extra computational cost. These two extreme cases sugpgest t
by allowing bothXs andXP to have real values, it becomes pos-
sible to find solutions that are at least as good as solutimns f
either scaling or projection problem.

4.3. Scaling with a fixed number of variables

Pareto front (Santa Fe dataset)

6r *
5r *
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= 4r *
A 3 *
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151
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=2r *
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Selected
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Objective 1: Fi(35) x 107

In many real world datasets, the number of samples is some-

times so largeN > 10000) that optimizing scaling weights
takes a considerable amount of time. This is due to the hig
computational cost of the inherent nearest neighbor sdarch

Figure 1: Pareto front for Santa Fe dataset, using scalittig fiked number

ﬂf variables andls = d/2. The desired solution is the one that, in first place,

adopts the desired number of fixed varialiegor as close as possible) and, in
second place, minimizes the DT with that constraint.

the DT formula. One approach to solve this would simply be to

randomly discard some portion of the samples in order todspe
up calculation time, but there is risk of losing valuableadand
there is no clear method to select important samples. ldstea
removing samples, a fierent strategy involves drastically re-
ducing the number of variables by forcing most of the scalin
weights to have zero valug (= 0). To achieve this goal, an ad-
ditional constraint is added to the problem which requihex t
at mostd; scaling weights have non-zero values. Therefdre,
variables are fixed to be included in final scaling vedand
the remainingl—d; weights are forced to zero whiclfectively
changes the dimensionality of the dataset. The computafion
nearest neighbor search is reduced to a loskedimensional

space. Thus, the fixed method enables a quick insight into the

d¢ most relevant variables of the regression problem.

The parameted; should not be considered as an additional
hyperparameter to the problem, since the optimization veith
stricted number of scaling weights gives larger DT valueao
pared to optimization without any restrictions. If we calesi
the scaling without any additional constraints (optimizatof

¢

ehave at mostl; non-zero values. With modified chromosomes,
the crossover and mutation operators have to be modified ac-

cordingly to further preserve the required constraint. ey,

oth approaches tend to converge extremely quickly to sithop
mal solutions in just a couple of tens of generations. fedént
approach would be to consider this as a multi-objective (MO)
optimization problem [51, 52, 53], where one objective is th
minimization of the DT, the main goal, and the other objeztiv
is the absolute dierence between the number of non-zero scal-
ing weights and the desired valdeg, i.e.

F1(S) = Var[n] on scaled dataset® (7)

F2(9=|di—l{s #0li=1,....d}. (8)
MO optimization tries to find the Pareto Optimal Front [54]
(a set of non-dominated solutions) instead of a single wrlut
This set contains solutions where the values of objectine-fu
tions are inconflict i.e. improving one objective leads to dete-
rioration in the other objective(s). Therefore, the result MO

all d variables), we should be able to reach the global miniproblem is a set of solutions onftlirent pareto fronts, after
mum, since it is included in the search space. Removing any afhich the user selects one (or more) based ofhéisprefer-

the variables carries the risk of excluding the global mimm
from the search space (unless those variables have zerbtweig
in the global minimum), leading to solutions with larger Dalv
ues. Thus, to find global minimum one shoulddet d. How-
ever, the search for nearest neighbors is computationaihg m
expensive ird-dimensional space than dy-dimensional one.
Introducingds parameter enables the control over the traffe-o
between the DT values and computational time.

ence. In this study, when the solutions are returned, weflmok
the one with the exact required numlakrof non-zero scaling
weights and the smallest DT. If such a solution does not exist
the one with the lowedt, value is used, that is, we try to stay
close tod; variables. A pareto front of Santa Fe dataset (see
Tablel for details) is shown in Figure 1 to illustrate this.

The algorithm used for MO optimization is the Elitist Non-
Dominated Sorting Genetic Algorithm proposed in [51], de-

For easier notation and understanding, we refer to standambted NSGA-II. It works by constructing the new population

scaling asscalingor pure scaling while scaling with the fixed
number of variables is referred to fised scaling The same
setup of the GA can be used for both scaling problems. For th
fixed scaling problem, one can just take themost important
or largest weights, feectively performing a ranking of scaling

layer by layer of non-dominated fronts. To ensure that the po
ulation has always the same size, the last layer to be added ha
® be split up into two parts. The partthatis included in thgtn
population contains solutions from the least crowded afea o
that front. This crowded comparison is basedcawding dis-

weights. On the other hand, the chromosomes can be fixed tance which is computed in the objective function space. For

4



details see [51]. The overall complexity of NSGA-1I&hp?), The fitness function of the GA is the DT computed faffeli-
whereh is the number of objectives (in our cdse- 2) andpis  enttypes of problems. In the MO optimization, the DT is one of
the size of the population. two objective functions. In this paper, we denote with DT& th
Fixed scaling is easily extended to include the projectioroptimization of scaling problem using DT, with DTFS the fixed
problem, in the same manner as explained in Section 4.2 facaling problem, with DTSR-the problem of scaling projec-
scaling+ projection. The combination of scaling with a fixed tion to k dimensions, with DTFSk the fixed scaling withd;
number of variables and projection will be referred tdiged  variables and finally DTFSH;-k is the problem of fixed scal-
scaling+ projection The projection in this problem is not mod- ing with d; variables plus projection tk dimensions. To em-
ified, only the scaling is replaced with the fixed version. phasize the goodness of these methods, pure selection (DTSL
has also been included in the comparison.
From previous analysis [37, 58], the best crossover and mu-
tation rates for a feature selection application using thea@
The experiments were carried out using MATLAB R2009a0.85 and 0.1 respectively, and an elitism of 10% of the intivi
(TheMathworks Inc., Natick, MA, USA) and its Genetic Algo- uals was the best compromise.
rithm and Direct Search Toolbox (GADS). Creation, crossove To sum up, the GA parameters were set as follows:
and mutation operators are implemented outside of the ¢éaolb
The approximate nearest neighbor search uses-a lBrary e Number of averaged runs: 10
available at [55]. The hardware platform used was an InteéCo e Number of generations evaluated: 200
i7™TM 920 processor (CPU clock: 4.2 GHz, Cache size: 8 4 population size: 150
MB) with 6 GB of system memory running Windows 7 (64-

5. Experiments

e Population initialization: 20% uniforph80% custom. The

bit). . I : e customized part is further divided into three parts:
The populations are initially created using a specific figmct )

that assigns a uniform initialization to a percentage ofptbe- — 1/3 with 90% zeros and 10% random genes

ulation and the rest can be customized by the user, spegifyin — 1/3 with 80% zeros and 20% random genes

how many of the remaining individuals are initialized randp
and how many of them are left as zeros. The functionis flexible
in the sense that the desired percentage of the initial ptipal
can be further splitinto more subsets, each one with a ciistom e Selection function: Binary tournament
able percentage of randomly initialized individuals. e Crossover rate: 0.85
The crossover and mutaFion operatqrs have also been im- Mutation rate: 0.1
plemented as custom functions according to [37]. The muta- N
tion operator is a pure random uniform function that opevate ® Elitism: 10%
at a gene level. A relatively high mutation rate (0.1) is used e Mutation function: Random uniform
to enable an fective exploration of the solution space. The
crossover operator is BL¥-[56], that is specifically devel- ~ The parameteds was set tgd,/ 2] for all datasets throughout
oped for a real-coded GA. BL¥-consists in, given two in- the experiments.
dividualsly = (if,i3,...iJ) andl; = (i3,i3,...i3) with (i € R),
a new dfspringO = (01, ..., 0, .., 0g) can be generated where °-1. Datasets
0j,j = 1,....dis a random value chosen from a uniform dis- The described methods have been evaluated on eight time se-
tribution within the interval iiin — @ - B,imax+ @ - B] where  ries and two standard regression datasets, to show theappli
imin = min(ijl, iJ?), imax = maxqjl, i]?), B = imax— imin anda € R.  bility of this methodology to generic regression problerfsr
The selection operator is the binary tournament selecé@h [ the time series, the data matrices were composed using one-
The binary tournament does not require the computationyf anstep-ahead direct prediction strategy [59, 60]. The sizéhef
probability for each individual, saving a considerable amto built datasets are listed in Table 1. For the time serieshting-
of operations in each iteration. This can increase comiomtat ber of variables refers to the regressor size, which waserhos
time in problems that require large number of individualti@  according to the periodicity of each series.
population. Some of the series were preprocessed in order to make them
The population size was fixed to 150 individuals. This valuemore stationary by removing the trend and seasonality. iShis
appears to be a good compromise between performance apdrticularly the case for all of the three series of ESTSP8200
computational cost for GA-based search applied to sinyilarl competition. The first series (ESTSP 2008a) is actually a set
sized datasets [37, 58]. After some preliminary tests, the-n  of three series, with two exogenous and one target series. Th
ber of generations was fixed to 200 to ensure convergenck in gjoal is to predict the next values of the target series. For ou
cases. An alternative to this setting could be allowing aathyic
management of the number of generations to be evaluated be-——— o
fore stopping the search. Thus, the search would be stopped,j,_ S!S {he same value used by el [47]and Gullenet al [37], aiso for
. . . eature selection. The rate is higher than usual to enalbleraugh exploration
no improvement in the DT has been found fogenerations,  of i regions of the solution space, rather than focus orréfieement of a
indicating that the algorithm has converged. small number of candidate solutions.

— 1/3 with 70% zeros and 30% random genes
e Crossover operator: BLX-(a@ = 0.5)




Additionally, a study on the DT performance has been done,

Table 1: Datasets tested . .
using several values af for approximatek-NN. The DT per-

Dataset Instances _ Variables formance is plotted in Figure 3 using DTSP-1. A degradation
Mackey-Glass 17 [61] 1500 20 of the DT is expected when allowing higher error bound. Ex-
Mackey-Glass 30 [61] 1500 20 perimental results show a clear increase trend for ESTSP 200
Poland electricity [62] 1400 12 and Mackey Glass 17 datasets wlken 1. From these observa-
Santa Fe [62] 1000 12 tions, we select the value= 1 for the rest of the experiments as
ESTSP 2007 [62] 875 55 it seems the pest compromlse_between speed—up and goodness
of the DT estimate. The DT given by the approximate search
ESTSP 2008a [62] 354 20 with e = 1 stays close to the value given by the exact search
ESTSP 2008b [62] 1300 15 in the majority of cases. The greatesffeience was registered
Darwin SLP [63] 1400 13 for Santa Fe, where there is an 8% DT reduction. Thus, we are
Housing [64] 506 12 reducing the computational cost with no significative perfo
Tecatoi{65] 215 100 mance loss. This result makes the approxinkaliéN approach

very interesting, especially for large datasets.

* This dataset was normalized in a sample-wise way in-
stead of the typical variable-wise way, because it has been
proved that better DT values are achieved with this vari- The average DT values computed by each method for each
ation [58]. dataset are shown in Figure 4. The scaling and projection fac

tors assigned to each variable have been omitted because the

experiments we only used the target series, as correlation §uUbject of interest are the DT values only.
the target series with the other two exogenous series isgiots  From the inspection of the results, one céira that all the
nificant. The target series is then transformed by taking th@roPosed methods outperform pure selection in the coresider

first order diference. ESTSP 2008b series was transforme§Cenarios, except from rare exceptions given by the fixetimet
by applyingx, = log(x;/x.1) to the original series defined by ©ds. The best performing method is DTSP-1 in most cases, fol-
%, te[1,...,1300], in order to remove the trend. lowed by DTFSP. However, the DTFSP method ties with DTSP

All datasets were normalized to zero mean and unit variancl! SOme datasets, such as the Mackey Glass series. Overall,
to prevent variables with high variance from dominatingrove the methods thatinclude projections are the most advaotzsge
those with a lower one. Therefore, all DT values shown in this! NS Was an expected result because they include the beofefits

paper are normalized by the variance of its respective outp$C@ling and also leverage the possibility of using newlntze
variable. No splitiing of datasets was performed (i.e.nirgj ~ Variables to gain an advantage over scaling alone.

and test sets) because the objective of the paper is thextatap N 9eneral, the fixed variations provide slightly worse DT
processing to minimize the DT value and not the fitting of gvalues than their standard counterparts (e.g. Santa Fandpol

model to the data. It is important to note that in a real-world€€ctricity), meaning that learning models will be able teeg

prediction application, the methodology should be applied similar _performance on the ha_ll\{ed Qataset. Since on_ly Half o
the training data available, but in these experiments tbose (e variables are used, the training times of models wilagye
was applied to the full datasets to provide repeatabilitger benefit from this reduction. The fixed version also gives an in

pendently of the particular choice of training and test sttas ~ Sight into the most relevant variables, and in these expgaris
the[d/2] mostimportantdimensions for prediction. For ESTSP

datasets, values of DTFS are not on the same level as those of
6. Results DTS, suggesting that more thgaly 2] variables are required for
better prediction.

6.2. DT performance

6.1. Approximate k-nearest neighbor performance

A preliminary test was carried out to assess the speed of tHe:3- Computational time

approximate method of nearest neighbor computationasca fun A computational time comparison of the presented methods
tion of e. Typically, e controls the tradefbbetween #ficiency  is shown in Figure 5. The pure selection is obviously thesfatst
and accuracy. Whea s set larger, the approximation is less method because the combination of solutions to try is veny li
accurate, and the search completes faster. ited. It is noticeable that DTSP-1 requires similar computa
The averaged results (10 runs) for Santa Fe, ESTSP 20Qibnal time to perform the 200 generations to DTS, and in some
and Mackey Glass 17 datasets, after 200 generations, amashocases (ESTSP 2007, Darwin SLP) even improving times com-
in Figure 2 for values ok between 0 and 2. Higher values puted for pure selection. This might seem contradictoryhas
were not tested as the DT estimate quickly deteriorates. Thsize of the individuals is twice the size of those used for DTS
approximate method proves to be faster for larger values of in the GA setup. Although the computational time for GA dou-
as expected. The computational time improvemenkfer 1 bles when moving from DTS to DTSP-1, the running time of
with respect to exadt-NN (e = 0) ranges from 15% (Santa Fe) DT optimization is dominated by nearest neighbor searcle. Th
to 28% (ESTSP 2007). faster calculation time for DTSP-1 could be attributed te th
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Figure 2: Computational time of the approxim&t&IN search as a function effor three datasets. The results were obtained running DIF'f8#P200 generations
and 10 runs were averaged.
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Figure 3: DT performance comparison for approximiatéN search and dierent values of for three datasets. The results were obtained running DI'feiP200
generations and 10 runs were averaged.

construction of the underlying data structure of approtxéna projecting to more than one dimension. In this subsectiom, p
nearest neighbors, which uses a hierarchial space decompojections tok = {1, 2, 3, 4, 5} dimensions are tested for each time
tion tree called balanced-box decomposition (BBD) treqd.[41 series dataset. Figure 6 illustrates the DT results obdadmnel
Additional dimensions might lead to favorable splittingtbé  Figure 7 represents the computational time evolution.

pointgsamples into leaves of the tree, eventually improving re- By looking at the results it is easy to observe that, for all

sponse time for query searches. datasets, the value of DT has an optimum value after which it

The fixed versions yielded good results in terms of DT valuesy, < g rise again when adding more projections. The iuest
for some datasets, but their computational times are gBy\era i+ remains is how to automatically select a good valuefor

higher than their non-fixed versions. When using MO optimizathat optimizes the DT. One possible heuristic is the foltuyi
tion there is an additional cost inherent in NSGA-Il method, g4t withk = 1 and compute the DT criterion. Then progres-
which computes crowding distance to ensure that indivelual gy oy increasé by 1 until the value of DT no longer improves.
from least crowded areas are included in the next populationsjnce the result of the GA depends on the initial population,
The additionalo(hp?) complexity of NSGA-Il forp = 150 ;e proposed heuristic, instead of taking only one rurhef t
slightly increases the running time for most datasets. Te 0 G several runs should be performed and the minimum taken
exceptions is ESTSP 2008b, where the computational time f0fq e resyit for a certain value kaf The downsides of this ap-
fixed methods is lower than for DTSTSP-1. proach are: a) the huge computational cost, since for edoh va

In the next subsection, the computational time and perforgt i the GA is applied several times to produce reliable DT val-

mance of the DTSP method is further analyzed for several vaIL-]eS’ and b) the possibility of stopping prematurely due ¢allo
ues ofk. minima.

The computational times show a general increasing tendency
which is logical due to the complexity increase wkthrhe only

From the previous results one can extract the conclusidn th@&xception was ESTSP 2007, for which computational times
DTSP-1 has clearly outperformed the rest of the methodswhilshow an irregular descending behavior. For Darwin SLP, the
still keeping reasonably low computational times in marmg-sc computational time registered far= 1 is slightly higher than
narios (except for ESTSP 2008b, Darwin SLP and Poland ele@xpected, as compared to the time required to project to more
tricity series). The DTSP method alsffers the possibility of dimensions.
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Table 2: Minimum DT values calculated for the ten dataseitsgusBS, tabu search and DT $Redenormalized values in brackets)

Dataset FBS Tabu DTSH¢
Selection Scaling Selection Scaling k DT
Santa Fe 0.0164 (36.09) 0.0094 (20.71) 0.0164 (36.11) 8.(2082) 1 0.0050 (11.00)
ESTSP 2007 0.0133(0.082)  0.0137 (0.084)  0.0135(0.083) 156.00.096) 1  0.0092 (0.056)
ESTSP 2008a 0.4959 (4.978)  0.4553 (4.570)  0.5409 (5.430) 4028.(4.043) 5  0.2223(2.238)
ESTSP 2008b 0.2907 (9.7E-3)  0.2775(9.3E-3)  0.2907 (9)7E-8.2782 (9.3E-3) 3  0.1878 (6.3E-3)
Darwin SLP 0.1062 (0.7214)  0.1019 (0.6923)  0.1071 (0.72770.0982 (0.6671) 4  0.0725 (0.4925)
Mackey Glass 17 11.5E-4 (5.9E-5) 9.5E-4 (4.9E-5) 11.5E:9HS%) 9.5E-4 (4.9E-5) 2  6.3E-4(3.2E-5)

Mackey Glass 30  4.0E-3 (3.2E-4)  3.8E-3(3.0E-4) 4.0E-33 3.8E-3(3.0E-4) 1,2 1.6E-3 (1.3E-4)
Poland electricity ~ 0.0481 (0.0013) ~ 0.0404 (0.0011) 0.0480013) 0.0379 (0.0010) 4  0.024 (6.6E-4)
Housing 0.0710 (6.009)  0.05654 (4.783)  0.0720 (6.089) SBGB.720) 3  0.0385 (3.257)
Tecator 0.0136 (2.2076)  0.0149 (2.412)  0.0112 (1.825) 4BG2.023) 2,3 0.0028 (0.454)

Finally, we have compared the minimum DT values achievedeasonable amount of time. It performs comparably to DTS in
with DTSPk to some popular search methods that can use DTerms of speed, despite having twice the number of genes to
as performance criterion, such as forward-backward setect optimize. In the particular case of ESTSP 2007 it outperfmim
and tabu search with the settings of [37], both for selectioth  pure selection in terms of speed, which is a remarkabletresul
discrete scaling (with 10 equally spaced levels). For acfaim- The adjustable number of projections also aided in the ebten
parison, these methods were executed in the same machinetah of lower DT values. The progression of the DT curves as
DTSPk and the the same amount of solutions were evaluateg function ofk shows a minimum where the optimum DT has
by each method. The results are listed in Table 2. The propeen registered. As we only tested projectionis to5 dimen-
posed methodology easily outperforms the classic tecksiqu sions, better values may be found for higkisr at the expense

by a large margin. of computational time. The increase in computational tisia a
function ofk generally follows an increase wit) save ESTSP
6.5. Discussion 2007 dataset, which produced an irregular descending.trend

After extensive testing, several conclusions can be drawn. The second overall best performing method has been DTFSP.
We have profited from using the approximate version of thelhe improvement provided by this method follows a similar
nearest neighbor computation to evaluate the DT. Prelipina trend to DTSP, as both include projection capabilities. ekik
tests on three datasets have shown that the approxkydhe  wise, DTFS was able to show similar performance to DTS using
algorithm produces computational time improvements of beonly half of the variables, which is a promising result. Hoee
tween 15% and 28% while keeping very similar DT values tothe running times for DTFS and DTFSP were higher than for
the ones obtained by the exact search. Better improvemamts cDTS and DTSP, respectively, in 8 out of 10 datasets. The fact
be obtained at the expense of higher DT. This traffésaccon-  of carrying out a double objective optimization withoutieas-
trolled by parameter, which provided acceptable DT results in ing the number of generations could hatteeted the perfor-
the range [0,1]. The results obtained suggest that the appro mance. Besides, we believe that the strong constraint ietbos
mate method is suitable for speed critical applicationsagge by grounding half the regressor variables to zero can justis
datasets. difference. Of course, the number of variables that are consid-

With respect to the DT performance of thefdrent fitness ered zero can be tweaked to match the needs of every particula
functions, all the proposed variations provide betterlteshan  user (e.g. for applications limited by number of variableg)
selection. The improvement introduced depends on the methgum up, the fixed methods can be very beneficial when building
used, but generally DTSP provides the best results, folidwye @ model because it will only be necessary to deal with a foacti
DTFSP. These improvements range from 24% (Darwin SLP) t®f the initial number of inputs, achieving similar results.
almost 70% (Santa Fe, Tecator). The importance of projectio Casting the scaling problem with a fixed number of variables
stands out especially in Tecator dataset. Where scaliragifyh  into MO setting increases the run time on the tested datasets
able to obtain any improvement against selection, prajacti In order to achieve lower running times, the number of indi-
manages to reduce the estimate by a great amount. In som@&uals in the population has to be reduced, which influences
cases, fixed methods do not perform well (e.g. most ESTSEhe exploration capabilities of the GA in a negative way. The
time series). This is probably because in complex problemsdditional computational time of NSGA-II prevents it frora-b
the limited amount of variablesl(2) did not allow further DT  ing used in this type of problem. Therefore, faster and stmpl
minimization. techniques should be employed to lower the running times of

We found that the DTSP method was not only the best overathe fixed scaling (plus projection) problem. One such pdssib
performer, but it also generally reached these good resu#ts ity is the island GA with migration policies that do not have
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such high complexity. [11]

7. Conclusion [12]

This paper has presented a fast methodology for DT minilt®!
mization based on a global search guided by a GA, which has
been successfully applied to a variety of time series degtase [14]
The methodology can be generalized to other regression prob
lems with a single output, as it has also been shown. The mo
important goals of the proposed methodology are to redwee th
datasets in order to simplify the complexity of the necessar[16]
modeling schemes and to improve interpretability by prgnin
unnecessary variables, only keeping those that are really i [17]
portant for the prediction.

The DT method requires the computation of the nearest
neighbor of each point. The time needed for this computatiorflsl
has been greatly alleviated by using an approximate vergion
the k-nearest neighbor algorithm. The DT was optimized us-
ing several methodologies: scaling of variables (DTS)lisga  [19]
+ projection to a number of dimensions (DTSP) and versions
of these with a fixed number of variables (DTFS and DTFSP,
respectively). These methods can minimize the DT beyongo]
the limits imposed by pure selection and help to increase in-
terpretability of the datasets.

The results obtained are very promising, especially for thgy1;
methods that include projection. Projection has helpeditgb
out underlying relationships between variables that ware i
tially not apparent, thus allowing a significant DT minimipa
with respect to scaling alone. DTSP was the best performings)
method in all scenarios and it reached a maximum DT mini-
mization of 70% over pure selection. Moreover, the low com-
putational time of this method makes it suitable for protdem
that involve large datasets. The possibility of varying rtiuen-
ber of dimensions to project to enables a fine refinement of th&5]
result that proved useful in all tests.

[22]

(24]

[26]

References [27]
G. Box, G. Jenkins, G. Reinsel, Time Series Analysis: e€asting and
Control, 3rd Edition, Prentice-Hall, Englewood &4, NJ, 1994.

P. Brockwell, R. Davis, Introduction to Time Series anat€casting, 2nd
Edition, Springer, Berlin, 2002.

M. Casdagli, Nonlinear prediction of chaotic time seri€hysica D 35
(1989) 335-356.

M. Clements, P. Franses, N. Swanson, Forecasting edoraord financial
time-series with non-linear models, International Jouoid-orecasting
20 (2) (2004) 169-183.

T. Ozaki, Nonlinear time series models and dynamicatesyis, Time Se-
ries in the Time Domain (1985) 2583.

M. Priestley, Non-Linear and Non-stationary Time Seralysis, Aca-
demic Press, New York, 1988.

T. Rao, M. Gabr, Introduction to bispectral analysis &ilthear time se-
ries models, in: Lecture Notes in Statistics, Vol. 24, Spein 1984.

D. Rumelhart, J. McCleland, Parallel Distributed Pregiag, Explo-
rations in the Microstructure of Cognition, Vol. 1 and 2, MPFess, Cam-
bridge, MA, 1987.

J. Hansen, R. Nelson, Forecasting and recombining tienies compo-
nents by using neural network, Computational Operatioresefarch 50
(2003) 307-317.

H. Hwarng, Insights into neural network forecastinméi series corre-
sponding to ARMA(p,q) structures, Omega 29 (2001) 273-289.

(1]
(2]
(3]
(4]

(28]
(29]
(30]

31
5] (31]

(6]
(7]
(8]

(32]

(33]
El

0 [34]

V. Kodogiannis, A. Lolis, Forecasting financial timerigs using neural
network and fuzzy system-based techniques, Neural conpétiappli-
cations 11 (2) (2002) 90-102.

Z. Tang, P. Fishwick, Feedforward neural nets as mofdel§ime series
forecasting, ORSA J. Comput. 5 (1993) 374-385.

A. Tawfiq, E.A.lbrahim, Artificial neural networks as pled to long-
term demand forecasting, Atrtificial Intelligence Enginegrl3 (1999)
189-197.

G. Zhang, E. Patuwo, M. Hu, A simulation study of artdicheural net-
work for nonlinear time-series forecasting, ComputatioDaerational
Research 28 (2001) 381-396.

G. Zhang, M. Qi, Neural network forecasting for sead@mal trend time
series, European Journal of Operational Research 160)Y3005514.
M. Niranjan, V. Kadirkamanathan, A nonlinear model fone series pre-
diction and signal interpolation, in: International Carmfiece on Acous-
tics, Speech, and Signal Processing, ICASSP-91, 1991,748-1716.
L. Qu, Y. Chen, Z. Liu, Time series forecasting modeltwérror cor-
rection by structure adaptive RBF neural network, in: ThetSWorld
Congress on Intelligent Control and Automation, WCICA 2006l. 2,
2006.

R. Zemouri, D. Racoceanu, N. Zerhouni, Recurrent fdshiais function
network for time-series prediction, Engineering Applicas of Artificial
Intelligence 16 (5-6) (2003) 453-463.

S. Mukherjee, E. Osuna, F. Girosi, Nonlinear predittaf chaotic time
series using support vector machines, in: Proceedingseo¥/thWork-
shop on Neural Networks for Signal Processing, NNSP 19997 18p.
511-520.

K. Mdller, A. Smola, G. Ratsch, B. Schokopf, J. Koldrgen, Advances
in Kernel Methods - Support Vector Learning, MIT Press, Cddge,
MA, 1999, Ch. Using support vector machines for time serresligtion,
pp. 243-254.

F. Tay, L. Cao, Application of support vector machinadinancial time
series forecasting, Omega 29 (2001) 309-17.

T. Trafalis, H. Ince, Support vector machine for regies and applica-
tions to financial forecasting, in: Proceedings of the imdional Joint
Conference on Neural Networks, IJCNN 2000, Vol. 6, 2000.

T. Koskela, M. Varsta, J. Heikkonen, K. Kaski, Recutr8®M with local
linear models in time series prediction, in: 6th Europeamfgsium on
Artificial Neural Networks, D-facto Publications, 1998,.d7-172.

G. Simon, A. Lendasse, M. Cottrell, J.-C. Fort, M. Vgden, Time se-
ries forecasting: Obtaining long term trends with selfaonging maps,
Pattern Recognition Letters 26 (12) (2005) 1795-1808.

K. Chen, C. Wang, A hybrid SARIMA and support vector maes in
forecasting the production values of the machinery inguistrTaiwan,
Expert Systems with Applications 32 (1) (2007) 254—264.

Y. Chen, B. Yang, J. Dong, Time-series prediction usintpcal linear
wavelet neural network, Neurocomputing 69 (4-6) (2006)-485.

C. Lee, Y. Chiang, C. Shih, C. Tsai, Noisy time seriegdprgéon using m-
estimator based robust radial basis function neural né&swaith grow-
ing and pruning techniques, Expert Systems With Applicetid6 (3P1)
(2009) 4717-4724.

R. Singh, S. Balasundaram, Application of extreme rigey machine
method for time series analysis, Int. Jour. Int. Tech 2 (8P@ 256—-262.
A. Jain, A. Kumar, Hybrid neural network models for hgtirgic time
series forecasting, Applied Soft Computing Journal 7 (RP@ 585-592.
L. See, S. Openshaw, Hybrid multi-model approach terrievel fore-
casting, Hydrol. Sci. J. 45 (4) (2000) 523-536.

0. Valenzuela, |. Rojas, F. Rojas, H. Pomares, L. Harrér. Guillén,
L. Marquez, M. Pasadas, Hybridization of intelligent teiciues and
ARIMA models for time series prediction, Fuzzy Sets and Syst
159 (7) (2008) 821-845.

L. Xiaoyu, W. Bing, Y. Simon, Time series prediction ldson fuzzy
principles, Tech. rep., Department of Electrical & Compiagineering,
FAMU-FSU College of Engineering, Florida State Universitallahas-
see, FL.

M. Verleysen, D. Frangois, The curse of dimensiowailit data mining
and time series prediction, in: J. Cabestany, A. PrietoaRd8val (Eds.),
Lecture Notes in Computer Science, Vol. 3512, Springer5200. 758—
770.

I. Guyon, S. Gunn, M. Nikravesh, A. Zadeh, Feature etioa: Foun-
dations and applications (Studies in fuzziness and softpecimg),



(35]

(36]

(37]

(38]

(39]

[40]

[41]

[42]
(43]
[44]

[45]

[46]

[47]

(48]

[49]

(50]

(51]

(52]

(53]
(54]
[55]
[56]
[57]

(58]

[59]

Springer-Verlag New York, Secaucus, NJ, USA, 2006.

E. Eirola, E. Liitiainen, A. Lendasse, F. Corona, M.rigsen, Using
the delta test for variable selection, in: Proc. of ESANN&0Buropean
Symposium on Atrtificial Neural Networks, Bruges, Belgiun®08, pp.
25-30.

Q. Yu, E. Séverin, A. Lendasse, A global methodology variable se-
lection: application to financial modeling, in: Proc. of MAS 2007,
ENST-Bretagne, France, 2007.

A. Guillen, D. Sovilj, F. Mateo, I. Rojas, A. Lendasddjnimizing the
delta test for variable selection in regression problems, J. of High
Performance Systems Architecture 1 (4) (2008) 269—281.

F. Mateo, A. Lendasse, A variable selection approaceta@n the delta
test for extreme learning machine models, in: Proc. of ESZ&R, Eu-
ropean Symposium on Time Series Prediction, Porvoo, Rin2008, pp.
57-66.

D. Sovilj, A. Sorjamaa, Y. Miche, Tabu search with delést for time
series prediction using OP-KNN, in: Proc. of ESTSP 2008,0Rean
Symposium on Time Series Prediction, Porvoo, Finland, 2pp8187—
196.

J. Holland, Adaptation in natural and artificial systentniversity of
Michigan Press, 1975.

S. Arya, D. Mount, N. Netanyahu, R. Silverman, A. Wu, Aptimal
algorithm for approximate nearest neighbor searching fdietensions,
Journal of the ACM (JACM) 45 (6) (1998) 891-923.

H. Pi, C. Peterson, Finding the embedding dimensionvanidble depen-
dencies in time series, Neural Computation 6 (3) (1994) 520

E. Liitigdinen, F. Corona, A. Lendasse, On nonparaioegsidual variance
estimation, Neural Processing Letters 28 (3) (2008) 153-16

A. Jones, New tools in non-linear modelling and preaditt Computa-
tional Management Science 1 (2) (2004) 109-149.

J. Friedman, J. Bentley, R. Finkel, An algorithm for fimgl best matches
in logarithmic expected time, ACM Transactions on MatheoatSoft-
ware (TOMS) 3 (3) (1977) 209-226.

I.-S. Oh, J.-S. Lee, B.-R. Moon, Local search-embeddedetic algo-
rithms for feature selection, Proc. of the 16th Int. Confieeson Pattern
Recognition 2 (2002) 148-151.

1.-S. Oh, J.-S. Lee, B.-R. Moon, Hybrid genetic algonis for feature se-
lection, IEEE Trans. on Pattern Analysis and Machine ligefice 26 (11)
(2004) 1424-1437.

W. Punch, E. Goodman, M. Pei, L. Chia-Shun, P. HovlandERbody,
Further research on feature selection and classificationg uenetic al-
gorithms, in: S. Forrest (Ed.), Proc. of the Fifth Int. Coof Genetic
Algorithms, Morgan Kaufmann, San Mateo, CA, 1993, pp. 5%4-5

M. Raymer, W. Punch, E. Goodman, L. Kuhn, A. Jain, Dimenality
reduction using genetic algorithms, IEEE Trans. on Evohdry Com-
putation 4 (2) (2000) 164-171.

Y. Saeys, |. Inza, P. Larranaga, A review of feature c&e techniques
in bioinformatics, Bioinformatics 23 (19) (2007) 2507-251

K. Deb, S. Agrawal, A. Pratap, T. Meyarivan, A fast glithon-dominated
sorting genetic algorithm for multi-objective optimizati NSGA-II,
Springer, 2000, pp. 849-858.

K. Miettinen, Nonlinear Multiobjective Optimizationvol. 12 of Interna-
tional Series in Operations Research and Management 8ci&hover
Academic Publishers, Dordrecht, 1999.

R. Steuer, Multiple Criteria Optimization :
Application, Wiley, New York, Toronto, 1986.
K. Deb, Multi-Objective Optimization Using Evolutiamy Algorithms,
Wiley, Chichester, UK, 2001.
http://www.cs.umd.edu/~mount/ANN/.

Theory, @putation, and

L. Eshelman, J. Sclier, Real-coded genetic algorithms and interval

schemata, in: L. Darrell Whitley (Ed.), Foundation of Génélgorithms

2, Morgan-Kattman Publishers, Inc., 1993, pp. 187-202.

D. Goldberg, Genetic algorithms in search, optimmatand machine
learning, Addison Wesley, 1989.

F. Mateo, D. Sovilj, R. Gadea, A. Lendasse, RCGRGGA-SP methods
to minimize the delta test for regression tasks, in: J. C.. ¢Ed.), Lecture
Notes in Computer Science, Vol. 5517, Springer, 2009, pp-366.

Y. Ji, J. Hao, N. Reyhani, A. Lendasse, Direct and reearprediction

of time series using mutual information selection, in: intional Work-

Conference on Artificial Neural Networks, IWANN, Spring@Q05, pp.

8-10.

10

[60] A. Sorjamaa, J. Hao, N. Reyhani, Y. Ji, A. Lendasse, Métiogy for
long-term prediction of time series, Neurocomputing 70-18% (2007)

2861-2869.
[61] http://wuw
[62] http://www

[63] http://www

.cse.ogi.edu/~ericwan/data.html.
.cis.hut.fi/projects/tsp/index.php?page=
timeseries.

.stat.duke.edu/~mw/data-sets/ts_data/
darwin.slp.

[64] http://archive.ics.uci.edu/ml/data sets/Housing.
[65] http://lib.stat.cmu.edu/data sets/tecator.

i~

Fernando Mateo was born in Valencia, Spain,
in 1981. He obtained his M.Sc. in Telecom-
munication Engineering in 2005 from the Univer-
sidad Politécnica de Valencia, Spain. Currently,
he is a researcher pursuing his Ph.D. at the In-
stitute of Applications of Information Technology
and Advanced Communications, at the same Uni-
versity. In 2007 and 2008 he also collaborated
with the Computer Science and Information Labo-
ratory at Helsinki University of Technology, Fin-
land. His research is related to machine learn-
ing methods and applications like position estima-

tion in positron emission tomography detectors, predictadd contaminants
in food and variable selection techniques for high-dimemai problems.

DuSan Sovilj obtained his B.Sc. in 2006 from
University of Novi Sad, Serbia. He is pursuing a
Master degree at Helsinki University of Technol-
ogy in Finland, and at the same time working at
the Time Series Prediction and Chemoinformatics
Group at the same University. His main topics of
research are time series prediction and variable se-
lection in regression problems. He is also inter-
ested in artificial intelligence in computer games.

Rafael Gadeareceived the M.Sc. and Ph.D. de-

grees from the Universidad Politécnica de Valen-
cia, Spain, in 1990 and 2000, respectively. Since
1992 he has been a lecturer of the Department
of Electronics at the Universidad Politécnica de
Valencia. Currently, he is assistant professor at
Telecommunications Engineering School of the
Universidad Politécnica de Valencia, Spain. His
areas of research interest include hardware de-
scription languages, design of FPGA-based sys-
tems and design of neural networks and cellular



DT

DT

DT

DT

Santa Fe
0.021
M Mean DT  ® Min DT
0.018
0.015
0.012
0.009
0.006
0.003
0
DTSL DTS DTSP-1 DTFS-d/2  DTFSP-d/2-1
Method
ESTSP 2008a
0.6
W Mean DT = Min DT
0.5
0.4 T
0.3
0.2
0.1
0
DTSL DTS DTSP-1 DTFS-d/2  DTFSP-d/2-1
Method
Mackey Glass 17
0.0014
® Mean DT = Min DT
0.0012
0.001
0.0008
0.0006
0.0004
0.0002
0
DTSL DTS DTSP-1 DTFS-d/2  DTFSP-d/2-1
Method
Poland electricity
6.00E-02 ®Mean DT = Min DT
5.00E-02
4.00E-02
3.00E-02
2.00E-02
1.00E-02
0.00E+00
DTSL DTS DTSP-1 DTFS-d/2  DTFSP-d/2-1
Method
Housing
0.09 -
0.08 ® Mean DT = Min DT
0.07
0.06
0.05
0.04
0.03
0.02
0.01
0
DTSL DTS DTSP-1 DTFS-d/2  DTFSP-d/2-1
Method

Figure 4: DT performance (average

ESTSP 2007

0.016 A
0.014 ® Mean DT = Min DT -
0.012
0.01 +
-
5 0.008 -
0.006
0.004 -
0.002
[
DTSL DTS DTSP-1 DTFS-d/2 DTFSP-d/2-1
Method
ESTSP 2008b
0.35
® Mean DT = Min DT
0.3
0.25
E 0.2
0.15
0.1
0.05 -
o
DTSL DTS DTSP-1 DTFS-d/2 DTFSP-d/2-1
Method
Mackey Glass 30
4.80E-
80E-03 ® Mean DT = Min DT
4.00E-03
3.20E-03
-
5 2.40€-03
1.60E-03
8.00E-04
0.00E+00
DTSL DTS DTSP-1 DTFS-d/2 DTFSP-d/2-1
Method
Darwin SLP
0.12 "
®m Mean DT = Min DT
0.1
0.08
[
B o0.06
0.04
0.02
(o]
DTSL DTS DTSP-1 DTFS-d/2 DTFSP-d/2-1
Method
Tecator
1.40E-02 "
B Mean DT = Min DT
1.20E-02
1.00E-02
E 8.00E-03 -
6.00E-03
4.00E-03
2.00E-03 -
0.00E+00 -
DTSL DTS DTSP-1 DTFS-d/2 DTFSP-d/2-1
Method

and minimum values) fodtgasetse(= 1).

11




Average runtime (seconds) Average runtime (seconds) Average runtime (seconds) Average runtime (seconds)

Average runtime (seconds)

Santa Fe

90
80
70
60
50
40
30 +
20 -
10
o |
DTSL DTSP-1 DTFS-d/2 DTFSP-d/2-1
Method
ESTSP 2008a
70
60
50
40
30
20 -
10 -
o |
DTSL DTSP-1 DTFS-d/2 DTFSP-d/2-1
Method
Mackey Glass 17
120
100
80
60
40 -
20
o
DTSL DTSP-1 DTFS-d/2 DTFSP-d/2-1
Method
Poland electricity
1.20E+02
1.00E+02
8.00E+01
6.00E+01 -
4.00E+01 -
2.00E+01 -
0.00E+00 -
DTSL DTSP-1 DTFS-d/2 DTFSP-d/2-1
Method
Housing
80
70
60
50
40
30 +
20 -
10 -
o |
DTSL DTSP-1 DTFS-d/2  DTFSP-d/2-1
Method

Average runtime (seconds) Average runtime (seconds) Average runtime (seconds) Average runtime (seconds)

Average runtime (seconds)

ESTSP 2007
140
120
100
80 -
60 -
40 -
20
O |
DTSL DTSP-1 DTFS-d/2 DTFSP-d/2-1
Method
ESTSP 2008b
2.50E+02
2.00E+02
1.50E+02 -
1.00E+02 -
5.00E+01
0.00E+00 -
DTSL DTSP-1 DTFS-d/2 DTFSP-d/2-1
Method
Mackey Glass 30
1.40E+02
1.20E+02
1.00E+02
8.00E+01
6.00E+01
4.00E+01
2.00E+01
0.00E+00
DTSL DTSP-1 DTFS-d/2 DTFSP-d/2-1
Method
Darwin SLP
160
140
120
100
80
60
40
20
(o]
DTSL DTSP-1 DTFS-d/2 DTFSP-d/2-1
Method
Tecator
7.00E+01
6.00E+01
5.00E+01
4.00E+01
3.00E+01
2.00E+01
1.00E+01 E.
0.00E+00
DTSL DTSP-1 DTFS-d/2 DTFSP-d/2-1
Method

Figure 5: Computational times obtained for ten datasets 1).
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Figure 6: DTSPk results using projection to= {1, 2, 3, 4,5} dimensions for ten datasets.
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Figure 7: Computational times obtained for DT8P2, 3, 4, 5} for ten datasets.
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