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Abstract
A new technique to extract and evaluate physical activity patterns from image sequences captured
by a wearable camera is presented in this paper. Unlike standard activity recognition schemes, the
video data captured by our device do not include the wearer him/herself. The physical activity of
the wearer, such as walking or exercising, is analyzed indirectly through the camera motion
extracted from the acquired video frames. Two key tasks, pixel correspondence identification and
motion feature extraction, are studied to recognize activity patterns. We utilize a multiscale
approach to identify pixel correspondences. When compared with the existing methods such as the
Good Features detector and the Speed-up Robust Feature (SURF) detector, our technique is more
accurate and computationally efficient. Once the pixel correspondences are determined which
define representative motion vectors, we build a set of activity pattern features based on motion
statistics in each frame. Finally, the physical activity of the person wearing a camera is determined
according to the global motion distribution in the video. Our algorithms are tested using different
machine learning techniques such as the K-Nearest Neighbor (KNN), Naive Bayesian and Support
Vector Machine (SVM). The results show that many types of physical activities can be recognized
from field acquired real-world video. Our results also indicate that, with a design of specific
motion features in the input vectors, different classifiers can be used successfully with similar
performances.
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1. Introduction
Video based activity recognition has been an active field of research in computer vision and
multimedia systems [1-9]. Although numerous algorithms have been developed, a
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fundamental requirement has been that the target object engaging in a certain activity must
appear in the video, which is not achievable in many practical cases where the object never
appears in the video because the camera can only be mounted on the target object itself.
Examples of such objects include a spaceship, an aircraft, a submarine, a vehicle, a robot, an
animal, or a person. For example, if the goal is to study an individual's physical activity over
an entire day in a free-living environment, it is unrealistic to track the person with video
cameras. Alternatively, with today's technological advancement, a subject can comfortably
wear a small camera for the entire day. Although he/she does not appear in the recorded
video, physical activity can be recognized indirectly by observing the recorded background
scene. In general, a specific activity will result in a specific motion of the camera since it is
mounted on the human body and the background scene will change accordingly when the
camera is moved.

We have been investigating the use of a wearable video device to monitor food intake
continuously in obese individuals [10]. However, modification of diet (energy input)
represents only half of the energy balance equation of the human body. The other half is
physical activity (energy output). A worn device that unobtrusively and automatically
records physical activity will provide a powerful tool for the development of individualized
obesity treatment programs that help people lose weight and keep it off.

Wearable sensors that objectively measure body motion and dynamics have been developed
[11-14]. One common approach is to use accelerometers attached at multiple locations of the
body to measure both acceleration and orientation [11, 12]. The accuracy of physical activity
recognition by accelerometer-based systems generally improves as the number of
accelerometers increases. However, the obtrusiveness of such systems makes it inconvenient
to wear and use in daily life. We have thus developed a new wearable device, which
contains a video camera and other sensors, to monitor both food intake and physical activity
(see Fig. 1). The device is mounted in front of the chest using a pin, a lanyard or a pair of
magnets, allowing it to measure the trunk motion of the upper body. While the general
design of the device and its food intake measurement function are published elsewhere [10,
15, 16], this paper describes the algorithms utilized to process the acquired video data and
recognize several common types of physical motion and activity.

Numerous vision algorithms are available for activity recognition using features extracted
from the observed target directly[2, 3]. Unfortunately, these algorithms do not apply to our
case where the target (a person) does not appear in the video. The key problem is therefore
to find descriptions of the physical activity in the recorded video without direct observation
of the target. These descriptions can be obtained if the following two assumptions are
satisfied: 1) the motion profiles of the activities to be recognized differ from each other, and
2) the background scene is rich enough so that sufficient image features can be extracted
reliably.

We approach the indirect activity recognition problem by investigating camera motion and
developing an activity detection scheme based on 2D image features. Considering that the
camera in the wearable device is usually not controlled intentionally and, as a result, the
acquired images are often blurry, we match correspondent points between adjacent frames
using multiscale local features. In order to reduce errors in pixel-pair matching, we impose
uniqueness and epipolar constraints which eliminate ambiguous pixel pairs. After the
correspondence selection process, a motion histogram is defined according to motion
vectors obtained from the selected pixel pairs. For each activity video, an accumulation of
motion vectors is evaluated based on a set of motion histograms to obtain global motion
characteristics which finally lead to physical activity recognition.
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This paper is organized as follows. Section 2 provides an overview of our algorithms.
Detailed descriptions of these algorithms are presented in Section 3. Experimental results are
provided in Section 4. In Sections 5 and 6, we summarize our work and discuss future
directions on physical activity recognition using the wearable camera approach.

2. Outline
Our framework for recognizing physical activity is shown in Fig. 2. It consists of three data
processing steps: feature extraction, motion representation and activity recognition. In the
first step, local image features are extracted from which a set of “salient key points” are
determined. In the second step, we match these key points between neighboring frames. The
matched points define a set of motion vectors. A motion histogram is then defined according
to these vectors. In the last step, the cumulative motion over all frame pairs is evaluated.
Physical activity is recognized based on motion histograms and global motion
characteristics.

3. Methods
3.1. Feature Extraction

Obtaining reliable correspondences of features is essential in our activity recognition system
because inaccurate correspondences produce ambiguous motion estimation. We use local
image features which are widely investigated [17-26]. We prefer local features to global
features because the local ones can be detected and represented more easily. The key
problem here is to find salient points in each image. Shi and Tomasi [22] described a method
called “Good Features”, which computes the minimum eigenvalue of the covariance matrix
instead of the cost function defined in the Harris detector [23]; Lowe [17] presented a Scale
Invariant Feature Transform (SIFT) method using scale space analysis. This method is
invariant to scale, orientation and affine distortion [18-20]. Bay et al. [24, 25] proposed a
Speed-Up Robust Features (SURF) method using the 2D Haar wavelet.

Although the existing methods have been well studied for activity recognition from directly
recorded images as the input, these methods usually require these images to have reasonably
high quality. In our case, however, the wearable device is uncontrolled and thus the images
acquired are often blurred. We have found that the blur of our images resulted from many
factors, and it is hence difficult for us to choose the most suitable model for de-blurring.
Occasionally, an incorrect model even aggravates noise. Hence we use a multiscale detector
to capture motion features in an ”overlooking” scale in which the extracted information is
less affected by blurring than that in the raw image.

In our application, the wearable camera is often used continuously to record data for more
than ten hours a day. Existing multiscale methods such as SIFT [17] and SURF [24] are not
sufficiently efficient in our case. We have therefore developed a new multiscale feature
detection approach, which works rapidly and reliably on data containing noise and
distortion, such as affine distortion and illumination variation.

We first define interest pixels in a single image I from the covariance matrix C at pixel p:

(1)
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where Ix and Iy are, respectively, the intensity partial derivatives along the x- and y-axes,
and Np is the 3x3 neighborhood of the feature pixel p. We use the minimum eigenvalue to
determine the interest pixels in the input image and reduce the effect of affine distortion
[22]. Given λp of the minimum eigenvalue at pixel p, the most interested pixels (features) are
chosen where λp > c · λmax , with λmax being the largest eigenvalue for the pixels in I, and c
being set to 0.01 in our experiments.

Next, we combine the above feature detection approach with a multiscale analysis. For
discrete images, our multiscale representation is expressed as a Gaussian pyramid according
to the scale space theory [18, 27]. The Gaussian pyramid is a set of images {g0, g1, ⋯ , gk}
constructed from the original image g0, where index k, k = 0, 1, 2, … , N, stands for the level
in the pyramid. The adjacent elements in the pyramid are related by

(2)

where w(m, n) is a Gaussian weighting function in the neighborhood of gk and N refers to
the number of levels in the pyramids. We find all features in gk for all levels of k using the
method in [22]. In order to normalize the results, we remap all pixels (u, v) of interest at

scale level k back to the scale of original image, at . The selected pixels of interest
(feature pixels) are shown in Fig. 3 where the red and green dots represent, respectively, the
interest pixels in the original image and in the immediate level of the Gaussian pyramid.

3.2. Motion Representation
In our case, the motion of the wearable camera is closely related to the physical activity that
the wearer performs. We first find pixel correspondences between adjacent frames in which
an epipolar constraint is imposed. Next, we define a motion histogram obtained from pixel
correspondences in each pair of video frames. Finally, the motion histograms of all pairs of
video frames are used to form feature vectors for activity recognition.

3.2.1. Pixel Correspondence—For a feature pixel I(x, y) in the first frame and its
corresponding pixel I′(x′, y′) in the second frame, we impose a uniqueness constraint on I′(x′,
y′), given by

(3)

where Ω′ is a neighborhood in I′ centered at I′(x′, y′), Ω′\I′(x′, y′) denotes region Ω′ excluding
pixel I′(x′, y′), and α is an empirically selected threshold to enhance reliability of the matched
features.

In addition to Eq. (3), we impose the following epipolar constraint for corresponding pixels
I(x, y) and I′(x′, y′) [28]:

(4)
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where  and PH are, respectively, the homogeneous coordinates in the forms PH = (x, y, 1)T

for I(x, y) and  for I′(x′, y′), and F is a 3×3 fundamental matrix between I′ and
I. We use the Random Sample Consensus (RANSAC) algorithm [29, 30] to eliminate the
pixel pairs which do not satisfy Eq. (3). At least eight pairs of point correspondences are
needed to estimate the fundamental matrix and remove outliers [31]. The green dots and
lines in Fig. 4 show an example of outlier elimination.

3.2.2. Motion Distribution in Frame Pairs—Once the points of correspondence are
determined from video frame pairs, we characterize the physical activity in the video
according to the direction and magnitude of motion vectors. Given a pixel correspondence
[I(x, y), I′(x′, y′)] in adjacent frames, the motion vector of this pair of pixels is defined as:

(5)

where θi is the direction of vector Mi in the range of [0, 2π), and |Mi| is the magnitude of Mi.

Because our wearable camera records the scene of the background rather than the activity
performer, the magnitude of motion may vary significantly since it is strongly related to the
distance between the background scene and the performer. We therefore propose the use of
an orientation based motion histogram to characterize motion between neighboring frames.
We define an n-bin histogram h as follows. First, θi is equally divided into n bins with each
bin covering an angular range of 2π/n. Thus, n specifies the resolution of motion orientation.
Next, within each bin, the number of motion vectors in direction θi, which belongs to [s · 2π/
n, (s + 1) · 2π/n), s = 0, 1, … , n − 1, is counted, where s is the index of histogram bin. In
order to reduce measurement error, we require |Mi| to be no less than a threshold t, measured
in pixels. Finally, we normalize the motion histogram h, represented as an n-dimensional
vector m by:

(6)

where hs is the s-th element in vector h.

3.3. Activity Recognition
In addition to the motion histogram which provides a characterization of motion in a pair of
frames, we need an effective representation of motion for the entire video consisting of
numerous frames. There exists an approach using three-dimensional spatial-temporal
features for action recognition [3, 5]. Although this 3D approach is effective, it has a high
computational complexity. In our application, the daily life physical activities, such as
walking and exercising, usually consist of short segments of simple, repeated actions.
Therefore, we define an activity recognition vector representing the statistical characteristics
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of the input video segment. Our activity recognition vector consists of two parts: a set of
summed sample values (here sample values refer to the values in the histogram bins) and the
standard deviation of these values. The summed sample values are utilized for two purposes:
1) to reflect the average of the motion histogram across the segment of the activity video;
and 2) to smooth out noise. The use of the standard deviation is to capture the range of
sample distribution. A collection of activity recognition vectors is used to train a pattern
classifier.

3.3.1. Activity Recognition Vector—Let a video contain f frames. For normalized
motion histogram vector mj in each frame, we compute mean μj and standard deviation σj by

(7)

where mjs is the s-th element of vector mj and j is the frame number. Under the assumption
of ergodicity, we may calculate combined statistics by

(8)

where μ and σ are the combined mean and standard deviation, and the n + 1 dimensional
vector d is defined as the activity recognition vector (ARV).

3.3.2. Training and Classification—In this section, each ARV is computationally
classified into a certain physical activity. In the classifier, the inputs and output,
respectively, are the ARVs and the activity types. We use the Support Vector Machine
(SVM) as the classifier because it has been successfully applied to visual activity
recognition tasks with proven efficacy [3, 32]. Other types of classifiers may also be
utilized. In our SVM implementation, an automatic parameter selection scheme was utilized
based on the K-fold cross validation procedure[33]. In this procedure, all SVM parameters
were tested starting from the minimum and then incremented exponentially till the
maximum or a pre-defined stopping criterion (maximum number of iterations) was reached.
The parameters with the best cross validation result were chosen for the SVM classifier.

4. Experimental Results
The first step of our experiments was the extraction of stable key points as candidates for
finding point correspondences. After the correspondences were determined, motion vectors
were obtained and mapped to histogram bins according to magnitudes and orientations.
Activities were then characterized and recognized by statistically combining information in
motion histograms. To test the stability and compatibility of our method, we chose three
pixel features and three classifiers for feature detection and activity recognition. We tested
six video sets containing real-world physical activities, including sitting-up, sitting still,
walking, bowing, crouching and waist exercise. The training and testing data were acquired
using three background scenes for each type of activity. The classifiers were trained and
tested using the cross validation scheme. All the six physical activities were performed by a
single human subject. We did not use multiple subjects because we believed that the motion
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profiles among different healthy subjects of similar body heights were similar. Since the
background of the scene exerted much stronger impact on the recognition accuracy than
subjects, we tested multiple background scenes (See Fig. 5 for example). Each set of data
consisted of 100 video segments. The video lengths for different activities were different.
However, within each activity, the video length was identical. We collected video data at a
rate of 10 frames per second with a screen size of 320×240.

4.1. Experimental Procedure
Our comparative experiments were arranged as follows. First, we tested three local image
descriptors, including those by Shi and Tomasi [22], the Speed-up Robust Feature descriptor
[24] and our own multiscale descriptor. For the purpose of comparison, we used the SVM
classifier and two histogram configurations with resolutions n = 8 and 10. Next, we varied
the number of orientations n for the chosen classifier and descriptors and observed the trend
in error rate. Finally, we tested the performance of different classifiers with varying ARV
dimensions.

4.2. Performance of Image Features
Local features played an important role in our wearable camera case. Efficiency and
accuracy were both required because the amount of data to be processed was large. We first
tested two state-of-the-art feature extraction methods by Shi and Tomasi [22] and by Bay et
al.[24].

The Good Features (GF) method [22] enables the detection of occlusions, disocclusions
and features that do not correspond to a real-world point. The only parameters to be set are
the minimal distance between two key points and the minimum quality level of features to
be accepted. In our experiments, we fixed these parameters at 100 and 0.01, respectively.
The window size used to estimate the covariance matrix was 3×3.

The SURF detector [24] is a widely used, well performed local feature detector that
provides scale and rotation invariability. This detector uses a similar feature generation
procedure to that used by the SIFT descriptor [17, 18] except an approximated Hessian
matrix is utilized to simplify the calculation of features. The SURF descriptor gives similar
or better results under the change of view point, scale and luminance, and the processing
speed is higher[24]. In our experiments, the default 64-dimensional descriptors were used,
the Hessian threshold was set to 100, and the number of octaves and the number of layers in
each octave were chosen to be 3 and 4, respectively.

We first tested both methods with chosen parameters on six types of activities. The training
sample size, test sample size and video length in each category are listed in Table 1. The
columns are the six individual activities.

Table 2 shows the sample recognition rates of GF and SURF methods with respect to the
number of histogram bins (8, 10 and 16) and the type of physical activity. The last column
provides overall results. It can be observed that the SURF method over-performed the GF
method. We believe that our videos acquired by the wearable camera contributed to the
performance difference. These videos were often blurred because of the free movement of
the human body. With this type of input, the GF method was often ineffective in capturing
feature points. In contrast, the SURF detector was less disturbed because it was multiscale-
based allowing the capture of blurred points more effectively.

We evaluated the processing times of both methods for feature extraction using 600 videos.
The results varied considerably. The average processing times (in seconds) are shown in
Table 3 for 8 and 10 histogram bins. Our evaluation was performed on a PC platform of
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2.13GHz CPU and 4GB memory. We found that, although the SURF method was 8.3%
more accurate than the GF method on average (from Table 2), the SURF method required an
average of 2.5 times more computational time. This is a critical problem since we must be
able to process real-world images acquired continuously for as long as several days.

With clear advantages and drawbacks of both methods demonstrated, we tested our own
multiresolution Good Feature detection method (MRGF). The number of resolution levels
was set to 3. The results are shown in Table 2 and Table 3.

It can be observed that, although the average recognition rate of the SURF method (91.3%)
was slightly better than the MRGF method (90.5%), the MRGF method reduced the
processing time by about one-half. It can also be observed, from the last column of Table 3,
that the multiscale methods (MRGF and SURF) outperformed the single scale method (GF)
in all experiments. The recognition precision increased significantly from GF to MRGF in
the condition of low resolution where n equals to 8 and 10.

4.3. Resolution of Motion Orientation
The motion histogram requires a choice of the number of histogram bins n which specifies
the resolution of motion orientation n. We experimentally investigated the trend of
recognition performance with respect to the choice of n. A comparison of the detection rates
under different histogram resolution, image feature types and activities is given in Table 2,
where the numbers of histogram bins tested were 8, 10 and 16. It can be observed that, for
all types of image pixel features, the recognition rate increased with the number of
histogram bins over all activities. Although for specific activities and image pixel features,
the recognition rate fluctuated, the overall tendency was clear according to the data acquired
so far. In order to provide more proof on the relationship between recognition rate and
resolution of motion orientation, we conducted another experiment focusing more on the
number of histogram bins. The threshold of magnitude t defined in Section 3.2.2 was fixed
at 3 in all experiments.

Fig. 6 gives a detailed representation of the recognition performance with respect to the
resolution of motion orientation. Two major conclusions can be drawn from our results.
First, the average detection rate increased with n from 4 to 18. The GF, SURF and MRGF
methods all achieved higher recognition rates with a larger n. The lowest rate was with n = 4
for all pixel features. Second, when the resolution reached a certain level, the improvement
in accuracy became small. It was shown that the SURF and MRGF features were more
stable. Since pixel feature representation is essential in the overall performance of
recognition, the MRGF method, which provides such representation at a low computational
cost, is more advantageous than the other two methods.

4.4. Classification of Recognition Vectors
Specific physical activities were recognized based on activity recognition vectors (ARVs).
Our main purpose of experiments was to validate the effectiveness of ARVs. Three
independent classification strategies, including Naive Bayes, K Nearest Neighbor and
Support Vector Machine were used in our experiments.

Naive Bayes [34]—The Naive Bayes classifier requires a small amount of training data to
estimate the means and variances necessary for classification. By assuming that the variables
in feature vectors are independent, only the variances of the variables for each class need to
be determined and not the entire covariance matrix.
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K-Nearest Neighbors (KNN) [34]—The K-Nearest Neighbor classifier is robust to
noise. In our experiment, we set the number of nearest neighbors K to 10 empirically. It was
found that the size of the training set could be chosen in a wide range between 6 and 20, and
the choice was not sensitive to K.

Support Vector Machine (SVM) [35-37]
We found that, for different data sets, the SVM testing results varied considerably. We
solved this problem by using a K-fold cross validation technique for parameter
selection[33]. In this technique, each training set was divided into 10 subsets (folds). The
parameters with the best cross validation result were used in the classifier.

The recognition results of the Naive Bayes, KNN and SVM classifiers are shown in Fig. 7. It
can be observed that the SVM classifier outperformed other two classifiers when the
histogram resolution was large. However, the Naive Bayes and KNN classifiers excelled in
speed because the SVM classifier spent considerable time on choosing parameters. All
classifiers achieved recognition rates above 85% for the six types of activities. The best
performances for the KNN and Naive Bayes classifiers occurred when n was 10, while the
best performance for the SVM classifier occurred when n was 14. Despite these differences,
our results show that all three classifiers were applicable to our indirectly recorded activity
data.

5. Discussion
In summary, our indirect activity recognition method mainly consisted of three data
processing steps: feature detection, motion representation and activity classification. We
characterized the activity patterns in the video using pixel features because this type of
features was easier to obtain than other types of features, such as lines and blobs. Although
pixel features can be detected in different ways, including the use of GF and SURF, there is
a major trade-off between the accuracy and computational complexity. In our case, we used
the MRGF detector because it provided a balance between these two factors and the features
provided by this detector can be used to construct the motion histograms. The only
parameter required by the MRGF detector was the resolution of motion orientation, which
was found to be an insensitive parameter as long as it was sufficiently large.

In the activity recognition part of our study we embedded statistical information into motion
vectors and used the activity recognition vector to classify and recognize activities. In our
case, the recorded activity usually consisted of repeated activities of short times. By
summing the motion vectors, temporal variations were reduced effectively and the features
became more distinct in the activity recognition vector because of the repetition.

In general, a specific activity will result in a specific motion of the camera since it is
mounted on the human body. When the camera is moved, the background scene will change
accordingly. We believe that this change contains two components: a component reflecting
the case-dependent scene of the physical world observed by the camera, and a component
specific to the activity being performed. The change of background scenes can be
represented by extracting image features and obtaining motion vectors. Although we have
not intentionally separated the two components, our results show that activity can be
recognized based on the extracted image features, under the assumptions stated below.

Firstly, it is assumed that the motion profiles of the classes of activities are sufficiently
different. The activities investigated by this manuscript satisfy this assumption and thus can
be recognized using the presented method. However, there exist activities which do not
satisfy this assumption and the motion profiles alone do not lead to effective classification.
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In these cases, recognition has to be achieved by adding image content analysis which is not
covered by this paper.

Secondly, we assume that the background scene is rich enough so that sufficient image
features can be extracted robustly. It is clear that feature extraction and matching will fail
completely when the background scene is textureless (e.g., a smooth, satin white wall).
Fortunately, this case is rare in practice and the stated background scene assumption is
satisfied in most cases.

We mounted our device containing a camera in front of the chest using a pin, a lanyard or a
pair of magnets. However, in our opinion, this is not the only choice and there is no vantage
point on the human body to mount the device. In our system design, we had to consider
several practicality constraints in selecting the mounting point. We chose the chest because:
1) it is a stable location that facilitates the acquisition of high-quality images reflecting the
trunk motion of the upper body; and 2) the location is related high in the body to keep
camera view clear from being blocked by arms/hands and other objects, so the occlusion
problem, which is significant in many current activity detection systems, is greatly reduced.

As a final remark, for the study of obesity, it is desirable to obtain a quantitative measure of
energy expenditure for each type of physical activity performed by the subject who is
wearing the device. This can be easily calculated using the identified activity and the length
of time engaged in the activity (both determined by the wearable device) together with a
table of energy expenditure values associated with each activity [38].

6. Conclusion
In this paper, we have presented a new computational tool to study physical activity by
analyzing video data acquired using a wearable camera. Our investigation has focused on
the feasibility and the framework to perform pattern recognition by inferring from the
images showing only the surrounding scene. We have presented a multiscale scheme to
identify pixels of interest and showed that this scheme can be applied efficiently and
robustly. We have also proposed the use of statistical properties of motion vectors. As
shown in our experimental results, the activity recognition vectors that we utilized can be
effectively classified with a high accuracy. The classification error decreases as the
resolution of motion orientation vectors increases. Our experimental results have also shown
that different classifiers can be applied to our activity recognition vectors with comparable
error rates. The methods proposed in this work are useful in real-world applications where
the camera can only be mounted on a target object and the data are acquired under imperfect
conditions.
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Figure 1.
Wearable camera developed in our laboratory. Left: person wearing the device. Right:
Circuit board of the device where the camera is positioned inside the red circle.
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Figure 2.
Framework for activity recognition
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Figure 3.
Feature pixels detected by ”Good Features” [22] in the original image (red dots) and the next
level of the Gaussian pyramid (green dots).
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Figure 4.
(a) Pixel features are shown in red dots (b) Motion vectors (dot: location; short line:
direction) computed from feature pixels. Red and green vectors indicate, respectively, the
vectors satisfy and do not satisfy Eq. (4).
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Figure 5.
Test scenes for walking.(a) Corridor, (b) Room (far), (c) Room (near), (d) Outdoor
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Figure 6.
Recognition rate (vertical axis) of six activities using the SVM method with respect to
histogram resolution (horizontal axis).(a) top three curves: sitting-up, bottom three curves:
sitting still; (b) top three curves: walking, bottom three curves: bowing;(c) top three curves:
crouching, bottom three curves: waist exercise; (d) Overall rate (average over all six
activities).
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Figure 7.
Recognition rate using Naive Bayes, K Nearest Neighbors and Support Vector Machine.
Horizontal axis: resolution of motion orientation. Vertical axis: recognition rate. Image
features: MRGF.
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