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Abstract

Object tracking is a fundamental computer vision problem and is required for many high-level tasks

such as activity recognition, behavior analysis and surveillance. The main challenge in the object tracking

problem is the dynamic change in object/background appearance, illumination, shape and occlusion. We

present an online learning neural tracker (OLNT) to differentiate the object from the background and

also adapt to changes in object/background dynamics. In the proposed tracking system, we propose a

new mobile object detection module which identifies new mobile objects in the scene and then OLNT

faithfully locates them in subsequent frames. The OLNT extracts region-based features like region-based

color moments for larger mobile objects and color and texture features at pixel level for smaller mobile

objects.

For target modeling and object tracking, new neural classifier algorithm based on risk sensitive loss

function is proposed to handle issues related to sample imbalance and change in characteristic of object

class in future frames. The proposed neural classifier automatically determines the number of neurons

required to estimate the posterior probability map. In the online learning neural classifier, only one

neuron parameter is updated per tracker to reduce the computational burden during online adaptation.

The tracked object is represented using an estimated posterior probability map. The signature of the

posterior probability map is used to adapt the bounding box to handle the scale change and improper

initialization.

For illustrating the advantage of the proposed OLNT under rapid illumination variation, change in

appearance, scale/size change, and occlusion, we present results from benchmark video sequences. The

results clearly highlight the advantages of the proposed OLNT. Finally, we also present the comparison

with well-known ensemble tracker in one the sequence and highlight the advantage of the proposed

tracker.

Index Terms

Object tracking, neural classifier, Gaussian activation function, posterior probability map, signature

in 2D, risk sensitive hinge loss function.

I. INTRODUCTION

Visual tracking of moving objects in complex environments is one of the most challenging

problems in the machine vision field. Tracking algorithms are developed to faithfully determine

the movement of image region in each video frame that matches with the given target. The

matching function should consider the object/background dynamics in order to identify the target

July 14, 2009 DRAFT



3

effectively in each video frame. In general, developing a robust tracker is a challenging problem

due to change in appearance, dynamic change in background, significant illumination variation,

occlusion and scale change.

For the past two decades, many algorithms with different frameworks have been developed

for object tracking. Among various available algorithms, detect-then-track, appearance-based

and learning-based algorithms are widely used in the literature. In detect-then-track approaches

[1], [2], multiple objects are detected and tracked effectively in real-time using the frame

differencing or subtracting adaptively estimated background from the current frame. Appearance-

based approaches [3]–[5] create an object model from the first frame and incrementally follow the

model in the subsequent frames. Appearance-based algorithms do not require a prior description

of scene and camera motions. Learning-based algorithms, use pattern recognition algorithms to

learn the target objects in order to search them in an image sequence [6]–[9]. A complete review

on different algorithms on object tracking can be found in [10].

In a practical scenario, the object of interest and its local surroundings in the video sequences

change significantly, which affects the success of any tracking algorithm. The object/background

dynamics vary due to appearance, rapid illumination variation, occlusion and scale change.

Also, the absence of prior knowledge of the object/background dynamics further increases the

complexity. Hence, developing robust tracker to handle the aforementioned issues has been the

focus of most recent object tracking research which is also the main objective of this paper.

In the proposed method of object tracking, the presence of mobile objects in the scene is

determined by the object detection module and detected mobile objects are tracked faithfully

using online learning neural tracker. In the object detection module, the difference between the

current frame and a reference image [11] is computed first. Here, a reference image is a still

image without mobile objects. Second, thresholding of moving region and filtering of connected

region are used to determine the approximate bounding box for the mobile objects. Due to

object detection failures, the current approach [11] may lead to error in initialization of mobile

objects for tracking. Such an error can be handled easily using the proposed online learning

neural tracker by adaptive size determination using posterior probability map. Also, we propose

an approach to merge two mobile objects into a single mobile based on probability maps and

area overlap between mobile objects.

The main problem of tracking mobile objects in video sequence is converted into a binary
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(object vs. non-object) classification problem. A new online learning neural classifier algorithm is

developed to differentiate the object region from non-object region. The basic building block for

the neural classifier is a set of radial basis functions. The algorithm employs growing and pruning

criterion based on class level deviation to evolve the network architecture based on the learning

samples, which is different from the well-known sequential algorithms such as minimal resource

network [12], and growing and pruning radial basis function network [13]. The growing and

pruning criteria developed using class level deviation performs better for classification problems

than the criteria developed using approximation principles [14]. The learning algorithm presented

in [14] has only growing criterion and does not provide condition to remove the nonperforming

neurons. Hence, the algorithm results in large number of neurons to approximate the decision

surface. In this paper, we introduce a pruning criterion to remove the nonperforming neurons

in the same class. Hence, the algorithm evolved a compact network for classification. Also, the

proposed algorithm uses a risk sensitive hinge loss function [15] instead of mean square error

criterion. The risk sensitive hinge loss function approximates the posterior probability very well

even under sample imbalance and small number of training samples in each class. It has been

proven that the truncated output of a neural classifier trained using a risk sensitive loss function

approximates the posterior probability effectively [16]. Hence, the estimated probability model

from an online learning neural classifier is used to define target model. The target model is

updated based on changes in the object bounding box. The location of object in the subsequent

frames is estimated using the current probability map and target model. In addition, the size of the

object window is determined using the signature of the probability map. This helps the proposed

online learning neural tracker (OLNT) to handle the scale change and improper initialization.

We present the tracking results for video sequences taken using fixed and hand-held camera. The

results indicate the robustness of the proposed OLNT over improper initialization, appearance

change and illumination. Finally, we present the computational complexity of the tracker and

issues related to the proposed tracking algorithm.

This paper is organized as follows: Related work is reviewed in Section II. Section III provides

details of the online tracking algorithm including the online learning classifier, object localization,

adaptation and size determination. Details on mobile objects detection for objects initialization

in OLNT and merging of multiple mobile regions are presented in Section IV. Section V

provides experimental results on robustness of the proposed tracker under improper initialization,
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appearance, illumination/scale change and multi-object tracking. Finally, Section VI concludes

the work.

II. RELATED WORKS

The problem of tracking objects in video sequence are converted into a binary classification

problem and, thus, a discriminative model is developed to differentiate the object pixel from the

background. In literature, a tracking problem has been addressed in a classification framework

first in [17]. A discriminative model has been developed to differentiate the object from the

surroundings and the model is adapted to handle abrupt change in lighting and change in

viewpoint in [17], [18], but they do not address the effect of improper initialization and change in

size/scale of the object. A two stage approach is used in [17] to discriminate the object from the

background. The learning algorithm is similar to Fisher’s linear discriminant algorithm. Due to

strong similarity between the object and its local background region, it is difficult to separate the

object using linear discriminant functions. Also, the algorithm requires proper selection images

with sufficient number of samples for accurate on-line adaptation of discriminant function.

Recently in [19], an adaptive online feature selection mechanism from a given color space

is presented to achieve robust tracking performance under object/background appearance. The

algorithm selects the best features from a given feature set that can discriminate the object and

the background effectively. In [19], a number of trackers are developed based on different sets

of features and the tracking method adaptively selects the trackers that are robust in the current

situation. Although this approach improves the flexibility and robustness of the well-known

mean-shift tracking [3], each tracker has a static object model developed using the first frame.

An adaptive target model for efficient mean-shift tracking to handle the change in appearance of

the object is presented in [20]. Here, the histogram of the target is updated linearly only when the

confidence level is greater than some specified threshold values. The adaptive target model tracker

fails when there is an abrupt change in the appearance or illumination. In [21], computationally

complex robust mean-shift tracker handling the scale change using Lindeberg’s theory of feature

scale is presented. In [22], short-term and long-term image descriptors are constantly updated

and re-weighted using online-EM (expectation maximization) to handle abrupt change in object

appearance. Aforementioned approaches require proper initialization of the object bounding box

in the first frame and does not handle significant change in scale. In [23], the linear subspace of
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image space is constantly updated to achieve robust tracker under challenging imaging conditions.

The subspace methods aim to maintain a robust foreground object and ignore the background

completely. Since the method maintains the spatial integrity, it is suitable for rigid object tracking.

A shape-based analysis to locate humans and movements of their parts like head, hands, feet

and torso are presented in [24]. In [25], Bayesian analysis to identify interaction between humans

in the video sequence is discussed. These trackers are restricted to tracking people or parts of

people in a video sequences. To handle both rigid and non-rigid objects, learning model based

on trajectories obtained from the contour tracking (in [26]) is used [27]. The tracking accuracy

in this approach depends on computationally intensive, active shape model for each object.

A sparse probabilistic learning approach for face tracking using relevance vector machine is

presented in [9]. Regression-based sparse relevance vector machine (RVM) is used to localize

the object and the object label is verified in tandem using the support vector machine (SVM)

based object recognition system. In this approach, the RVM and SVM are trained offline using

a set of perturbed images (with changes in translation, rotation and zoom). Bayesian learning

approach is limited to a single object and does not address static/dynamic occlusions. In [28],

improved feature selection method is used to track an arbitrary object in video sequence. The

difference between features extracted from the region of object in previous frame and the current

frame is used to construct an classifier. Here, cascade learning and boosting algorithm are used to

improve the classification accuracy. This approach can not handle sudden change in illumination

or appearances.

Recently in [7], the appearance of both object and its local background is modeled using an

ensemble of T classifiers. Each one of the classifiers is trained to identify object and background

classes and a strong classifier obtained using Ada-boost, is then used for prediction of the

confidence map for the next frame. In each frame, the K best classifiers are kept to maintain the

temporal coherence and the remaining T−K classifiers are discarded. New T−K classifiers are

trained on the newly available frame to obtain a strong classifier. The newly developed strong

classifier is used to locate the object in the next frame. The performance of the tracker entirely

depends on the individual performance of the classifier and the ensembling process. The classifier

performance depends on the input sample distribution and sample imbalance [16], whereas the

ensembling depends on labeling. High sample imbalance and the outliers affect the performance

of a tracker significantly. The ensemble tracker formulation does not consider change in scale
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and improper initialization of objects. Also, the process of developing a new set of classifiers

and the ensembling process introduces significant computational burden on the tracker.

The proposed OLNT uses an online learning sequential classifier for tracking and object

detection module for determining the mobile objects in the scene. The object detection module

detects the presence of mobiles and their size. The error in detections and merging mobiles

are handled using posterior probability map of neural classifier. The classifier evolves the neural

network architecture automatically for effective approximation of the probability distribution. The

samples are presented once in a sequential manner. To reduce the computational complexity, the

learning algorithm updates the parameters of the nearest neuron. The online learning classifier

uses risk sensitive hinge loss function to handle a small number of samples in each class (either

in object or background class) and high sample imbalance. Hence, they can approximate the

posterior probability effectively. For learning, the spatially weighted likelihood map is used to

differentiate the object region and its local background. The OLNT tracker uses weighted average

of current probability map and target model to locate the new position. The size of the bounding

box is adjusted based on the signature of the probability map. Hence, the OLNT tracker can

handle the change in scale/size and improper initialization.

III. ONLINE LEARNING NEURAL TRACKER

On-line learning neural tracker (OLNT) proposed in this paper adapts to temporal change in

appearance of the object/background, illumination variation and scale in real-time by adapting

the parameters of a neural classifier. The basic building block in neural classifier is the radial

basis function network (RBFN). The RBFN is trained to recognize the object region and its local

background and estimates the posterior probability of the feature vector belonging to the object or

background (i.e., ‘1’ means object region and ‘0’ means background). The learning algorithm uses

a growing and pruning criterion based on class level deviation to evolve the network architecture

and its parameters. The probability map obtained from the first frame forms the target/reference

model. The weighted average of the probability map obtained in subsequent frame and the target

model are used to locate the object. Since OLNT uses an estimated probability map for tracking,

the success or failure of the tracker depends on the classifier performance. It is well known that

small number of samples in each class and high imbalance among the samples per class affect the

learning process significantly [16]. It has been shown that the classifier model developed using
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risk sensitive hinge loss function (risk in misclassification and error in learning) can handle the

sample imbalance effectively. [15]. Hence, in this paper, the learning algorithm employs a risk

sensitive loss function to calculate the error in learning instead of simple mean square error. Also,

the risk factor used in risk sensitive hinge loss function is adapted online based on estimated

posterior probability and cost of misclassification. This helps in penalizing the misclassification

in the subsequent frame. The temporal variation in the appearance, illumination and scale change

are captured by adapting the parameters of the classifier. Also, the growing and pruning conditions

help significantly in capturing new features and remove/forget the insignificant features in the

image region. To reduce the computational burden, the online learning algorithm either updates

the parameters or removes the nearest neuron to the current input feature.

Another important problem in the tracking is the improper initialization of the object region

and change in shape. One should adapt the object window temporally to capture the shape of the

object. The proposed OLNT adapts the bounding box by analyzing the posterior probability map.

Based on the estimated window, it also updates the target model. The overall OLNT algorithm

proceeds as follows:

OLNT Algorithm:

Input: Video frames {I0, I1, I2, · · · , Im}, object window r0 = {C, w, h} at frame I0, where C

is the center of the rectangle with width (w) and height (h).

Output: Object windows r1, r2, · · · , rm.

Model development phase using first frame I0:

• Initialize the parameters for OLNT.

• Determine class label using the ratio of log-likelihood of foreground and background.

• Evolve RBFN classifier and estimate the probability map and define the ‘target model’.

Tracking the object in new frame It, t = 1, 2, · · · ,m:

• Object localization:

– Extract the features from the new frame It at previously tracked location rt−1. Estimate

the probability map using online learning RBFN classifier.

– Find the new location C using weighted average of the new probability map and target
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model.

• Signature analysis: Using the probability map, find w and h of the tracked object.

• Online learning phase:

– Extract feature at rt and assign labels using the predicted probability map.

– For every sample, update the nearest neuron parameters or add/delete neuron.

• Find probability map at new location rt using the newly evolved network and update the

target model.

The following subsections, describe the different components of OLNT.

A. Object/background separation

Tracking an object will be efficient if we can separate the object region from the background

accurately. The problem of tracking is converted into a binary classification problem and solved

using neural networks. The online learning neural tracker presented in this paper is a generic

approach, which is trained to separate the object region from the background. The OLNT can

use different types of features such as simple color features for each pixel or region-based

color moments (RCM) from each region, local gradients, and texture for this purpose. The

features inside the object area can be labeled as ‘object class’ and features outside object

area can be labeled as ‘background class’. Some of the features inside the object area will

be similar to the background. Such features have to be labeled as ‘background class’ for better

classification performance. For this purpose, we have used a feature-based object-background

separation technique.

The process is illustrated in Fig. 1. Note that, Fig. 1(a) presents the first frame of one of

ETISEO video sequences [29]. The image area inside the solid rectangle represents the object

(’Car’) and the area between solid (‘red’) and dotted (‘blue’) rectangles represents its local

background. The area of the background depends on the area of the object. In our study, the

area of background is 70− 80 percentage of area of object. The object and its local background

are shown in Fig. 1(b). The probability density function (pdf ) of the feature in the image area

and its local background is obtained to find the log-likelihood ratio of the pixel/region belonging

to the ‘object class’. The log-likelihood ratio Li is obtained as

Li = log
max{ho(i), ε}
max{hb(i), ε} (1)
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(a)(a) (b) (c)

Fig. 1. Object/background separation and class label definition. a) Initial frame, b) area inside the ‘red’ color bounding box is

called object and area between the ‘red’ color bounding box and ‘blue’ color dotted rectangular box is called local background,

and c) corresponding class label map

where ho(i) and hb(i) are the probabilities of ith pixel/region belonging to the object and

background, respectively; and ε is a small non-zero value to avoid numerical instability.

The class label y for a given ith pixel/region is coded as

yi =





1 if Li > τo

−1 otherwise
(2)

where, τo is the threshold to decide on the most reliable object pixels/regions. Typical value of

τo is set at 0.6. The class label map obtained using the log-likelihood ratio is shown in Fig. 1(c).

B. Online learning neural classifier

First, we describe the principles behind online learning neural classifier and then provide the

various steps involved in the algorithm and finally summarize the algorithm in a pseudo-code

form.

The object/background classification problem can be described mathematically in the following

manner. Suppose, we have the sample {(Xi, yi) , i = 1, 2, · · · , n}, where Xi is the d-dimensional

feature vector extracted from the ith pixel/region, yi is the coded class label, and n is the number

of pixels/regions. If the feature vector Xi belongs to the object area, then the coded class label

yi is 1 and otherwise it is −1. The observation X provides useful information on the underlying

probability distribution of the data to predict the corresponding class label with certain accuracy.

Hence, the classification problem is to predict the coded class label y of a new sample X. This
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requires us to estimate a functional relationship between the class label and feature vector from

the training set.

1,σ1

2
,σ

2

K
,σ

K

x1

x2

xd

Σ

α1

α2

α
K

y

Fig. 2. Architecture of RBFN used in this study

Radial basis function network (RBFN) architecture consists of an input layer, a hidden layer,

and an output layer as shown in Fig. 2. The inter-connection weights only exist between the

hidden and output layers. Gaussian units are used in the hidden layer as activation functions

because of their localization properties.

Generally, the output of the RBFN classifier with K hidden neurons has the following form:

ŷi = f(X) =
K∑

j=1

αj exp

(
−‖Xi − µl

j‖
2σ2

j

)
(3)

where µl
j is the jth neuron center corresponding to lth class (l is either ‘1’ or ‘0’), σj is the

width of the jth neuron, and αj is connection weight between jth neuron and output, αj ∈ <.

The predicted class label ĉi for the training sample Xi is given by

ĉi =





1 if ŷi > 0

0 otherwise
(4)

RBFN classifier involves the allocation of new Gaussian hidden neuron, pruning the neurons

and also adapting the neuron parameters. The RBFN begins with a zero hidden neuron (i.e., the

network output is zero for the first sample). When the observation data are received sequentially,

the network starts growing/deleting by using some of them as new hidden neurons based on

certain criterion.
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The criteria given below must be satisfied for a new training sample (X, y) to add a new

hidden neuron.

Growth Criterion:

G: IF (ĉ 6= c) AND [‖X− µc
nr‖ ≥ ε1 OR ERR ≥ ε2] THEN add a neuron,

where c is the actual class label, µc
nr is the nearest neuron center of the class c, ERR is the

sum of squared error (ERR =
∑

i e
i) for a new training sample (where ei is given by Eq. 5).

Values ε1 and ε2 are the thresholds to be selected appropriately. The threshold ε1 defines the

maximum spread of the Gaussian neurons. In other words, if the new training sample falls away

from the nearest neuron of the same class by ε1, then a new hidden neuron will be added to

the RBF classifier. The ε1 controls the growth/maximum number of neurons in the network. The

threshold ε2 controls the expected accuracy in the prediction. In all our experiments, the values

of these thresholds (ε1 and ε2) are set as 0.4 and 0.1, respectively.

In other sequential RBF algorithms, the error (e) is usually the difference between the actual

output and the predicted output (y− ŷ), and this is used in the mean square error loss function.

For classification problems, the above definition of error restricts the outputs of the RBF network

between ±1. In [15], it is shown that the classifier developed using a risk sensitive hinge loss

function can estimate the posterior probability more accurately than the mean square error loss

function under sample imbalance. In risk sensitive hinge loss function, the risk of misclassifica-

tion (m) is integrated into the existing hinge loss function. The risk factor penalizes the classifier

heavily only when there is a misclassification samples. Hence, in our formulation, we use a risk

sensitive hinge loss function to calculate the loss e, which is given by

ei =





−(mk + 1)2yiŷi, if yiŷi < − 1

(yi −mkŷi)
2, if − 1 ≤ yiŷi < 0

(yi − ŷi)
2, if 0 ≤ yiŷi < 1

0, if yiŷi ≥ 1,

(5)

where mk is the risk factor greater than zero, and index k is the true class label of observation

feature vector Xi. Here, the hinge loss function presented in [16] is integrated with the risk

factor to minimize the errors.

The risk sensitive hinge loss function given in Eq. 5 has different effects in different region

of error and is described below:
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• The network does not restrict the output between ±1. To avoid large variation of parameters

during learning process, the classifier penalizes the misclassified samples linearly, when

ŷiyi < −1;

• When the predicted class label and actual label are different and the predicted ŷ is less than

±1, then the risk factor (mk) is included to penalize the classifier only during misclassifi-

cation;

• When the predicted class label and actual label are the same, then the error is equal to

y − ŷ;

• The approximation error is zero when the predicted class and actual class labels are the

same and ŷiyi > 1. This condition prevents the saturation problem in neural classifier.

Here, the risk factor is different for object and background classes and the loss function penalizes

the misclassified samples heavily.

The parameter m defines the risk in misclassification of ‘object’ sample as ‘background’

and vice versa. The risk parameter is adapted based on the estimated probability and cost of

misclassification (β).

m1 =
β1

n1

×
n1∑

i=1

1

p̂(c|Xi) + 0.01
, if Xi ∈ ‘object’ (6)

m0 =
β0

n0

×
n0∑

i=1

1

1.01− p̂(c|Xi)
, if Xi ∈ ‘background’

where n1 and n0 are the number of samples in ‘object’ and ‘background’ classes. The value

0.01 is added to avoid the numerical instability. The truncated outputs of the classifier model

developed using hinge loss function approximate the posterior probability accurately [16] than

other loss functions. Since, the proposed learning algorithm uses loss function similar to hinge

loss function, the classifier model developed using the proposed learning algorithm also estimates

the posterior probability accurately.

The truncated output is defined as

T (ŷi) = min (max (ŷi,−1) , 1) (7)

Since, the target vectors are coded as −1 or 1, the posterior probability of observation vector

Xi belonging to class c is

p̂ (c|Xi) =
T (ŷi) + 1

2
(8)
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The target model (p̂t) is defined as

p̂t
i =





1 if p̂(c|Xi) > 0.6

0 otherwise
(9)

If the Growth Criterion (G) is satisfied, then a new hidden neuron K + 1 is added and its

parameters are set as follows:

αK+1 = yi

√
ei (10)

µc
K+1 = Xi (11)

σK+1 = κ‖Xi − µc
nr‖ (12)

where κ is a positive constant which controls the overlap between the hidden neurons. The value

of κ is 0.7 in our experiments.

Classifier Parameters Update:

When the new training sample does not satisfy the criterion for adding a new hidden neuron,

the network parameters of the nearest hidden neuron in the same class (i.e., W = [αnr,µ
c
nr, σnr])

are adapted using a Decoupled Extended Kalman Filter (DEKF) [30]. For the sake of notational

convenience, we call nr the nearest neuron in the same class. The computational complexity is

reduced considerably in DEKF by ignoring the inter-dependencies of mutually exclusive groups

of neurons; i.e., the cross correlation terms of the error covariance matrix are neglected. In the

proposed algorithm, since only the parameters of a single nearest neuron are updated, the training

time is reduced considerably.

For the DEKF, the parameter update equations for each new training sample are given by:

B = ∆Wf(Xn) (13)

Kn = Pnr(n)B
[
R + BTPnr(n)B

]−1
(14)

Pnr(n + 1) =
[
I−KnB

T
]
Pnr(n) + IPQ (15)

W
′

= W + Kne (16)

where R is the variance of measurement noise (set as 1.001), B is the vector of partial derivatives

for the output signal with respect to the parameters (W), Pnr(n) is the error covariance matrix

for the nearest neuron in the same class, and the vector Kn is the Kalman gain. The addition
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of artificial process noise PQ helps in avoiding convergence to local minima [30]. The value of

PQ is set to 0.0001 in our experiments.

Here, the size of the error covariance matrix P is used to calculate the Kalman gain for any

given sample. Note that the size is (d+2)×(d+2), which is less than the size of error covariance

matrix P, K(d + 2)×K(d + 2), where K is number of hidden neurons and d number of input

features in EKF algorithm. From the above discussion, one can say that the DEKF algorithm

requires less computational effort and memory requirement than the EKF algorithm. Hence, the

proposed algorithm updates the parameters faster.

In order to maintain a compact network and remove a non-performing neuron, a pruning

strategy is incorporated in the algorithm. Pruning of neurons ensures that the neurons that have

been added in the past and have not been contributing significantly to the network performance

are removed from the network.

Pruning Criterion: The following steps are used to prune the network:

• For the current sample Xi and class label c, find the normalized output of the Gaussian

hidden neurons as explained below:

hc
j =

‖ exp
(
−‖Xi−µl

j‖
2σ2

j

)
‖

∑K
r=1 ‖ exp

(
−‖Xi−µl

r‖
2σ2

r

)
‖

(17)

• Remove the hidden neuron of the same class for which the normalized output (hc
j) is less

than a threshold δ for M consecutive observation. The parameter M depends on the number

of samples in each class. In our experimental study, we remove the non-performing neurons,

if the average output is less than 0.1 for at least 1/5 of samples in the same class.

To summarize, the online learning RBF algorithm in a pseudo-code form is given below:

Neural Learning Algorithm:

Input: The n labeled data (X, y) extracted from the given frame.

Output: The evolved classifier and probability map.

i. If it is the first frame, then initialize the parameters (ε1, ε2, δ, M , β) and set number of

hidden neurons to zero (K = 0). The output ŷi of a network is zero when K = 0. Otherwise,

use the previous learned network parameters as starting point.

ii. For a given sample (Xi, yi),
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1. Compute the network output

ŷi =
K∑

j=1

αj exp

(
−‖Xi − µl

j‖
2σ2

j

)

2. Calculate the error using Eq. 5 and Predict the class label using Eq. 4.

3. Apply the Growth criterion:

∗ IF the criterion G satisfies, THEN ADD new neuron and set K := K + 1. Allocate

the new neuron with

αK+1 = yi

√
ei; µc

K+1 = Xi; σK+1 = κ‖Xi − µc
nr‖

Increase the DEKF parameter dimension.

∗ ELSE update the network parameters (W = [αnr,µnr, σnr]) of the nearest neuron

in the same class using DEKF.

∗ End IF

4. Check the Pruning Criterion, delete the neuron which is not contributing to the output,

and reduce the DEKF dimensionality.

iii. Repeat the step ii until all the samples are presented to the network sequentially.

iv. Test the samples using the evolved network and estimate the posterior probability using Eq.

8 and update the risk factor m using Eq. 7.

Target Model
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Fig. 3. Airport video sequence; a) Probability map, and b) neuron history
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For the first frame in the airport sequence, we extract the R-G-B values and texture at each

pixel location and evolve the RBFN classifier. The neuron history and the posterior probability

(p̂t) map obtained using the online algorithm are shown Fig. 3. From Fig. 3(a) and the likelihood

map in Fig. 1(c), we can say that the neural classifier learns to differentiate the object region

from the background. Also, the network evolves to 15 hidden neurons to separate the object

from background, which is shown in Fig. 3(b).

C. Object localization

Let rt be the object center, I t+1
i be the pixel/region and p̂t+1

i be the corresponding posterior

probability of ith pixel/region at (t + 1)st frame. The posterior probability at tth frame (p̂t+1) is

obtained by testing the features obtained from locations I t+1
i . Now the new location of the object

center is estimated as the centroid of posterior probability (p̂t+1) weighted by target model (p̂t).

rt+1 =

⌊∑
i I

t+1
i p̂t+1

i p̂t
i∑

i p
t+1
i p̂t

i

⌋
(18)

Here, the OLNT assumes that there exists an overlap between the object region in the subsequent

frames. If there is no overlap between two subsequent frames, then tracker fails to detect the

object. But, in most of the cases, there exists an overlap between two frames except fast moving

objects.

The following steps are used for object localization:

a. Estimate the new location (rk+1) using the weighted average model.

b. Calculate the posterior probability map at the new location (rk+1) and re-estimate the

location (rk+1
1 ) using the weighted average of probability map p̂t+1

n at rk+1 and target model.

c. If the absolute difference between the re-estimated location (rk+1
1 ) and new location (rk+1)

is greater than a threshold value (typically set as 2 to oscillation due to rounding operation

in localization), then assign re-estimated location to new location (rk+1 = rk+1
1 ) and go to

step [b.]. Otherwise, new location is rk+1.

In our experiments, we found that OLNT requires maximum of 2 iterations to localize the object.

D. Adapting bounding box

In this section, we present a procedure based on signature of estimated probability map to

adapt the object bounding box. The adaptive estimation bounding box helps in handling scale/size
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change of object. After tracking the object in the current window, OLNT calls adaptive bounding

box calculation to find the current object dimensions. For this purpose, the class label map (Cm)

is used and it is obtained by assigning a predicted class label for each pixels/regions using Eq.

4.

20 30 40 50 60 70 80 90

Signature along width

Initial Object Image Region

New Object Image Region

Fig. 4. Signature of the class label map (Sw) along the width of object window

Adaptive bounding box calculation:

Algorithm i.:

Input: Class label map

Output: Object width and height

Width (w) calculation:

i. The signature of the class label map along the width (Sw) is calculated by projecting the

number of object pixels/regions along the width as shown in Fig. 4. The original object

region is indicated by the green color bars.

Sw(i) =
h
′∑

j=1

Cm(i, j), j = 1, 2, · · · , w′
(19)
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where h
′ and w

′ are the total number of pixels/regions (including background) along height

and width.

ii. Remove object pixels/regions less than certain threshold value (delta = max(h ∗ 0.05, 1),

If Sw(i) < δ, then Sw(i) = 0.

iii. Assign Sw(i) = 0, if the k neighbors are zero, where k is small positive integer (k =

max(w ∗ 0.1, 1)).

iv. New width (w) is the width of non-zero signature in Sw (indicated by the ‘red’ color bars

in Fig. 4).

Similar approach is used to determine the height. Once, the new dimensions of the object

region is determined, RBF classifier predicts the probability map and defines target model p̂t.

IV. MOBILE OBJECT DETECTION

The input images to mobile object detection are color or black and white, digitized images.

The motion segmentation algorithm detects the moving regions by subtracting the current image

from the reference image. A reference image is also known as background image, which is built

with images taken under different lighting conditions without any foreground objects. A noise

tracking algorithm is used to detect real moving region from the region of persistent change in

image. Based on a prior knowledge about the scene, moving region due to door, wallpaper, and

so on, are removed. Finally, the two-dimensional features like position and size are associated

with the moving regions and are called ‘mobile objects’. The two-dimensional information on

mobile objects are inputs to the OLNT. More details on motion segmentation for moving region

detection and creation of mobiles can be found in [31]. The bounding-box initialization using

mobile object detection is used for fixed camera sequences and hand initialization is used for

moving camera sequences.

A. Error in Initialization

The major issue in mobile object detection mechanism is that of error in detecting actual

mobile object region. We first test the sensitivity of the OLNT performance with respect to the

degree of accuracy of the delineation of object to be tracked. The proposed OLNT considers

small amount of background area for accurate estimation of pixels/regions belonging to the

object area. In case of error in initialization, the missing region present in the background will
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be classified as object due to its similarity with object area. Subsequently, in adaptive window

estimation stage, the error in initialization is corrected. To demonstrate the efficiency of the

proposed OLNT, we conduct different experiments in initial size of mobile objects.

Original 
Bounding−box

Bounding−box
with error

Original
Bounding−box

Bounding−box
with error

Original
Bounding−box

Bounding−box
with error

Original
Bounding−box

Bounding−box
with error

(a) CAR (b) PERSON-A (c) TRUCK (d) LOADER

Fig. 5. Different mobile objects from ETISEO video sequence used for initialization error study. The ’blue’ color bounding

box represents the actual detection and ’red’ color represents the initialization with error.

(a) Frame (I0) (b) Frame (I2) (c) Frame (I3)

Fig. 6. For the case of 40% error in initial bounding box, the figure shows the tracking results in each frame and its corresponding

probability map (p̂t) shown as inset (top-left hand corner). Here, the objective is to track the airport personnel (PERSON-B)

(marked with ‘Yellow’ color bounding box) motion inside the aircraft bay.

For this purpose, we consider rigid and non-rigid objects from ETISEO [29], [32] video

sequence. Even though the objects were initialized correctly by the mobile object detection

module, we deliberately introduce 20% and 40% of errors in object size. Finally, we report the

number of frames required to capture the complete object and accuracy in Table I. The accuracy
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in detection is reported in terms of absolute percentage deviation (PD) from the original size.

PD = |1− ŵ

w
| (20)

TABLE I

ANALYSIS ON ERROR IN INITIALIZATION OF MOBILE OBJECTS

Error Mobile No. of Percentage Deviation

cline4-5 Type Frames width (w) height (h)

PERSON-A 2 1.06% 1.94%

PERSON-B 3 2.25% 2.50%

20% LOADER 3 3.51% 3.13%

CAR 2 2.26% 2.79%

TRUCK 2 2.42% 1.72%

PERSON-A 3 1.19% 2.04%

PERSON-B 4 2.16% 3.11%

40% LOADER 3 4.83% 4.15%

CAR 4 3.11% 2.91%

TRUCK 4 3.55% 2.45%

The type of objects used in the study from ETISEO video sequences are shown in Fig. 5.

From the quantitative results given in table I, we can see that the proposed OLNT tracker is

able to capture the mobile object accurately even under 40% error in initialization. But, the

tracker fails to capture the object completely if the error in initialization is greater than 50%. For

illustration purpose, we consider one video sequence from ETISEO. The objective of the first

sequence (ETI-VS2-AP2-C3) is to detect and track the airport personnel (PERSON-B) with 40%

error in initialization of object. The mobile object is marked using the ‘yellow’ color bounding

box. Fig. 6 shows the results of OLNT using an adaptive bounding box. The probability maps

corresponding to these frames are shown in inset of figure 6. From the figures, we can see that

the OLNT captures the entire object (true dimension of the object region) within 3 frames. The

rate at which the OLNT captures the true dimension of the object depends on the foreground

to background area ratio and also on the features in the background region exhibiting similar

characteristics to that of the object region.
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V. EXPERIMENTAL RESULTS AND DISCUSSION

This section presents tracking results for challenging video sequences that illustrate the advan-

tage of our online learning neural tracker. The online learning enhances the ability to track under

changing background and illumination conditions, change in appearance and scale change. We

also present different video sequences where the object undergoes partial and complete occlusion.

The performance of the ONLT are compared with well known ensemble tracker [7] in ETISEO

fixed camera sequences.

A. ETISEO video sequences

In this section, we present results obtained from OLNT for various video sequences available

from the public resource [29], [32], where the object appearance and scale change significantly.

Since, these video sequences uses fixed camera, we use mobile object detection module to

initialize the objects. For ETISEO video sequences, we use color (R-G-B) and texture features

for the object tracking. The performance of OLNT is compared with the well-known ensemble

tracker proposed in [7].

ETISEO Airport Sequence: The sequence (ETI-VS2-AP11-C7) contains three objects for first

75-frames. The third object ‘VEHICLE-3’ leaves the scene at I75 and a new object ‘VEHICLE-

4’ initialized at I134. For the new object appeared in frame I134, a new OLNT is developed for

tracking. The objects experience change in scale/illumination and shape variation through-out

the sequence. The tracking results for OLNT and ensemble tracker are shown in Fig. 7. The

solid line represent the results from OLNT and dotted lines represent the results from ensemble

tracker. From the figure, we can see that the proposed OLNT and ensemble tracker are able

to adapt to the changes and track the objects accurately. Here, the ensemble tracker is also

initialized mobile detection module.

Ensemble tracker performance depends on number of week classifiers trained online during

tracking. For vehicle-1 and vehicle-4, we need two weak classifiers to achieve the same perfor-

mance of OLNT, where as for vehicle-2 and vehicle-3, one need three or four weak classifiers

to achieve similar performance as that of OLNT. Determining appropriate number of classifiers

required to achieve the satisfactory performance is a challenging task. Hence, the computational

time for ensemble tracker depends heavily on number weak classifiers trained online. In case
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of OLNT, we need only one classifier to achieve the temporal coherence. Hence, the proposed

OLNT requires lesser computational effort than ensemble tracking.

In this paper, we use average of absolute difference between the tracked object (center, width

and height) and ground truth as a performance measure and are reported in Table II. From the

table, we can see that the proposed OLNT deviate very less when compared to the well-known

ensemble classifier. For ’VEHICLE-2’, ensemble tracker with two weak classifiers does not track

accurately. With three weak classifiers, ensemble tracker is able to achieve the desired tracking

performance, but the computational time increases by three fold from OLNT. One can achieve

similar performance as that of OLNT by increasing the number of weak classifier to four or

more, but increasing in computational effort reduce the ability to process video frame in the

same interval.

VEHICLE−1 VEHICLE−2
VEHICLE−3

VEHICLE−3

VEHICLE−2
VEHICLE−1

VEHICLE−2
VEHICLE−1

VEHICLE−3

VEHICLE−1
VEHICLE−2

(a) Frame (I0) (b) Frame (I35) (c) Frame (I75) (d) Frame (I103)

VEHICLE−4

VEHICLE−1
VEHICLE−2 VEHICLE−2

VEHICLE−1

VEHICLE−4

VEHICLE−2
VEHICLE−1

VEHICLE−4
VEHICLE−4

VEHICLE−1
VEHICLE−2 VEHICLE−2

VEHICLE−1

VEHICLE−4
VEHICLE−4

VEHICLE−1
VEHICLE−2VEHICLE−2

VEHICLE−1

VEHICLE−4

(e) Frame (I134) (f) Frame (I164) (g) Frame (I175) (h) Frame (I184)

Fig. 7. Airport Sequence: Tracking results for video sequence with multiple objects detected by mobile detection module.

ETISEO Metro Sequence: A 430-frame long metro sequence from ETISEO database (ETI-

VS1-MO-7-C1) [29], where the mobile objects are having weakly contrast with the background

is considered for the study. The tracker uses intensity, local gradient and texture features for

discriminating the objects from its local background. In this sequence, person enters the metro

station and leaves his bag in the station. Fig. 8 shows few important frames from the metro
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TABLE II

ANALYSIS ON ERROR IN INITIALIZATION OF MOBILE OBJECTS

Object Tracker Average Deviations

cline4-5 Type Center width (w) height (h)

Ensemble 2.5 2.8 2.1

Vehicle-1 OLNT 2.4 2.9 1.8

Ensemble3 4.1 3.9 2.7

Ensemble4 3.8 2.6 2.2

Vehicle-2 OLNT 1.1 1.4 1.5

Ensemble 1.1 1.5 1.6

Vehicle-3 OLNT 1.1 1.2 1.0

Ensemble 1.2 1.2 1.1

Vehicle-4 OLNT 1.1 1.3 1.1

sequence. From Fig. 8(a), we can see that there is more than 40% of error in initialization due

to poor contrast. In such cases, the OLNT fails to recover the actual size. Also, one can see that

the mobile detection module detects false object (see Fig. 8(e)) due to reflections. Such objects

are deleted in the subsequent frames due to low density of object region within the bounding

box. From the results, we can see that the proposed OLNT is able to track the person and hand

baggage in the scene.

B. Illumination variation

Hand-held Camera Sequence A: Abrupt illumination change poses a challenge for robust

visual tracking. To demonstrate the efficiency of OLNT, we present a video sequence taken

with a hand-held camera. For this video sequence, we initialize the mobile object (’Face of

the person’) by hand. The OLNT uses simple color (R-G-B) and gradient features for object

tracking. Fig. 9 shows several frames from a 250-frame color video sequence where the person

walks from shadow to bright sunlight and again to shadow. In addition to illumination variation

in the video sequence, the background scene changes significantly, which poses an additional

challenge to the tracking problem. The objective here is to detect the face and track the motion

successfully when there is a change in illumination in the scene. From frames I20 to I100, the

object moves from shadow to bright sunlight and moves to the shade again. At frame I180,
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(a) Frame (I0) (b) Frame (I70) (c) Frame (I140) (d) Frame (I185)

(e) Frame (I223) (f) Frame (I233) (g) Frame (I241) (h) Frame (I340)

Fig. 8. Metro Station Sequence: Tracking results for video sequence with weakly contrast multiple objects.

the estimated bounding box encloses more background due to rapid change in illumination. In

subsequent frames, the classifier learns to differentiate the object from its background and the

bounding box captures the original shape of the object. Again at frame I190, the illumination of

the object changes significantly. The history of number of neurons added and deleted during the

adaptation of neural classifier is shown in Fig. 10. From the figure, we can see that the neural

network architecture undergos significant changes during the illumination variation (frames I90 to

I110 and I170 to I185) in the sequences. For example, when the object experiences rapid variation

in illumination (between frames I170 to I185), four or five existing neurons are deleted from

the tracker and new neurons are added to discriminate the object (‘Face’) from the varying

background despite rapid change in illumination and change in appearance.

Hand-held Camera Sequence B: Another example is shown in Fig. 11. For a, 491-frame long

color sequence taken by hand-held camera in an outdoor environment, we use hand initialization

for tracking the face of a person walking in the pavement. In this video sequence, color (R-G-B)

and gradient features are used by the OLNT. Here, the object experiences significant change

in illumination and also significant change in the background scene. Also, from frames I125 to

I135, the object experiences partial occlusion with the tree. From the figure, we can see that
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(a) Frame (I0) (b) Frame (I9) (c) Frame (I33) (d) Frame (I66)

(e) Frame (I99) (f) Frame (I150) (g) Frame (I180) (h) Frame (I185)

(i) Frame (I190) (j) Frame (I195) (k) Frame (I204) (l) Frame (I250)

Fig. 9. Tracking results for video sequence in which there is a significant change in illumination and background scene. The

object for the OLNT is to track the face of the person. The tracked position in each frame is represented using ‘Yellow’ color

bounding box. In this sequence, the tracker experience appearance variation and rapid illumination change.

the proposed OLNT is able to adapt for change in illumination and background and tracks the

object motion accurately. Similar to previous sequence, in this video sequence also, we observe

significant change in number of neurons during illumination variation and change in appearances.

C. Handling Partial Occlusions

ETISEO Airport Sequence: We present the tracking results for another difficult sequence

(ETI-VS2-AP2-C3) in which airport personnel walks in between the truck and then moves

away. In the sequence, the object undergoes partial occlusion and also the background changes

significantly when the object starts moving away from the aircraft. Here, color (R-G-B) and
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Fig. 10. The history of neuron addition and pruning for the video sequence shown in Fig. 9.

texture features extracted from the image area are used for the object tracking. In Fig. 12, we

show the OLNT tracking results from different frames in the sequence. From Fig. 12(c-e), we

can see that with 80% of the object beside the truck, during these frames the OLNT adapts the

window significantly and also updates the classifier parameters to track the personnel accurately.

Similarly, between frames I275 to I342 the object was partially occluded by the moving vehicle.

From the tracking results, we can see that the proposed OLNT successfully tracks the whole

sequence.

GERHOME Video Sequence: Now, we present results from the video sequence for inde-

pendent living of elderly people at home (GERHOME) [33]. In this sequence, the mobile object

‘elderly person’ experiences change in appearance and partial occlusion with background. Since,

the object detected by mobile detection module is larger, we use region-based color moment

(RCM) [34] features for this sequence. For the experimental study, a rectangular region of size

3 × 4 is considered. For each color channel, mean and variance of pixels in the region are

calculated and are used as features for object-background discrimination. The tracking results

from this video sequence is shown in Fig. 13. From the result, we can see that the OLNT is able
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(a) Frame (I0) (b) Frame (I22) (c) Frame (I64) (d) Frame (I133)

(e) Frame (I272) (f) Frame (I343) (g) Frame (I417) (h) Frame (I491)

Fig. 11. Tracking results for walking sequence with significant change in illumination and background scene. Here, the objective

of the OLNT is to track the ‘face’ (represented with ‘Yellow’ bounding box) of a person in the video sequence. During the

sequence, the object twice experiences partial occlusion with the tree branches (refer frames I134 and I343).

to detect and track the object accurately even under partial occlusion. Due to detection error in

mobile detection module, we can observe additional objects near the phone desk in In Fig. 13(b

and e). In OLNT, the object is merged with background, if the object is stationary for more than

15 frames. Hence, the false objects detected in frame I28 and I106 are deleted later on.

Hand-held Camera Sequence C: We also present another video sequence in which the object

experiences partial occlusion and also moves in-between a fast moving vehicle. Fig. 14 shows

several frames from an 300-frame color video sequence taken by hand-held camera in an outdoor

environment. The object is initialized using hand. In this sequence, the object experiences partial

occlusion at I115 and reappears completely in I250. Also, the object undergoes complete occlusion

due to a fast moving car. Here, OLNT fails to track the object at I208 due to the appearance of a

car between the camera and the object (complete occlusion), but it detects and tracks the object

again when the car leaves the scene. The tracker fails to detect the object when it undergoes

complete occlusion. ‘Red’ color bounding box is used to differentiate missing object frames.

The procedure for handling complete occlusion is discussed next. From the tracking results, we
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(a) Frame (I0) (b) Frame (I109) (c) Frame (I147) (d) Frame (I154)

(e) Frame (I163) (f) Frame (I176) (g) Frame (I275) (h) Frame (I342)

Fig. 12. Partial Occlusion and Scale Change: Tracking results for video sequence in which the airport personnel moves beside

the truck and walk away from the camera.

can see that the sudden appearance of fast moving car shifts the object location (see. Fig. 14(f))

above the original position of the object. Hence, the OLNT tracker requires 2-3 frames (after the

car leaves the scene completely) to recapture the object completely. Once the object is detected,

the OLNT continues to track them accurately. At frame I250, the object appears completely. The

OLNT expands the bounding box and captures the object completely in I255. From the tracking

results, we can infer that the OLNT effectively adapts the bounding box during partial occlusion

and also captures the complete object when it reappears.

D. Handling Complete Occlusions

Handling complete occlusion is an important problem in computer vision. So far we have

presented tracking results for video sequences in which the object undergoes partial occlusion.

In case of partial occlusion, the proposed OLNT manages to overcome the occlusion. To handle

the case of an object undergoing complete occlusion, we use a heuristic search strategy based

on the history of the object movement. Also, the OLNT does not adapt the bounding box and

parameters of neural classifier when the object region reduces significantly.

The heuristic search strategy works as follows: The ‘OCCLUDE’ indicator is set as 1 when
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0−PERSON

(a) Frame (I0) (b) Frame (I28) (c) Frame (I44) (d) Frame (I96)

(e) Frame (I106) (f) Frame (I128) (g) Frame (I180) (h) Frame (I193)

Fig. 13. GERHOME Sequence: Tracking results for 200-frame video sequence taken inside a GERHOME laboratory. The

objective of the tracker is to track the motion of the old-person in the sequence. For this sequence, we use region-based color

moment features in the OLNT.

the object region between two subsequent frames reduced by 20%. If the OCCLUDE indicator

is set, then the OLNT starts recording the bounding box, object position, and speed, until the

object region reaches normal value. The OLNT stops adapting the neural classifier parameters

when the bounding box size (and sets ‘ADAPT’ to zero) reduces to 50% of nominal value. When

the object region is less than the original value by 25%, the OLNT stops adapting the bounding

box. When all the pixels in the object area is classified as a background, then the complete

occlusion is detected. During the complete occlusion, the OLNT starts the search process to

detect the object in subsequent frames. The average absolute change in positions for the past

three frames is used to initialize 4 possible locations where the object might appear. The OLNT

tracker computes the probability map in those locations and localizes the object. If the object

is detected in any one of those points, then the OLNT resumes tracking. Otherwise, the tracker

waits for the next frame and searches the object with respect to the previously tracked locations.

ETISEO Building Entry Sequence: Fig. 15 shows several frames from a 110-frame color

video sequence (ETI-VS2-BE-19) where a woman walks in between the pole. Also, the illumi-
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(a) Frame (I0) (b) Frame (I114) (c) Frame (I146) (d) Frame (I157)

(e) Frame (I201) (f) Frame (I206) (g) Frame (I210) (h) Frame (I212)

(i) Frame (I214) (j) Frame (I250) (k) Frame (I255) (l) Frame (I299)

Fig. 14. Partial Occlusion: Tracking results for 300-frame video sequence taken by hand-held camera. The objective of the

tracker is to track the motion of the person in the sequence. The object experiences partial occlusion with the garbage cans and

also experience complete occlusion for a short period of time due to fast moving car.

nation over the object of interest changes significantly. Here, the OLNT uses basic color features

and intensity as input to detect the object. At frame I8 to I15, the object experiences reflection

from the mirror. Here, the OLNT is not able to detect the portion of object experiencing mirror

reflection (see Fig. 15(b-c)). Once the object leaves the scene (’no reflection from mirror’), the

OLNT captures the object completely (see Fig. 15(d)). From the tracking results given in the

figure, we can see that the object completely disappears in the frame I56 and reappears at frame

I60. During the complete occlusion, the object region is marked in red color. Once, the object

is detected at I60, the tracking is resumed.

TRECVID Sequence: Now, we present the results from the TREC video retrieval evaluation
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(a) Frame (I0) (b) Frame (I8) (c) Frame (I14) (d) Frame (I17)

(e) Frame (I24) (f) Frame (I52) (g) Frame (I55) (h) Frame (I57)

(i) Frame (I58) (j) Frame (I60) (k) Frame (I85) (l) Frame (I106)

Fig. 15. Tracking results for video sequence in which the woman moves behind the pole with change in illumination. In frames

I8 to I15, the reflection of light from the mirror affects the accuracy in determining the bounding box.

data (TRECVID 2008) obtained from Gatwick airport surveillance system. Fig. 16 shows several

frames from a 140-frame sequence, where two mobile objects (person) crossing each other.

The mobile objects in this sequence experiences both static and dynamic occlusion. Also, the

presence of reflective surfaces and moving background increases the complexity of tracking.

The objects are initialized as a bounding boxes with a label namely PERSON-0 and PERSON-1

using the mobile detection module. For this sequence, OLNT uses RCM and texture features

to differentiate the object from the background. The errors in initialization are automatically

corrected in subsequent frames using the size adaptation. From the results, we can see that the

object labeled as ‘PERSON-1’ experiences partial occlusion with the sign board from frame

I42 to I50. During these frames, only the size of mobile object is updated with-out adapting
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the neural classifier. The mobile objects cross each other from frame I51 to I56. Here, mobile

object labeled as ‘PERSON-1’ goes behind mobile object labeled as ‘PERSON-0’. During the

dynamic occlusion stage, object localization phase for ‘PERSON-1’ does not use the probability

map, but uses the object history (velocity and direction for past five frames) for the localization.

The OLNT resumes the localization and adaptation phase after it detects the mobile object. The

ONLT recovers to actual shape of the mobile (‘PERSON-1’) at frame I90. The delay in the

process of recovery is due to the reflecting surface and similar color in the background.

(a) Frame (I0) (b) Frame (I30) (c) Frame (I42) (d) Frame (I48)

(e) Frame (I53) (f) Frame (I54) (g) Frame (I56) (h) Frame (I62)

(i) Frame (I72) (j) Frame (I90) (k) Frame (I109) (l) Frame (I139)

Fig. 16. Tracking results for (TRECVID 2008) video sequence in which the mobile objects experiences both static and dynamic

occlusion.
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E. Complex Sequence

In this experiment, we consider tracking multiple objects in a video sequence, where objects

appear/disappear and cross each other often. The mobile objects are initialized using object

detection module and OLNT track the objects until the objects leave the scene. The key frames

from the experimental results are shown in Fig. 17. From the first frame, we can see that there are

five objects in the scene. The object ‘3-PERSON’ bounding box is not initialized correctly due to

reflection of image from the surface. But, the initialization error is removed in the subsequence

sequence (frame I8). The object detection module fails to initialize the object (‘5-PERSON’)

accurately in frame I30. Later, the object module detects the same object correctly in frame I20.

Now, OLNT tracker learns the object correctly and tracks accurately. The results show that one

needs to develop a reliable obtect detection module for the efficient object tracking.

Now, we observe the tracking results for object ‘4-Person’. First the object is initialized when it

is experiencing a static occlusion with ‘sign-board’. But, the OLNT tracker assumes that as part

of object and learns to differentiate it from local background (see. I1). Later, when the object

move close to the static fence, the OLNT learns the fence as object region. Since, the contextual

knowledge is not used during the learning process, the OLNT fails to differentiate the local

background and object pixels. Hence, OLNT is not able to track this object accurately.

From frame I41 to I51, we can observe that the object ‘3-PERSON’ grows due to similarity

with respect to the local background. The growth affects the decision on learning and adaptation

of bounding box, which leads to reduction in tracking accuracy. We need to restrict the size

of bounding box of each object category based on camera location and direction of object

movement.

F. Discussion

In this section, we discuss various issues related to the proposed OLNT, such as computational

complexity, similar appearance in the background, and problems with fast moving objects.

Computational Complexity: The OLNT is implemented in MATLAB version 7.1 on Intel(R)

3.0 GHz machine. Since, the OLNT tracker uses simple color features and intensity value, the

time taken to extract the features from an image region is small and is neglected. The main

tasks in OLNT are object localization and online adaptation of RBFN classifier parameters.

The computational complexity of these tasks is expressed in terms of number of floating point
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(a) Frame (I0) (b) Frame (I8) (c) Frame (I15) (d) Frame (I30)

(d) Frame (I41) (d) Frame (I52) (d) Frame (I110)

Fig. 17. Tracking results for (TRECVID 2008) complex video sequence.

operations required to complete them. Let tm, ta, and te be the time taken to complete one

floating point multiplication or division, addition or subtraction, and exponential operations,

respectively. From Eq. 3, the time (t1) to complete the calculation of RBFN classifier output is

t1 = NK (6tm + 4ta + te), where N is the number of pixels/regions in the image area and K

is the number of hidden neurons. From Eqs. (7 and 8), the time taken to compute the posterior

probability estimation (t2) is N(tm + ta). Similarly, from Eq. (17), the time taken to compute

weighted average (t3) is N(3tm + 2ta) + tm. The time taken to complete the object localization

(T0) is the sum of the time taken to compute RBF output, posterior probability estimation and

weighted average, and is given as

TO = N [(6K + 4)tm + (4K + 3)Ta + Kte] + tm (21)

In our study, the maximum number of hidden neurons (K) is 15. Also, the object localization

requires maximum of 2 iterations to localize the object, i.e., two times of TO. Hence, the

maximum time required to complete the localization is approximately,

Tmax
O ≈ 2N [94tm + 63ta + 15te] + 2tm (22)
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The average time taken to complete the one floating point multiplication in MATLAB is tm =

10−9s. Here, tm = ta and te = 10tm, than, Tmax
O ≈ 0.6Nµs. Note that the actual hardware

implementation time will be much less than the time quoted here. From the above equation, we

can see that time taken to localize the object mainly depends on the number of input features

(N ) extracted from the image region. For larger object, the processing time can be reduced by

considering region based features than pixel based features.

Now, we calculate the time taken to complete the online adaptation of RBF classifier pa-

rameters. The algorithm updates only the nearest neuron parameters for a given input features.

For parameter update, we use a decoupled extended Kalman filter algorithm. Eqs. 12-15 are

used for updating the parameters. Here, B is a vector of dimension 6 × 1, Kl is a vector of

dimension 6 × 1 and Pnr is a matrix of dimension 6 × 6. For a given feature vector, the time

taken to execute Eqs. 12-15 is approximately 105tm+37ta. If we assume that the online learning

algorithm adapts the parameters for all pixels/regions (no adding and pruning operations), then

the total time taken to complete the adaptation process (Tmax
a ) is

Tmax
a ≈ N [105tm + 37ta] (23)

The maximum time taken to adapt the classifier parameters is approximately 0.15Nµs. From

the above equation, we can see that the time taken for adaptation is directly proportional to the

number of features. For larger image region, the adaptation time can be reduced by selecting

small number of samples for parameter update. The OLNT takes approximately 0.75Nµs for

tracking a given object per frame. The proposed OLNT tracker can handle approximately 20

objects (object size 100× 100) simultaneously at the rate of 5 f/s.

Similar Appearance: The proposed OLNT uses color from the pixels or region-based color

moments from regions, local gradient and texture features for efficient tracking under illumina-

tion variation, shape change, partial occlusion and complete occlusion. The main factor which

influences the performance of the tracking is how distinguishable is the object from its local

surroundings. If there exists a similar object in the local background then tracking the object

accurately is a challenging task. Fig. 18 shows few frames from ETI-VS2-AP2-C2 video sequence

and its corresponding posterior probability. In this video sequence, the objective of the tracker is

to track the airport personnel. During, the sequence another airport personnel appears inside the

local background of original object at frame I120. After few frames, the airport personnel (the
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original object is in the left hand side) moves away from the track. The probability map and the

tracking results for frame I150 are shown in Fig. 18(e). From the probability map, we can see

that there are two similar objects in the image region. The OLNT tracker looks for a connected

region in the probability map. Since, there are two connected regions, the OLNT assumes one

as an object and continues to track. In the subsequent frames, the tracker again faces a similar

problem and chooses one of them as the object and continues to track. But, the object selected

by the tracker is not the correct one. In general, it is difficult to differentiate similar objects

using appearance. One should use higher level information such as trajectory history, direction

of movement to select the correct object from the posterior probability map.

Fast Moving Object: Another important issue in the proposed OLNT tracker is tracking fast

moving objects. The OLNT works under assumption that there exist an overlap of object region

between two consecutive frames. In case of fast moving objects, it is difficult to a get overlap

of object region between two consecutive frames. To handle such problem, one can also adapt

the background area based on velocity of the object.

(a) Frame (I0) (b) Frame (I90) (c) Frame (I120) (d) Frame (I150)

(e) Frame (I165) (f) Frame (I167) (g) Frame (I170) (h) Frame (I180)

Fig. 18. OLNT Tracker in the presence of similar object in the local background. The probability map of the object is given

in figure inset.
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VI. CONCLUSION

We have presented an online learning neural tracker to handle the dynamic change in ob-

ject/background appearance, illumination and scale. The problem of tracking is treated as a

binary classification problem, and online learning radial basis function classifier is used to

detect the object region. Learning algorithm used in this work automatically determines the

number of hidden neurons required to capture the decision boundary. The online learning of the

neural classifier adapts the parameters of radial basis function network to handle the change in

illumination and appearance. The posterior probability map is used to localize the object in the

subsequent frame and also used to adapt the bounding box. The performance of the proposed

tracker is evaluated using various video sequences. The results clearly indicate that the tracker is

robust under improper initialization, illumination variation, appearance, and scale change. But,

the proposed OLNT tracker cannot handle tracking problems with very similar appearances in

the background and also considerably fast moving objects. For the above problems, one should

use higher level information (speed and velocity) as a feedback input to OLNT to enhance the

tracking performance. We also compared the results with well-known ensemble tracker [7] on

benchmark sequence. The results indicate that the proposed OLNT require less computational

effort to achieve better tracking accuracy than the ensemble tracker. Overall, the proposed OLNT

requires smaller computational effort and is robust against the variations and hence it is suitable

for real-time tracking.
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