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ARTICLE INFO ABSTRACT

Available online 12 August 2011 This study presents a novel version of the Visualization Induced Self-Organizing Map based on the
application of a new fusion algorithm for summarizing the results of an ensemble of topology-
preserving mapping models. The algorithm is referred to as Weighted Voting Superposition (WeVoS).
Its main feature is the preservation of the topology of the map, in order to obtain the most accurate
possible visualization of the data sets under study. To do so, a weighted voting process between the
units of the maps in the ensemble takes place, in order to determine the characteristics of the units of
the resulting map. Several different quality measures are applied to this novel neural architecture
known as WeVoS-ViSOM and the results are analyzed, so as to present a thorough study of its
capabilities. To complete the study, it has also been compared with the well-know SOM and its fusion
version, with the WeVoS-SOM and with two other previously devised fusion Fusion by Euclidean
Distance and Fusion by Voronoi Polygon Similarity—based on the analysis of the same quality
measures in order to present a complete analysis of its capabilities. All three summarization methods
were applied to three widely used data sets from the UCI Repository. A rigorous performance analysis
clearly demonstrates that the novel fusion algorithm outperforms the other single and summarization

Keywords:
Topology-preserving maps
Unsupervised learning
Data visualization
Ensembles
Summarization algorithm

methods in terms of data sets visualization.
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1. Introduction

Topology-preserving maps are prominent among the great
variety of visualization tools for the visualization of multidimen-
sional data sets. The ViSOM [1,2] is a very interesting extension of
the well-known Self-Organizing Map (SOM) [3-5] characterized
by its capability to generate qualitative representations of the
similarities between the data under analysis.

This family of models represents high-dimensional data sets
on two-dimensional (2D) maps and facilitates, for the human
expert, the interpretation of the internal structure of the data.
These models are also characterized by the use of unsupervised
and competitive learning.

The main problem of all the neural network algorithms in
general is their relative instability [6,7]. Running the same algo-
rithm, even using the same parameters, can lead to quite different
results. The use of ensembles is one of the most widespread
techniques for increasing the stability of classification models
[8,9]. This meta-algorithm trains in a slightly different way, several
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algorithms over the same data set and relies on their combined
results; rather than in the results of a single execution of the
algorithm. This is based on the intuitive idea that a committee of
experts working to solve a particular problem would come up with a
more reliable solution than a single expert working on the same
problem.

The technique is used in a great number of studies that mainly
examine classification problems. In this study, however, the
desired result is to obtain the most reliable as possible represen-
tation of a multidimensional data set on a 2D map. Therefore, the
classical ensemble summarization techniques are not directly
applicable in this case.

Several algorithms for topographic map summarization have
previously been proposed [10-12], although there are some
characteristics of the topology-preserving models that have not
been taken into account. This research presents and analyses a
novel fusion version of the ViSOM called the WeVoS-ViSOM and
compares it with the single SOM and ViSOM and its WeVoS fusion
version. The study reports the application of these algorithms to
three of the most widely used data sets in the UCI web repository
[13]: Iris, Wine and Wisconsin Breast Cancer.

The rest of this study is organized as follows: Section 2
introduces the topology-preserving mapping. Section 3 presents
five quality measures, previously proposed in the literature, used
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to evaluate different properties of topology-preserving mapping
algorithms in general. Section 4 includes a brief description of the
ensemble meta-algorithms and several previously proposed algo-
rithms for summarizing SOM ensembles. Section 5 describes the
novel proposed summarization method in detail: the Weighted
Voting Superposition ViSOM (WeVoS-ViSOM). Section 6 describes
the evaluation of the properties of the summaries obtained by the
WeVoS-ViSOM algorithm and compares them with those calcu-
lated for the maps generated by the single models and other
summarization methods. Finally, in Section 7, the final conclu-
sions and future lines of research are outlined.

2. Topology-preserving maps

Topology-preserving maps [4,14] comprise a family of techni-
ques that are devised to produce a low-dimensional representa-
tion of the training samples while preserving the topological
properties of the input space. The best known technique among
them is the Self-Organizing Map (SOM) model [5]. It is based on a
type of unsupervised learning called competitive learning; an
adaptive process in which the units in a neural network gradually
become sensitive to different input categories, sets of samples in a
specific domain of the input space. The main feature of the SOM
algorithm is its topology preservation. When not only the winning
unit but also its neighbors on the lattice are allowed to learn,
neighboring units gradually specialize to represent similar inputs,
and the representations become ordered on the map lattice.

One interesting extension of this algorithm is the Visualization
Induced SOM (ViSOM) [1,15], proposed for the direct preservation
of the local distance information on the map, along with the
topology. The ViSOM constrains the lateral contraction forces
between units and hence regularises the inter-unit distances, so
that distances between units in the data space are in proportion
to those in the input space. The ViSOM does not only take into
account the distance between a unit’s weights and the input data
entry for the update of a unit’s weights, but also the distance
between that unit and the Best Matching Unit of the whole
map (BMU).

Hence, the difference between the SOM and the ViSOM hence
lies in the updating of the weights of the neighbors of the winner
unit, as can be seen from Egs. (1) and (2).

Update of neighborhood units in SOM:

Wi(E+1) = Wi () + o) (v, k,E)(X(E) —wi (D)) (1)
Update of neighborhood units in ViSOM:

dye—Ayih
W(E+1) = WO+ ON(V,K0) | (KO =Wy D)+ (Wy (O Wi(E) =

2
where, x is the input to the network, wy is the weight vector
associated with neuron k, while w,, is the weight vector associated
with the winning unit in the lattice or (BMU), «(t) is the learning
rate of the algorithm; #(v,k,t) is the neighborhood function
(usually a Gaussian function), where v represents the position
of the BMU for the particular x of time t and k the positions of the
units in its neighborhood. 4 is a “resolution” parameter, d,, and
A, are the respective distances between the units in the data
space and in the map space.

3. Features to analyse

Several quality measures have been proposed in the literature
to study the reliability and the results of topology-preserving
models in representing the data set that have been trained with
[16,17]. These quality measures are neither global nor unified, but
are a set of complementary ones, as each one assesses a specific

characteristic of the performance of the map in different visual
representation areas. Five of them are briefly presented in this
section. These measures have been chosen with the objective of
measuring as wide a range of these characteristics as possible.

As stated in the introduction, the aim of the novel model
(WeVoS-ViSOM) is to obtain a truthful representation of the data
set in a map to obtain the best possible visualization of its internal
structure. Thus, the most important features to evaluate in this
case are the neighboring relationships of the units on the map and
the continuity of the map. These features are assessed by topo-
graphic error, distortion and to some extent the goodness of map.
The two remaining measures (classification accuracy and mean
square quantization error) complete the comparison of the
models in this research.

Topographic error [18]: Topographic error is calculated by finding
the first two BMUs for each entry of the data set and testing whether
the second is in or is not the direct neighborhood of the first. This
measure, although suitable for an approximation of the quality of a
map, is considered somehow simplistic and therefore not comple-
tely reliable in some cases by several studies [17].

Distortion [19]: The SOM algorithm can be considered to
optimize a particular function, when using a constant radius for
the neighborhood function of its learning phase. This function can
be used to quantify in a more reliable way than the previous
measure the overall topology preservation of a map by means of a
Distortion measure in this study. Special attention is paid to this
measure in this research due to its relation with visualization
properties.

Classification accuracy: Topology-preserving models can be
easily adapted for classification of new samples using a semi-
supervised procedure [20]. Once the network training is com-
pleted, the same data set used in the training stage is fed back
into the network. Each unit of the map is labeled with the class
it has most consistently recognized. When a new sample is
presented to the network, it is classified by the class associated
with the unit that is activated at that time. A high value in the
classification accuracy rate implies that the units of the map are
reacting in a more consistent way to the classes of the samples
that are presented. As a consequence, the map should represent
the data distribution more precisely.

Mean square quantization error: This measure can be calculated
for any algorithm performing vector quantization. In this case, it
indicates how well the units of the map approximate the data on
the data set. In other words, it measures the closeness of the units
composing the map to the different data entries that they
recognize (i.e., those considered as the BMUs for that entry); in
the input space.

Goodness of map [21]: Finally, this measure combines two of
the previous error measures: the square quantization error and
the distortion. It takes account of the distance between the input
and the BMU as well as the distance between the first BMU and
the second BMU along the shortest path between both on the grid
map units, calculated solely with units that are direct neighbors
in the map. Thus, it measures both the continuity of the mapping
from the data set to the map grid and the accuracy of the map in
representing the set.

4. Topology-preserving mapping fusion
4.1. Use of ensemble meta-algorithms

The use of an ensemble of similarly trained models or algo-
rithms is intended to improve the performance of classification

algorithms [22]. It has been observed that, even though one of the
classifiers in an ensemble would yield the best performance,
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the sets of patterns misclassified by the different classifiers would
not necessarily overlap. In conclusion, different classifier designs
potentially offer complementary information on the patterns to
be classified and could be harnessed to improve the performance
of the selected classifier. The aim is not to rely on a single decision
making scheme, but rather to use all the designs or their subsets
for decision making, by combining their individual opinions to
derive a consensus decision [23,24].

The main problem of competitive-learning-based networks is
their inherent instability due to the random nature of their
learning algorithms. Central to this research is that the effect of
this instability may, however, be minimized by the use of
ensembles [25,26]. The learning algorithm of the topology-pre-
serving maps family trains their composing units (or neurons) to
specialize during the algorithm iterations in the recognition of
certain types of patterns, which also determines the topology of
the map. In a similar way to the classification process, it can
be inferred that the map regions that do not accurately represent
the nature of the data set do not necessarily overlap. Therefore,
the visualization of a single map might be improved by adapting
each of the composing units of a map in the best possible way to
the data set under study by using ensemble techniques, as they
offer complementary visualizations of the data set.

Algorithms to combine classifiers can be divided into two
broad classes. The simpler variety of algorithms [22] merely
combines by averaging the results of each of the classifiers in
some way into a final result. More complex types of algorithms
[27,28] try to combine not only the results, but the whole set of
classifiers; in an attempt to construct a single one that should
outperform its individual components. Its main advantage is that
it combines an improvement to classification quality with the
simplicity of handling only one classifier.

This perspective of a single “summary” or “synthesis” of the
patterns stored within the whole ensemble is followed in
the present research to improve the performance of the model.
The main intention is to obtain a unique map capable of repre-
senting the different features contained in the different maps of
the ensemble in the clearest and most reliable possible way.

4.2. Summary of the topology-preserving map ensemble

The models used in this study are mainly designed as visua-
lization tools. Constructing ensembles of classifier models is a
viable option when trying to boost the classification capabilities
of an ensemble, stabilizing its learning algorithm and avoiding
overfitting; but when dealing with its visualization feature an
ensemble is not directly displayable. Representing all the maps in
a simple image can be useful when dealing with only 1D maps
[10], but it is unmanageable when visualizing 2D maps. As a part
of this research, a novel ensemble combination algorithm has
been devised to overcome this problem, by generating a unique
map representing the information contained in the different maps
composing the ensemble. This combination algorithm is intended
to generate an accurate and stable representation of data for
visual inspection.

This part of the study encompasses several approaches
inspired by previous work on SOM combination [29-31]. The
study also includes previously presented methods that center on
the generation of a final map summarizing the contents of several
maps [11,12] for comparison purposes. Hereafter this process is
called “Fusion”. The main characteristics of two of those methods
are briefly described in Section 4.2.1 and their performance
results are discussed in Section 6.

Then, a novel approach to the fusion of maps is presented in
this work (WeVoS-ViSOM). It is fully described in Section 5 and its

performance is compared in Section 6 with previous devised
algorithms.

4.2.1. Previous work: fusion of SOMs

The model in this study is compared with two fusion algo-
rithms that were previously devised for similar purposes. These
two algorithms [32,12] show great similarity to the one that is
presented here, from among those identified in the literature by
the authors. Although these algorithms have been developed by
different authors and for different tasks, both employ a similar
approach to the SOM fusion. Therefore, both approaches can in
this case be considered as variants of the same “parent” algo-
rithm, whereas the WeVoS-ViSOM is considered a different
approach.

These previous Fusion of SOM meta-algorithms involve com-
paring the maps unit by unit in the input space. In other words,
units that are considered ‘close enough’ to each other are fused to
obtain a unit in the final fused map. This is done by calculating
the centroid of the weights of the units that will be fused:

1
Wc |Wk| W;Nkwl 3

being W, the characteristic vectors of the set of units to fuse. That
process is repeated until all units in all trained maps are fused
into a unique final one. The criteria to determine which units are
‘near enough’ to be fused is what determines the two variants of
the main algorithm.

Criterion 1: Voronoi Polygons [12]: Each unit in a Self-Organiz-
ing Map can be associated with a portion of the input data space
called the Voronoi polygon [33]. That portion of the multi-
dimensional input space contains data for which that precise unit
is the BMU of the whole map. It is therefore logical to conclude
that units related to similar Voronoi polygons may be considered
to share similarities, as they should be situated relatively nearby
in the input data space.

To calculate the dissimilarity between two units, a record of
which data entries activated each unit as the BMU can be stored
by associating a binary vector with the unit, the length of which is
the size of the data set. The vector will contain ones (1) in the
positions where the unit was the BMU for that sample, and zeros
(0) in the rest of positions. The dissimilarity (i.e. the distance)
between units can therefore be calculated as in Eq. (4):

>°I= 1 XOR(br(1),bg(l))
77— 1 OR(b:(j),bq(j))

rand q being the units to determine their dissimilarity and b, and
bq the binary vectors relating each of the units with the data
samples they recognize. n represents the length of the binary
vectors, that corresponds to the number of samples used to train
the map. Based on what was explained before, it is easily
concluded that the OR operation yields the positions where any
of the two neurons recognized a data sample; while the XOR
operation yields the positions where the same data sample was
recognized by both neurons. So the equation represents the
number of samples recognized by both units at the same time,
in relation to the total number of samples recognized indepen-
dently by both.

The main problem with this proximity criterion is that it
depends on data recognition by the map, rather than on the
map itself. This means that a unit that does not react as the BMU
for any data could be considered similar to another unit in the
same condition, even though they can be relatively far from each
other in the input data space. To overcome this problem, all units
with a reacting rate lower than a certain threshold are removed
before calculating the similarities between the remaining units.

ds(by,bg) = )
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This implies that the neighboring properties of the whole map are
no longer considered. The similarity criteria must be used again to
maintain a notion of neighboring between the units of the fused
map. Any dissimilarity below a given threshold between units
will be considered as neighbors in the fused map.

This characteristic can be very useful when the objective of the
analysis is to learn and represent the topology of the data set, as
the remaining units will approximate the data set in the input
space very well, enhancing the vector quantization feature of the
SOM. Its drawback is the impossibility of representing that
structure in a 2D map, as a lot of neighboring information
between units is disregarded. The process is fully described in
Algorithm 1.

Algorithm 1. Map Fusion by Voronoi Polygon Similarity.

Input: Set of trained topology-preserving maps: M ... M,
usage threshold: 0,, fusion threshold: 0y, connection
threshold: 0.
Output: A final fused map: My
1: Select a training set S= <{(X1,¥1) ... Xm,Ym) >
2: train several networks by using the bagging (re-sampling
with replacement) meta-algorithm : M,
3: let 0y, 05 and 0. be the usage, fusion and connection
thresholds respectively
4: procedure Fusion (M ... M,)
5: for all M;e M, do > for all maps in the ensemble
6: for all w;e W; do > for all neurons in each map
> accept neurons with a recognition rate higher than a
given threshold
7: Wiys < w; if >ibr(i) > 0y
8: end for
9: end for
10: for all w; € Wy, do

11: calculate dissimilarity between w; and ALL neurons in
qus (Eq (4))

12: D,' «— dS(W,’,Wk)VWk € qus

13: end for

14: group into different sub-sets (Ws,) the neurons that
) o ds(by,bg) < Oy Vvr,qe Wsy
satisfy the conditions of ds(bbg) > 0 Vr.q ¢ Ws,

15: for all Ws, do

16: calculate the centroid (w,) of the set by using Eq. (3)
17: add the centroid to the set of nodes of the final map
(W)

18: end for

19: forall w; e W}’;s do > for all neurons in the fused map
20: Connect w; with any other neuron in W, if they

i min
Satisfy , o yyg, b, e Wedsib, by) < 0c
21: end for
22: end procedure

Criterion 2: Euclidean Distance [11]: This method involves a unit-
by-unit comparison of the maps in the input space, which implies
that all the maps in the ensemble must have the same size. Firstly, it
searches for the units that are closer in the input space (selecting
only one unit in each map of the ensemble), which it then “fuses” to
obtain the final unit in the “fused” map (see Eq. (3)). This process is
repeated until all the remaining units have been fused. The high
computational complexity of the algorithm is approached by using
dynamic programming. The final fused map is initialized by calcu-
lating the fusion of only two of the maps composing the ensemble.
Then, the same calculation is repeated between the resultant fused

map and another one of the maps composing the ensemble. The
process continues until all the maps of the ensemble have been
included in the calculation of the fused map.

The difference with the previous criteria is that, in this case, a
pair-wise match of the units of each map is always possible, so the
final fused map has the same size as each of its constituent ones.
This also implies that a certain global neighboring structure can be
maintained and reconstructed in the fused network. The algorithm
that employs this criterion is fully described in Algorithm 2.

Algorithm 2. Map Fusion by Euclidean Distance.

Input: Set of trained topology-preserving maps: M; ... M,
Output: A final fused map: My
1: Select a training set S= {(X1,¥1) ... Xm,Ym) >
2: train several networks by using the bagging (re-sampling
with replacement) meta-algorithm : M,
3: procedure Fusion(M,,)
4: initialise Mg, with the weight vectors of the first map:
Mfus My
5: for all M e M, do
6: for all w; € My, do
7: calculate Eucl. Dist. between w; and ALL neurons of
map M;

> let w* be the closest neuron in map M; to the one
selected in Myys

8: w* —argmin; (ED(W,w;))

9: we—wj+w*/2 > applying Eq. (3) to two neurons
10: w;—w. replace w; by the centroid (w.)

11: end for

12: end for

13: end procedure

5. Weighted voting superposition for ViSOM

The idea behind the novel fusion variant presented in this study
- WeVoS-ViSOM - is to obtain the final map on a unit-by-unit basis.
However, instead of aiming for the best position for a single unit,
as the two previously explained methods, this approach aims to
obtain the best position for a unit and their neighbors. As a
consequence, the final map obtained keeps one of the most impor-
tant features of this type of algorithms: its topological ordering. This
is an interesting characteristic, taking into account that the principal
characteristic of the ViSOM is the enhancement of data visualization.
Also, the modified weights update of the ViSOM, which provides the
units with more freedom to adapt to the data set, potentially adds
instability to the training. The WeVoS-ViSOM appears to be the most
suitable fusion algorithm, in order to diminish this effect because the
process acknowledges the neighboring of units.

The WeVoS scheme is an improved version of an algorithm
presented in several previous works: superposition [31]. It has
been applied to the simple SOM in previous works [34] with
interesting results.

The first step in this meta-algorithm is to calculate the
“quality” of each of the units composing each map, in order to
rely on some kind of informed decision for the fusion of neurons.
This “quality” (or error) measure can be any of the many quality
of map measures existing in the literature on Topology-Preserving
Maps, provided that it may be calculated on a unit-by-unit basis.

The final map is obtained again in a unit-by-unit basis. Firstly,
the units of the final map are initialized by calculating the
centroids of the units in the same position of the map grid in
each of the trained maps. Then, the final vector of that unit is
recalculated using the information associated to the units in that
same position in each map. For each unit, a sort of voting process
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is performed, as in Eq. (5):

Sisibpi Yis1pi

where, V}, m is the weight of the vote for the unit included in map
m of the ensemble, in its position p; M is the total number of maps
in the ensemble, b, is the binary vector used for marking the
data set entries recognized by unit in position p of map m, and
gp.m is the value of the selected quality measure for unit in
position p of map m. The weights of the units are fed into the
final network as it is done with data inputs during the training
phase of a topology-preserving map, considering the homologous
unit in the final map as the BMU. The weights of the final unit will
be updated toward the weights of the composing unit. The
difference in the updating performed for each homologous unit
in the composing maps depends on the quality measure calcu-
lated for each unit: the higher the quality (or the lower the error)
of the unit of the composing map, the stronger the updating of the
unit of the summary map toward the weights of that particular
unit. A single measure or a linear combination of several quality
measures can be used for the determination of the final quality of
a unit. The number of data inputs recognized by each unit is also
taken into account in the quantization of the “most suitable” unit
among those voting for the same position in the final map.

In short, the summarization algorithm considers the “more
suitable” weights of a composing unit to be the weights of the
unit in the final map according to both the number of inputs
recognized and the quality of adaptation of the unit. The steps of
this algorithm are fully described in Algorithm 3.

Algorithm 3. Weighted Voting Summarization algorithm.

Input: Set of trained topology-preserving maps: M ... My,
training data set: S
Output: A final fused map: My
1: Select a training set S= {(x1,y1) ... Xm:Ym)>
2: train several networks by using the bagging meta-
algorithm: M, ... M,
3: procedure WeVoS-ViSOM(M; ... M,)
4: for all map M; e M,, do
5: calculate the quality/error measure chosen for ALL
neurons in the map
6: end for
> These two values are used in Eq. (5)
7: calculate an accumulated total of the quality/error for
each position Q(p)
8: calculate recognition rate for each position B(p).
9: for all unit position p in M; do

10: initialize the fused map (Mp,;s) by calculating the
centroid (w,) of the neurons of all maps in that position (p)
Eq. (3)

11: end for

12: for all map M; e M,, do

13: for all unit position p in M; do

14: calculate the vote weight (V p,u,) using Eq. (5).

15: feed the weights vector of neuron w,, into the fused

map (Mps) as if it was an input to the network.

The weight of the vote (V , ;) is used as the learning
rate (o).

The position of that neuron (p) is considered as the
position of the BMU (v). > This means that the neuron of the
fused map (wj;) will approximate the neuron of the composing
ensemble (wp ) according to the quality of its adaptation.
16: end for
17: end for
18: end procedure

Fig. 1. Final adaptation of units in WeVoS-ViSOM.

It is interesting to note that the WeVoS scheme depends on the
base algorithm composing the ensemble to update the final units
and their neighborhood on the final map. That means that
although very similar, the WeVoS-SOM is different from the
WeVoS-ViSOM algorithm. The WeVoS-SOM performs the “fine
tuning” of the units on the basis of the composing maps by using
the SOM updating (Eq. (1)), while the WeVo0S-ViSOM uses the
ViSOM updating (Eq. (2)).

A schema representing how the final update of units in the
WeVoS-ViSOM is performed is shown in Fig. 1. As can be seen,
when the update of the final unit on the left (Up) is performed
according to the homologous unit of the first map (U;), its
neighbor in the final map (Ug,) is also updated according to its
distance from the unit being updated (Uy ) contracting or expand-
ing the grid as is done in the ViSOM algorithm. This is repeated for
all units of each composing map. This difference can be empiri-
cally appreciated in the experiments presented in Section 6.

6. Experiments and results

Several experiments have been designed and performed to
investigate the capabilities of the WeVoS-ViSOM and also to
compare it with the two other algorithms for obtaining a fused
map from an ensemble. These experiments made use of three of
the most popular data sets included in the UCI machine learning
repository [13]: Iris, Echo-Cardiogram and Wine data sets. Experi-
ments were performed using both ViSOM and SOM models over
the three data sets to train different-sized ensembles, using the
classical cross-validation method in order to select testing and
training parts of the corresponding data set.

6.1. Test procedure

The procedure is as follows for all the experiments involving
this combination of maps: a simple n-fold cross-validation is used
in order to employ all data available for training and testing the
model and to calculate its average performance. An ensemble of
maps is calculated for each step of the cross-validation. The way
the ensemble is trained does not affect the way the combination
is computed. In this study, the bagging [22] meta-algorithm is
used. Each individual map of an ensemble is trained on one of the
re-sampled subsets (n—1 folds of the whole data set) and it is
initialized in the same way, using exactly the same parameters for
training. This generates n different trained networks which can be
combined into a final network that is expected to outperform
each of them individually. The combination of maps is complete
once all the maps that compose the ensemble have been trained.
Then, the data fold that was omitted from the training
re-sampling, is used to test all the trained models: each of the
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networks that compose the ensemble as well as the combinations
that they generate.

6.2. Visualization results

In this sub-section a few examples of the most interesting
visualization results obtained by the different models discussed in
this research are presented.

Figs. 2 and 3 represent the adaptation of each map to its
structure in representation of the data set under analysis. It
depicts the lattices composing the maps embedded in a 2D input
space. All the figures represent the Iris data set projected over its
first two principal components [35]. The X-axis corresponds to the
first PC and Y-axis corresponds to the second PC. Each of the
figures also show a map trained over the data set, embedded in
the input space formed by the principal components. As before,
all maps were trained using the same parameters.

In Figs. 2a and 3a the single model maps displayed over the Iris
data set in the input space may be seen. The former displays a
SOM grid and the latter a ViSOM grid. In Figs. 2b and 3b the result
of performing the algorithm of the Fusion by Euclidean distance is
shown. It is easily observed how this algorithm focuses on
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distributing the units over the data set in the best possible way,
but obtains a map with a lot of twists and folds that does not
preserve the topology very well. We display the fusion of the
same ensemble in Figs. 2c¢ and 3c, but using the fusion by Voronoi
polygon similarity. Again, only the map training algorithm
changes in the two figures. Evidently, the topology preservation
is completely lost. Finally, Figs. 2d and 3d show the fusion of the
ensemble, using the model presented in this work: the WeVoS
(WeVoS-SOM and WeVoS-ViSOM respectively). It can be seen that
the previously observed problems are not present in this model.
What is more interesting is that the grids obtained using the
WeVoS algorithm (both SOM and ViSOM) are more widely spread
along the data set, covering the input space better than their
corresponding single models. This shows visually how the use of
ensembles can avoid the overfitting in this case.

The resultant maps that are used for visual inspection of the
data corresponding to the same SOM, ViSOM and ensemble
variants showed in Figs. 2 and 3 are displayed in Fig. 4. This
figure represents the Iris data set in a 2D map and shows the final
effects of each way of occupying the input data set by each of the
models. As explained before, the Voronoi Polygon Similarity
Fusion algorithm does not form a proper lattice, but rather a

0015 o ety g op s g e S :

001 oo S S oo s s e e

0.04

0015 i i L
-0.04 0.01 0.02 003

d

WeVoS-SOM

004

0.02

-001 0

-0.015
-0.04

-0.03  -002 0.01 003

Fig. 2. Comparison of the adaptation the discussed algorithms to the input data set using the SOM as the base component for Iris data set. (a) Single SOM map. (b) Fusion of
SOM maps using the Euclidean Distance criterion. (¢) Fusion of SOM maps using the Voronoi polygon similarity criterion. (d) Fusion of five SOM maps using the WeVoS

algorithm.
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Fig. 3. Comparison of the adaptation the discussed algorithms to the input data set using the ViSOM as the base component for Iris data set. (a) Single ViSOM map.
(b) Fusion of ViSOM maps using the Euclidean Distance criterion. (¢) Fusion of ViSOM maps using the Voronoi Polygon Similarity criterion. (d) Fusion of ViSOM maps using
the WeVoS algorithm.

graph; and unlike the others it is therefore not suitable for data provides a better visualization compared with the single ViSOM
representation. The six final maps shown were trained using the model and the other two summarization algorithms. The single
Iris data set. Ensemble fusion maps were obtained from the ViSOM (Fig. 4d) represents the Iris data set quite well, with a
summarization of seven single maps (except Fig. 4a and 4d that group of samples corresponding to class 1 clearly separated from
shows the single SOM and ViSOM versions). Each unit of the maps the others. Although they also appear in a corner of the map, the
is represented according to the class it has more consistently cluster of class 1 is separated from the other cluster more than in
recognized. the classic SOM model (Fig. 4a). The Fusion by Distance (Fig. 4e)

It can be seen from Fig. 4 that the ViSOM algorithm provides in map also contains a group separated from the rest, but includes
general a smoother map than the classic SOM algorithm. The samples of different classes. As explained before, the Fusion by
WeVoS meta-algorithm improves the Single and Fusion by Similarity is not suitable for 2D map representation, as some units
Distance models by obtaining, in general, more compact and are disregarded from the final model and therefore the topology
more clearly separated groups than the other two. In comparison preservation is lost. The WeVo0S-ViSOM (Fig. 4f) clearly separates
with the single model (Fig. 4a), the WeVo0S-SOM (Fig. 4c) presents class 1 from the other two in a more compact group in the top of
a much more separated group for class 1 (circles). In the single the image. Even comparing this model with the rest of models

map, class 1 appears in a strip on the left corner on the map, presented in Fig. 4, the WeVoS-ViSOM is the one that separates
leaving a considerable amount of dead units between data and more clearly class 1 from the rest. The other two classes, although
the border of the map. On the other hand, the WeVoS-SOM not so clearly separated as the first one, also appear unmixed
presents a more separated group covering the top of the map. between them and in a more compact group than in the single
The Fusion by Distance (Fig. 4b) summarization algorithm does ViSOM map (Fig. 4d).

not significantly improve the single map with regard to the data These results correspond to the main characteristic of the

representation feature of the model, as it obtains a map mixing ViSOM: to express the dissimilarity between samples in the input
the three classes in the top part of the map. The WeVoS-ViSOM space more clearly by representing distances on the final map
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Fig. 4. Maps obtained for the single models and two of the different summarization models, for both the SOM and ViSOM training algorithms, trained over the Iris data set.

(a) Single SOM. (b) Fusion by Distance applied to the SOM. (c) WeVo0S-SOM. (d) Single ViSOM. (e) Fusion by Distance applied to the ViSOM. (f) WeVoS-ViSOM.
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depending on that dissimilarity. The best results of the WeVoS-
ViSOM were also expected, as it has as its main objective to
emphasize the data structure characteristics that are discovered
by the majority of its composing maps. One of the most notable
characteristics of the Iris data set is precisely the clear separation
between class 1 and classes 2 and 3.

6.3. Analytical results

This sub-section includes complete results for the experiments
performed comparing the previously discussed models according
to the analytical quality measures presented in Section 3. Two
different sets of experiments were performed to compare the
performance of the models when varying two different aspects of
the training.

All measures presented in this section are error measures, so
the desired value is always as close to O as possible. The
Classification Error is presented in percentage form, normalized
between 0 and 1, while the rest of the measures is absolute
values. For the sake of clarity, the results for the Fusion by
Voronoi Polygon Distances have been left out of the comparative,
as they are completely different from the rest and are therefore
not comparable.

6.3.1. Experiment 1

The first experiment involves training the ensembles over the
complete data set; increasing the number of maps used to
construct each one, to assess the effect of the modifications in
the number of ensemble components.

Once the ensembles were trained, the fusion of the ensemble
was computed by using the two variations explained in Section 4
and the novel algorithm presented in Section 5. In all cases, the
weight of the vote for each unit in this latter model was
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calculated according to the goodness-of-adaptation measure. All
the measures were calculated using the test part of the data set,
both for the average measure for the ensemble and for all the
variations of the fusions of the ensemble. In all the figures shown
in Sections 6.3.1 and 6.3.2, the ordinate axes represent the value
of the error measure, while abscissa axes represent the number of
composing models that are used by the fusion algorithm.

In the case of the Iris data set (Fig. 5) the different ensemble
models do not appear to improve the results the quality mea-
sures. The exception to this is the Distortion (Fig. 5b), in which
both the WeVoS-SOM and WeVo0S-ViSOM obtain better results
than the single models and the other fusion algorithms; although
it is not a very significant improvement. The best performing
algorithms in the Mean Quantization Error (Fig. 5a) and the
Goodness of Maps (Fig. 5d) are the single models, the ViSOM
being clearly the best of the two.

It is interesting to note that the Iris data set is the simplest
data set in this study. This seems to confirm the effect suggested
in ensemble theory: it is probable that the ensemble will not
outperform the single model when using a base algorithm that
performs correctly on a data set to construct the ensemble [22].
This effect comes from the fact that the single algorithm is already
behaving in a reasonable stable way and therefore the benefits of
using an ensemble meta-algorithm are negligible.

This situation changes for the Wine data set (Fig. 6). Although
the best models appear to be the single ones for the quantization
error (Fig. 6a), the ensemble algorithms perform best for the other
three measures (Fig. 6¢c-d), especially in the Topographic Error
(Fig. 6¢) and the Goodness of Map (Fig. 6d). In this last measure,
although the WeVoS-ViSOM outperforms the single ViSOM, the
best algorithm is clearly the WeVoS-SOM.

In this case, the data set is more complicated than before,
having 178 samples and 13 dimensions. This is an example case of
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Fig. 5. Evolution of Iris data set results when increasing the number of maps composing the ensemble. (a) Mean Quantization Error. (b) Distortion. (c) Topographic Error.

(d) Goodness of Map.
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a situation where the use of ensembles can clearly outperform the process becomes more difficult when using less amount of data

results of a single model. The objective of the presented WeVoS- but maintaining its dimensionality.

ViSOM algorithm is precisely avoid overfitting — i.e. too close a Results for this experiment confirm the results obtained in the
recognition - of data samples, so the higher Quantization Error it previous one. In the case of the Iris data set (Fig. 8) the WeVoS
exhibits, is an expected result. In the rest of the cases, where algorithm is not able to improve Quantization Error results

topographic ordering is measured, the results tend to favor the (Fig. 8a), but it outperforms single models in the Distortion
WeVoS-ViSOM presented model and its counterpart the WeVoS- (Fig. 8b) and Topographic Error (Fig. 8c) measures, especially
SOM, as a proof of their better organization capabilities. the WeVoS-ViSOM which obtains the lowest error. For the Good-

For the Echo-Cardiogram data set (Fig. 7) the results seem to ness of Map (Fig. 8d) all models - except Fusion by Distance
be similar to those of the Wine data set. The quantization error algorithms - behave in a very similar way, none of which

(Fig. 7a) is higher in the ensemble fusion algorithms. For Distor- outperform each other.

tion (Fig. 7b), ViSOM and WeVo0S-ViSOM are very close to each The effect of the added instability in this case is not particu-
other, although the single ViSOM seems to obtain slightly better larly evident, as the data set analyzed is still quite simple. As a
results. For the other two measures (Fig. 7c and d) the WeVoS- result, the use of the different ensemble does not prove to be of
ViSOM obtains the best results, and also has low variations much use.

between results, which indicate the stability of the algorithm. In the experiment with the Wine data set, the results (Fig. 9)

This is another example of how the WeVoS-ViSOM can are also better for the ensemble algorithms that use the WeVoS
improve the results of the single ViSOM when the data set is but with one proviso. Although both the WeVoS-SOM and
hard to analyze and represent: the Echo-Cardiogram data set is WeVo0S-ViSOM algorithms outperform their single homologous
composed of 105 samples and 9 dimensions. In this case the algorithm; the one obtaining lower error turns out to be the
WeVo0S-ViSOM outperforms even the WeVoS-SOM by obtaining WeVo0S-SOM. This is especially true for the Goodness of Map

even lower error measures for the Goodness of Map or Topo- (Fig. 9d) but is to a lesser extent is similar to the Topographic
graphic Error measures, proving to be one of the best models in Error (Fig. 9¢). For the Quantization Error (Fig. 9a), the ensemble
such types of situations when dealing with a not-very-large data algorithm still yields results that are not as good as the single
set but composed of a high number of dimensions. models.

As explained for Experiment 1, the effect of the use of the
WeVoS meta-algorithm is more evident in this case. Still the
WeVo0S-SOM is the most useful model, obtaining slightly better
6.3.2. Experiment 2 results than the WeVoS-ViSOM.

The second experiment consists in using a moderate number The last experiment, which uses the Echo-Cardiogram data set
of ensemble components, but modifying the number of data (Fig. 10), has more pronounced results. In this case, is clear that
samples used for the training of the models. This emulates the ensemble models obtain higher Quantization Errors (Fig. 10a)
addition of noise or instability to the data sets, as the training than the single models. This is expected, as it is consistently true
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in all experiments. For the Distortion measure (Fig. 10b), clearly
the best model is the WeVoS-ViSOM, although very close to the
regular ViSOM. The WeVo0S-SOM clearly outperforms the single
SOM. For the Topographic Error (Fig. 10c), the WeVoS-ViSOM
clearly obtains the best results. The best performing models for
the Goodness of Map measure (Fig. 10d) appear to be the single
versions, especially the single SOM, which shows in this case a
lower error than the WeVoS-SOM. The behavior of the WeVoS-
ViSOM and the single ViSOM is not so good, but similar to the
SOM; although ViSOM performs slightly better when the size of
the data set is reduced to less than half of the original size.

In the case of the Eco-Cardiogram, the WeVoS-ViSOM obtains
good results in spite of the added instability due to a reduction in
the data set size. It is one of the models with lowest error and also
one with the lowest variability in its results, obtaining quite
similar results despite the data size reduction. This is a very
interesting feature previously observed in other ensemble meta-
models [36], derived from a combination of results of several
different complementing models.

6.4. Discussion

The results included show some clear conclusions about the
Fusion of topology-preserving mapping algorithms. Firstly,
although sometimes the Fusion by Euclidean Distance can show
a better classification performance than the single SOM (as [11]
demonstrates), this could be due to the effect of the re-labeling of
neurons rather than the improvement of its topological charac-
teristics. Secondly, as the results show, the final structure
obtained by this fusion algorithm is clearly not suitable for the
best representation of the data set structure, due to the twists
appearing in the map grid. On the contrary, the WeVoS scheme
shows a much more regular grid, which as can be seen in the
example presented with the Iris (Figs. 2 and 3) can serve to better
adjust the grid and distribute its units in the data input space.

All of the analytical results support the idea that although the
Fusion by Distance can obtain better classification results, the
visualization characteristics of the resultant maps are generally poor.

Among the models compared, the WeVoS-ViSOM is the one that
shows the best adaptation to the Iris data set, spreading the grid in a
wider way over the data manifold. This translates into a better final
visualization of the data set structure - as can be seen in Fig. 4 — due
to the enhanced visualization capabilities of the ViSOM and the
added improvement of the WeVoS fusion algorithm.

The WeVo0S-ViSOM results verify some notable characteristics of
the models. First, as all experiments point out, quantization error
reduction is not the main purpose of this algorithm. It is evident
from Figs. 2 and 3 - but also from each analytical result - that the
algorithm tries to spread its units in a better way throughout the
input data space, rather than concentrate them to where a larger
amount of data is located; in order to get a more informative
representation of the data space. The cost is a higher quantization
error than other models. Concerning the other quality measures, the
most interesting characteristic is that the usefulness of the WeVoS-
ViSOM model for data visualization depends on the data set. As can
be seen in Fig. 5, results for the Iris data set are not as good as those
obtained by single models - with the exception of the Distortion
measure. Fig. 6 shows that best performing models are the WeVoS-
SOM (Distortion and Goodness of Map measures) and the WeVoS-
ViSOM (Topographic Error measure). And, finally, Fig. 7 shows that
the WeVoS-ViSOM obtains some of best results (especially Topo-
graphic Error and Goodness of Map). These results are similar in the
case of the second experiment (Figs. 8-10). This suggests that for the
ensemble to be really useful, the data set must have enough
complexity from the point of view of an automated learning
algorithm. For example: the Iris data set has 150 samples, but only

4 dimensions, while the Wine data set has 178 samples and 13
dimensions and the Echo-Cardiogram data set has 105 samples and
9 dimensions. In this case, as in classical classification ensembles;
when a single algorithm performs in a correctly with a given data
set, the ensemble fusion algorithms are not able to outperform it;
nevertheless, if the data set is complex for the single model, the use
of an ensemble meta-algorithm is able to further improve the
capabilities of the single model.

7. Conclusions and future work

In this research a novel topology-preserving model known as
WeVo0S-ViSOM has been presented, analysed and compared with
other models. This model has been devised to generate the most
accurate visual representation of a multi-variable data set in the
form of a 2D map that visually summarizes the principal features
of the data set outlined by the different trained maps composing
the ensemble. Its main objective is to obtain the most compre-
hensive visualization as possible, sacrificing as little as possible of
the data’s topological presentation, which is one of the main
qualities of the Self-Organizing Maps. The main characteristic of
the model is the smooth adaptation to the input space of the data
set, correcting small defects that may arise on a single training;
and therefore further improving the visualization capabilities of
the ViSOM algorithm. The present study has included detailed
descriptions of previously devised summarization algorithms and
compared them with the new model. The performance of the
summaries obtained by the WeVoS meta-algorithm has been
analysed by means of a range of quality measures; and the
usefulness of the WeVoS-ViSOM has been empirically proven,
thereby demonstrating both a clearer and a smoother representa-
tion of the inner structure of the data set under study. Although it
does not outperform single models with regard to classification
accuracy or quantization error, it succeeds in reducing the
distortion error of single models, thus obtaining a more truthful
and organized representation of the data set. In the examples
given, the WeVoS-ViSOM has obtained lower errors than the
WeVo0S-SOM, proving to be a very useful tool for data visualiza-
tion. Future work will be focused on the application of the WeVoS
to other topology-preserving models and to other case studies.
Also some improvements to the way the ensemble is calculated,
taken from the most widely used ensemble meta-algorithms, will
be tested in a wider array of real-life problems.
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