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Abstract

Extreme Learning Machine (ELM), proposed by Huang et al., has been shown

a promising learning algorithm for single-hidden layer feedforward neural networks

(SLFNs). Nevertheless, because of the random choice of input weights and biases,

the ELM algorithm sometimes makes the hidden layer output matrix H of SLFN

not full column rank, which lowers the effectiveness of ELM. This paper discusses

the effectiveness of ELM and proposes an improved algorithm called EELM that

makes a proper selection of the input weights and bias before calculating the output

weights, which ensures the full column rank of H in theory. This improves to

some extend the learning rate (testing accuracy, prediction accuracy, learning time)

and the robustness property of the networks. The experimental results based on

both the benchmark function approximation and real-world problems including

classification and regression applications show the good performances of EELM.

Keywords: Feedforward neural networks; Extreme learning machine; Effective

Extreme learning machine

1 Introduction

Extreme learning machine (ELM) proposed by Huang et al. shows as a useful learning

method to train single-hidden layer feedforward neural networks (SLFNs) which have

∗The research was supported by the National Natural Science Foundation of China (No. 60873206),

the Natural Science Foundation of Zhejiang Province of China (No. Y7080235) and the Innovation

Foundation of Post-Graduates of Zhejiang Province of China (No. YK2008066).
†Corresponding author: Feilong Cao, E-mail: feilongcao@gmail.com

1

http://arxiv.org/abs/1409.3924v1


been extensively used in many fields because of its capability of directly approximating

nonlinear mappings by input data and providing models for a number of natural and

artificial problems that are difficult to cope with by classical parametric techniques. So

far there have been many papers addressing relative problems. We refer the reader to

[12], [14]-[18], [20], [24], [27] and [28].

In theory, many researchers have explored the approximation ability of SLFNs. In

1989, Cybenko [7] and Funahashi [10] proved that any continuous functions can be

approximated on a compact set with uniform topology by an SLFN with any continu-

ous, sigmoidal activation function, which made a breakthrough in the artificial neural

network field. Leshno [19] improved the results of Hornik [11] and proved that any

continuous functions could be approximated by feedforward networks with a nonpoly-

nomial activation function. Furthermore, some deep and systematic studies on the

condition of activation function can be found in [4, 5, 6]. Recently, Cao et al. [3]

constructively gave the estimation of upper bounds of approximation for continuous

functions by SLFNs with the bounded, strictly monotone and odd activation function,

which means that the neural networks can be constructed without training as long as

the samples are given. In practical applications, for function approximation in a finite

training set, Huang and Babri [13] showed that an SLFN with at most N hidden nodes

and with almost any nonlinear activation function can exactly learn N distinct samples.

In comparison with other traditional learning methods such as BP algorithm, the

ELM algorithm proves a faster learning algorithm for SLFNs. There are some advan-

tages of the ELM algorithm: (1) easy to use and no parameters need to be tuned except

predefined network architecture; (2) it is proved a faster learning algorithm compared

to other conventional learning algorithms such as BP algorithm. Most training can

be accomplished in seconds and minutes (for large-scale complex applications) which

might not be easily obtained using other traditional learning methods; (3) it possesses

similar high generalization performance as BP and SVM; (4) a wide range of activa-

tion functions including all piecewise continuous functions can be used as activation

functions in ELM. Among the above four features, the most impressive one is the fast

speed of training which is far superior to other conventional learning methods.

However, there are also some shortcomings that the ELM algorithm cannot over-
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come. Random choosing of input weights and biases easily causes the so called hidden

layer output matrix not full column rank. This sometimes makes the linear system

that is used to train output weights (linking the hidden layer to the output layer)

unsolvable. It also lowers the predicting accuracy. Bartlett [1] pointed out that for

feedforward neural networks the smaller the norm of weights and training error are,

the better generalization performance the networks tend to have. Therefore, it is nec-

essary to develop a more effective learning method that can overcome this shortcoming

and approximate as fast as the ELM algorithm.

This paper tries to design such a learning machine. To achieve the ends, we first

properly train the input weights and biases such that the hidden layer output matrix full

column rank. Then, a new learning algorithm called effective extreme learning machine

(EELM) is proposed, where the strictly diagonally dominant criterion for determining

a matrix nonsingular is used to choose the proper input weights and biases. In the first

phase of the EELM algorithm the samples are sorted by affine transformation. Due to

the assumption of the constructive algorithm, the activation function of the network

used in our algorithm should be a Gaussian radial basis-type function. With sorted

samples, the Gaussian radial basis-type activation function helps distinguish diagonal

elements of the matrix from other non-diagonal ones such that the diagonal elements

is larger than the sum of all absolutes of non-diagonal elements. Having chosen input

weights and biases properly such that the hidden layer output matrix is full column

rank, simple generalized inverse operation gives the output weights.

The difference between the new proposed EELM algorithm and the ELM algorithm

lies in the training of input weights and biases. And time spent in the first phase

of EELM is very short compared to the second step. So EELM is actually faster

than ELM. And EELM algorithm also possesses the qualities of the ELM algorithm

including easy implementing, good generalization performance. Moreover, the new

algorithm improved the effectiveness of learning: the full column rank property of the

matrix makes the orthogonal projection method, a fast algorithm for solving generalized

inverse, available. So, it is called effective extreme learning machine.

This paper is organized as follows. Section 2 gives two theorems that show the

two steps in the first phase (training input weights and biases) of EELM algorithm
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are strictly correct and reasonable theoretically. The constructive proofs in the theo-

rems actually provide the learning method. Section 3 proposes the new EELM learning

algorithm for SLFNs. In Section 4, the complexity of the algorithm is given and per-

formance is measured. Section 5 consists of the discussions and conclusions.

2 Linear inverse problems and Regularization Model of

Neural Network

For n arbitrary distinct samples {(Xi, ti)|i = 1, 2, . . . , n} whereXi = (xi1, xi2, . . . , xid)
T ∈

R
d and ti = (ti1, ti2, . . . , tim) ∈ R

m, standard SLFNs with N nodes and activation func-

tion g are mathematically modeled as

GN (X) =
N
∑

i=1

βig(Wi ·X + bi),

here βi = (βi1, βi2, . . . , βiN )T is the output weight vector connecting the i-th nodes and

output nodes, Wi = (wi1, wi2, . . . , wid)
T is the input weight vector connecting the i-th

hidden nodes and the input nodes, and the bi is the threshold of the i-th hidden node.

Approximating the samples with zero error means the proper selection of βi, Wi and

bi such that

‖GN (Xj)− tj‖ = 0 (j = 1, 2, . . . , n)

or

GN (Xj) = tj (j = 1, 2, . . . , n), (1)

that is,

Hβ = T,

here

H = H(w1, w2, . . . , wN , b1, b2, . . . , bN ,X1,X2, . . . ,Xn)

= (hij)n×n
=











g(W1 ·X1 + b1) · · · g(WN ·X1 + bN )
... · · ·

...

g(W1 ·Xn + b1) · · · g(WN ·Xn + bN )











. (2)
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As named in Huang et al. [13, 12], H is called the hidden layer output matrix of the

neural networks.

In ELM algorithm, the choice of βi and Wi is random, which accelerates the rate of

learning. Nevertheless, the randomly selection sometimes produces nonsingular hidden

layer output matrix which causes no solution of the linear system (1). To overcome the

shortcoming, an extra phase of training the input weights and biases within acceptable

steps to keep H full column rank should be added to the algorithm.

First, we introduce the definition of inverse lexicographical order (or inverse dictio-

nary order) in R
d.

Definition 2.1. Suppose X1,X2 ∈ R
d where Xi = (xi1, xi2, . . . , xid) ∈ R

d (i = 1, 2)

are defined as X1 <d X2 if and only if there exists j0 ∈ {1, 2, . . . , d} such that x1j0 < x2j0

and x1j = x2j for j = j0 + 1, . . . , d. j0 is called different attribute and denoted by

da(X1,X2) or da(1, 2) for convenience if no confusion is produced.

With the concept of inverse lexicographical order, we obtain the follow theorem

that gives a constructive method for sorting high-dimensional vectors via an affine

transformation.

Theorem 2.2. For n distinct vectors X1 <d X2 <d · · · <d Xn ∈ R
d (d ≥ 2) and

Xi = (xi1, xi2, . . . , xid)
T such that

∑d
j=1 x

2
ij > 0 for each i = 1, 2, . . . , n. Calculate

W ∈ R
d as follows,

w1
j =

1

max
i=1,2,...,n

{|xij|}
> 0 (j = 1, 2, . . . , d),

x1ij = w1
jxij ∈ [−1, 1] (i = 1, 2, . . . , n, j = 1, 2, . . . , d),

y1ij =
∣

∣x1i+1,j − x1ij
∣

∣ (i = 1, 2, . . . , n− 1, j = 1, 2, . . . , d),

δ = log10 d+ log10 2,

nj =

[

− log10

(

min
i=1,2,...,n

{

y1ij
}

)]

+ δ (j = 1, 2, . . . , d),

w2
j = w1

j10
∑j

p=1 np (j = 1, 2, . . . , d),

W =
(

w2
1, w

2
2 , . . . , w

2
d

)

.
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Then follows

W ·X1 < W ·X2 < · · · < W ·Xn.

Proof. For each fixed i = 1, 2, . . . , n − 1, set k0 = da(i, i + 1) which means by

Definition 2.1 that xik0 < xi+1,k0 and xij = xi+1,j (j = k0 + 1, . . . , d). Then

W ·Xi+1 −W ·Xi

=

k0−1
∑

k=1

(

x1i+1,k − x1ik
)

10
∑k

p=1 np +
(

x1i+1,k0 − x1ik0
)

10
∑k0

p=1 np ,

where by definition x1i,k, x
1
i+1,k ∈ [−1, 1] (k = 1, 2, . . . , d) and x1i,k0 < x1i+1,k0

. Noticing

10
∑k

p=1 np = 10
∑k0−1

p=1 np





k0−1
∏

p=k+1

10np





−1

≤
10

∑k0−1
p=1 np

d(k0−1)−k
(k = 1, 2, . . . , k0 − 1)

and

10nk0 ≥ 10
− log10

(

min
i=1,2,...,n

{

y1
ik0

}

)

+δ
=

2d

min
i=1,2,...,n

{

y1ik0

} .

Therefore,

W ·Xi+1 −W ·Xi

≥ −2

k0−1
∑

k=1

10
∑k

p=1 np +
(

y1ik010
nk0

)

10
∑k0−1

p=1 np

≥ −(2d)

k0−1
∑

k=1

d−k10
∑k0−1

p=1 np + (2d) 10
∑k0−1

p=1 np

= (2d)10
∑k0−1

p=1 np

(

1−
1− d−(k0−1)

d− 1

)

> 0.

This completes the proof of Theorem 2.2. �

Remark 1. For the case of d = 1, one needs not to follow the steps of Theo-

rem 2.2 when selecting of W . In fact, in the case of d = 1, the sort operation of

the samples X1,X2, . . . ,Xn in the inverse lexicographical order via affine transforma-

tion can be skipped over. In addition, we don’t need the prior sorting of the samples

X1,X2, . . . ,Xn in the inverse lexicographical order. This is because the computation

of W is independent of the order of the samples. Therefore, one only has to sort
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W ·X1,W ·X2, . . . ,W ·Xn and change the order of t1, t2, . . . , tn correspondingly in the

linear system.

Having calculated the W and given an order to W ·X1,W ·X2, . . . ,W ·Xn, we are

able to select input weights and biases, which ensures non-singularity of the hidden

layer output matrix of the neural networks. This is stated in the following theorem. It

is noteworthy that the activation function should satisfy some assumptions.

Theorem 2.3. Let g(x) be a positive finite function on R such that lim
x→−∞

g(x) =

lim
x→+∞

g(x) = 0 and g(x) is not identically equal to 0. Given n distinct samples X1 <d

X2 < · · · <d Xn ∈ R
d (d ≥ 2) and Xi = (xi1, xi2, . . . , xid)

T such that
d
∑

j=1
x2ij > 0 for

any i = 1, 2, . . . , n, there exist input weights Wi ∈ R
d and biases bi ∈ R (i = 1, 2, . . . , n)

such that the square matrix

H = (hij)n×n =

















g(W1 ·X1 + b1) g(W2 ·X1 + b2) . . . g(Wn ·X1 + bn)

g(W1 ·X2 + b1) g(W2 ·X2 + b2) . . . g(Wn ·X2 + bn)
...

... . . .
...

g(W1 ·Xn + b1) g(W2 ·Xn + b2) . . . g(Wn ·Xn + bn)

















is nonsingular.

Proof. The proof of the theorem is actually the process of selection of input weights

and biases. By assumptions that g(x) is a finite function on R and lim
x→−∞

g(x) =

lim
x→+∞

g(x) = 0, g(x) has a maximum on R. Set M = g(x0) = max {g(x)|x ∈ R}

(x0 ∈ R). For ε0 = M/n > 0, there exists a > 0 such that g(x) < M/n2 for |x| > a

and x0 ∈ (−a, a). Now choose W = 1 if d = 1 and W by Theorem 2.2 if d ≥ 2, which

implies by assumptions and Theorem 2.2 that

W ·X1 < W ·X2 < · · · < W ·Xn. (3)

Then, select Wi and bi (i = 1, 2, . . . , n) as follows.

dist = max{a− x0, a+ x0}, (4)

ki =
2dist

min {W ·Xi+1 −W ·Xi,W ·Xi −W ·Xi−1}
(i = 2, 3, . . . , n− 1), (5)

Wi = kiW (i = 2, 3, . . . , n − 1), W1 = W2, Wn = Wn−1,

bi = x0 −Wi ·Xi (i = 1, 2, . . . , n). (6)
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One thus obtains by (6) that for i = 1, 2, . . . , n,

g(Wi ·Xi + bi) = M.

By (3), (4) and (5), there holds for i = 1, 2, . . . , n,

|(Wi ·Xj + bi)− (Wi ·Xi + bi)| ≥ ki |W ·Xj −W ·Xi| ≥ 2dist (j = 1, 2, . . . , n, j 6= i),

and

Wi ·X1 + bi < Wi ·X2 + bi < · · ·Wi ·Xi−1 + bi < x0 − a

< Wi ·Xi + bi = x0 < x0 + a < Wi ·Xi+1 + bi < · · · < Wi ·Xn + bi.

Therefore,

g(Wi ·Xj + bi) <
M

n2
.

Hence,

hii >
∑

(k,i) 6=(i,i)
k,j=1,2,...,n

|hkj|,

thus, H is strictly diagonally dominant. So H is nonsingular. This completes the proof

of Theorem 2.3. �

Remark 2. We summarize the steps of selection of input weights and biases as

follows. First, choose a ∈ R such that

g(x) <
M

n2
(|x| > a, x0 ∈ (−a, a)),

here,

M = max {g(x)|x ∈ R} = g(x0) (x0 ∈ R).

Then, calculate as follows.

dist = max{a− x0, a+ x0},

ki =
2dist

min {W ·Xi+1 −W ·Xi,W ·Xi −W ·Xi−1}
(i = 2, 3, . . . , n− 1),

Wi = kiW (i = 2, 3, . . . , n− 1), W1 = W2, Wn = Wn−1,

bi = x0 −Wi ·Xi (i = 1, 2, . . . , n).
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Remark 3. Actually, there exist activation functions meeting the conditions of

Theorem 2.3. One kind of such activation functions is functions with one peak such as

Gaussian radial basis function g(x) = e−x2
.

Remark 4. In the case that the number of rows m of H is larger than that of

columns, W and b are calculated based on the square matrix which consists of the m

forward rows of H.

3 Extreme learning machine using iterative method

Based upon Theorem 2.2 and Theorem 2.3, a more effective method for training SLFNs

is proposed in this section.

3.1 Features of extreme learning machine (ELM) algorithm

The ELM algorithm proposed by Huang et al. can be summarized as follows.

Algorithm ELM: Given a training set N = {(Xi, ti)| ∈ R
d, ti ∈ R, i = 1, 2, . . . , n}

and activation function g, hidden node number n0.

Step 1: Randomly assign input weight Wi and bias bi (i = 1, 2, . . . , n0).

Step 2: Calculate the hidden layer output matrix H.

Step 3: Calculate the output weight β by β = H†T , here H† is the Moore-

Penrose generalized inverse of H (see [21] and [25] for further details)

and T = (t1, t2, . . . , tn)
T .

The ELM is proved in practice an extremely fast algorithm. This is because it ran-

domly chooses the input weights Wi and biases bi of the SLFNs instead of selection.

However, this big advantage makes the algorithm less effective sometimes. As men-

tioned in Section 1, the random choice of input weights and biases is likely to produce

an unexpected result, that is, the hidden layer output matrix H is not full column rank

or singular (see (2)), which causes two difficulties. First, it enlarges training error of

the samples, which to some extent lowers the prediction accuracy as we can see in the

following sections. Besides, the ELM cannot use the orthogonal projection method to
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calculate Moore-Penrose generalized inverse of H due to the singularity of H, instead,

it prefers singular value decomposition (SVD) which wastes more time.

3.2 Improvement for the effectiveness of extreme learning machine

According to Theorem 2.2 and Theorem 2.3, one can summarize the new extreme

learning machine for SLFNs as follows. We call the new algorithm effective extreme

learning machine. In the algorithm, Gaussian radial basis activation function is used.

Algorithm EELM: Given a training data set N = {(X∗
i , t

∗
i )|X

∗
i ∈ R

d, t∗i ∈ R, i =

1, 2, . . . , n}, activation function of radial basis function g(x) = e−x2
and hidden node

number n0.

Step 1: Select weights Wi and bias bi (i = 1, 2, . . . , n0).

SortW ·X∗
1 ,W ·X∗

2 , . . . ,W ·X∗
n0

in order thatW ·X∗
i1
< W ·X∗

i2
< · · · < W ·X∗

in0
(ij 6=

ik for j 6= k, j, k = 1, 2, . . . , n0 and ij = 1, 2, . . . , n0) are satisfied, then correspondingly

change the order of the forward n0 samples (X∗
i , t

∗
i ) (i = 1, 2, . . . , n0). And denote the

sorted data by (Xi, ti) (i = 1, 2, . . . , n) and Xi = (xi1, xi2, . . . , xid) (i = 1, 2, . . . , n). For

j = 1, 2, . . . , d, make following calculations.

w1
j =

1

max
i=1,2,...,n0

{|xij|}
> 0,

x1ij = w1
jxij ∈ [−1, 1],

y1ij =
∣

∣x1i+1,j − x1ij
∣

∣ (i = 1, 2, . . . , n0 − 1),

δ = log10 d+ log10 2,

nj =

[

− log10

(

min
i=1,2,...,n

{

y1ij
}

)]

+ δ,

w2
j = w1

j10
∑j

p=1 np .

Set

W =
(

w2
1, w

2
2 , . . . , w

2
d

)

.

Let

M = 1, x0 = 0, a = max
{

√

|2 ln(n0)|, 1
}

+ 1

10



such that M = max {g(x)|x ∈ R} = g(x0) (x0 ∈ R) and g(x) < M/n2
0 (|x| > a, x0 =

0 ∈ (−a, a)). Then,

dist = max{a− x0, a+ x0},

ki =
2dist

min {W ·Xi+1 −W ·Xi,W ·Xi −W ·Xi−1}
(i = 2, 3, . . . , n0 − 1),

Wi = kiW (i = 2, 3, . . . , n0 − 1), W1 = W2, Wn0 = Wn0−1,

bi = x0 −Wi ·Xi (i = 1, 2, . . . , n0).

Step 2: Calculate output weights β = (β1, β2, . . . , βn0) (i = 1, 2, . . . , n0).

Let T = (t1, t2, . . . , tn)
T and

H =































g(W1 ·X1 + b1) g(W2 ·X1 + b2) . . . g(Wn0 ·X1 + bn0)
...

... . . .
...

g(W1 ·Xn0 + b1) g(W2 ·Xn0 + b2) . . . g(Wn0 ·Xn0 + bn0)

g(W1 ·Xn0+1 + b1) g(W2 ·Xn0+1 + b2) . . . g(Wn0 ·Xn0+1 + bn0)
...

... . . .
...

g(W1 ·Xn + b1) g(W2 ·Xn + b2) . . . g(Wn0 ·Xn + bn0)































n×n0

.

Then

β = H†T = (HTH)−1HTT.

Remark 5. As pointed out in Remark 3, the activation function in the EELM

algorithm for SLFNs should be chosen to satisfy the assumption of Theorem 2.3. By

Theorem 2.3, if the samples possess the properties that they are distinct and
d
∑

j=1
x2ij > 0

(this is actually almost surely), then the hidden layer output matrix H is full column

rank. This ensures that HTH is nonsingular and thus the fast orthogonal project method

can be used in computation of Moore-Penrose generalized inverse. Moreover, when

n = n0, that is, H is an invertible square matrix.

Remark 6. In accordance with Theorem 2.3, X1 <d X2 <d · · · <d Xn0 , here the

(Xi, ti) (i = 1, 2, . . . , n) denotes the sorted samples as in the algorithm above. To avoid

the random error, the n0 samples being used to train input weights and biases can be

randomly chosen from the original n samples.
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4 Complexity and performance

The proposed EELM spends more time on training samples than ELM but in fact the

extra time spent on selecting input weights and biases is O(n0d). Compared with the

second phase of the algorithm that calculates the output weights, it can be viewed as

a constant.

In the rest part of this section, the performance of the proposed EELM learning

algorithm is measured compared with the ELM algorithm. The simulations for ELM

and EELM algorithms are carried out in the Matlab 7.0 environment running in Intel

Celeron 743 CPU with the speed of 1.30 GHz and in Intel Core 2 Duo CPU. The

activation function used in both algorithm is Gaussian radial basis function g(x) = e−x2
.

4.1 Benchmarking with a regression problem: approximation of ‘SinC’

function with noise

First of all, we use the ‘Sinc’ function to measure the performance of the two algorithms.

The target function is as follows.

y = f(x) =







sin(x)/x x 6= 0,

1 x = 0.

A training set (Xi, ti) and testing set (Xi, ti) with 200 samples are respectively created,

where Xi in the training data is distributed in [−10, 10] with uniform step length. The

Xi in the testing data is chosen randomly in the standard normalized distribution in

[−30, 30]. The reason why the range ([−30, 30]) of testing data is longer than that of

training data is because an obvious way to assess the quality of the learned model is to

see on how long term the predictions given by the model are accurate. The experiment

is carried out on these data as follows. There are 200 hidden nodes assigned for both the

ELM and the EELM algorithms. 50 trials have been conducted for the ELM algorithm

to eliminate the random error and the results shown are the average results. Results

shown in Table 1 include training time, testing time, training accuracy, testing accuracy

and the number of nodes of both algorithms.

12



Table 1. Performance comparison for learning function: SinC

Algorithms Time Accuracy No. of Nodes

Training Testing Training Testing

ELM 0.0870 0.0056 3.1431 × 10−6 5.6642 200

EELM 0.0624 0 0.0038 0.1595 200
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Fig. 1. Outputs of ELM learning algorithm
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Fig. 2. Outputs of EELM learning algorithm

It can be seen from Table 1 that the EELM algorithm spent 0.0624s CPU time obtaining

testing accuracy 0.1595 with zero training error whereas it takes 0.0870s CPU time for

the ELM algorithm to reach a higher error 5.6642 with training error of 3.1431× 10−6.

Fig. 2 shows the expected and approximated results of EELM algorithm and Fig. 1

shows the true and the approximated results of ELM algorithm. The results show that

our EELM algorithm can not only approximate the training data with zero error but

also have a long term prediction accuracy. And the time consumption is not more than

the ELM algorithm. Though the ELM algorithm has good performance in the interval

[−10, 10], its long term prediction accuracy is not very satisfactory.

4.2 Benchmarking with real-world applications

In this section, we conduct the performance comparison of the proposed EELM and the

ELM algorithms for 5 real problems: 3 classification tasks including Diabetes, Glass

Identification (Glass ID), Statlog (Landsat Satellite), and 2 regression tasks including

Housing and Slump (Concrete Slump). All the data sets are from UCI repository

of machine learning databases [2]. The speculation of each database is shown in the
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Table 2. For the databases that have only one data table, as conducted in [9, 22, 23, 26],

75% and 25% of samples in the problem are randomly chosen for training and testing

respectively at each trial.

Fifty trials were conducted for the two algorithms and the results are reported in

Table 3, Table 4 and Table 5, which show that in our simulation, generally speaking,

ELM can reach higher testing rate for mid and large size classification problems than

EELM and for the small size ones, EELM can achieve a higher rate than ELM. In the

regression cases, EELM has a better robustness property than ELM. Fig. 3, Fig. 4 and

Fig. 5 show that EELM is more steady than ELM for regression cases.

Table 2. Speculations of real-world applications and the number of nodes for each

Data sets # Observations # Attributes Associated Tasks #Nodes

Training Testing Continuous

Diabetes 576 192 8 Classification 20

Statlog 4435 2000 36 Classification 20

Glass ID 160 54 9 Classification 10

Housing 378 126 14 Regression 80

Slump 76 27 10 Regression 10

Table 3. Comparison training and testing accuracy (error) of ELM and EELM

Data sets ELM EELM

Training Testing Training Testing

Diabetes 0.7703 0.7772 0.6767 0.6881

Statlog 0.8159 0.8125 0.4711 0.4652

Glass ID 0.9483 0.4219 0.9109 0.4489

Housing 7.4639 1.1198 × 1010 22.7959 15.3878

326.5156 (best)

Slump 7.9927 3.2439 × 105 17.8965 19.1654

8.8406 (best)
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Table 4. Comparison of training and testing RMSE of ELM and EELM

Data sets ELM EELM

Training Testing Training Testing

Diabetes 0.0104 0.0288 0.0252 0.0374

Statlog 0.0114 0.0104 0.0508 0.0525

Glass ID 0.0028 0.0286 0.0339 0.0258

Housing 0.2381 3.6669 × 1010 0.5161 0.7257

Slump 0.1394 2.1991 × 106 0.5151 0.6818

Table 5. Comparison of average training and testing time of ELM and EELM

Data sets ELM(s) EELM(s)

Training Testing Training Testing

Diabetes 0.0034 0.0012 0.0094 0.0012

Statlog 0.0208 0.0208 0.0271 0.0083

Glass ID 0.0012 0.0006 0.0246 0.0012

Housing 0.0508 0.0117 0.0258 0.0023

Slump 6.2500 × 10−4 0.0022 0.0075 0.0028
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Fig. 3. Training accuracy of two algorithms for Housing
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Fig. 5. Learning time of two algorithms for Housing

In the Diabetes case, the performance of both ELM and EELM including training

accuracy, testing accuracy and learning time of two algorithms for 25 different SFLNs

with 20 to 500 nodes were measured and the results are reported in Fig. 6, Fig. 7 and
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Fig. 8, which show that in the simulation of the mid size classification application, ELM

can reach a higher testing rate than EELM with same number of nodes. Whereas, the

time spent by ELM increases much faster than that spent by EELM with the increasing

of the number of nodes.
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Fig. 6. Training accuracy of two algorithms for Diabetes
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Fig. 7. Testing accuracy of two algorithms for Diabetes
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Fig. 8. Learning time of two algorithms for Diabetes

5 Discussions and conclusions

This paper proposed a simple and effective algorithm for single-hidden layer feedfor-

ward neural networks (SLFNs) called effective extreme learning machine (EELM) in an

attempt to overcome the shortcomings of the extreme learning machine (ELM). There

are several interesting features of the proposed EELM algorithm in comparison with
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the ELM algorithm:

(1) The learning speed of EELM is generally faster than ELM. The main differ-

ence between EELM and ELM algorithms lie in the selection of input weights

and biases. The ELM algorithm chooses them randomly which consumes lit-

tle time. Our EELM algorithm selects the input weights and biases properly,

which also consumes short time compared with the training time of output

weights.

(2) The proposed EELM by making proper selection of input weights and biases

of the neural networks avoids the risk of yielding singular or not full column

rank hidden layer output matrix H. This allows for use of a faster method

which can calculate the Moore-Penrose generalized inverse of H much more

rapidly.

(3) Another impressive feature the EELM possesses is that it has a longer pre-

diction term with acceptable accuracy than the ELM algorithm. Also, EELM

has better robustness property than ELM. In particular, in the regression,

the performance of ELM is sometimes poor. But EELM remains steady and

has a good performance.

It is worthwhile pointing that in our algorithm in order to sort the samples by

affine transformation X 7→ W ·X+ b, we adopt the method of decimal numeral system.

However, when high-dimensional data is come across and the range of the deviation

between samples |xi+1,j−xij| (the symbols here have the same meanings as in Section 3)

is very big, the weights w2
j = w1

j10
∑j

p=1 np become so large that the computer will treat

it as infinity. To resolve the problem, one can use algorithms of large number operation.

Whether there exist better methods to sort high-dimensional data effectively and simply

by an affine transformation keeps open.

Finally, the proposed EELM algorithm is effective when the activation functions

satisfy the assumptions in Theorem 2.3. Gaussian radial basis function belongs to this

kind of functions. Nonetheless, the sigmoidal function is not included. This poses a

new problem of designing algorithms using other kinds of activation functions, which

are as effective and fast as EELM.
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