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a b s t r a c t

In this paper we describe both the theoretical and practical results of a novel approach that combines

hybrid techniques of association analysis and classical sequentiation algorithms of genomics to

generate the grammatical structures of a specific language. We used an application of a compiler

generator system that allows a practical application to be developed within the area of grammarware,

where the concepts of language analysis are applied to other disciplines, such as bioinformatics. The

tool allows the complexity of the obtained grammar to be measured automatically from textual data.

A technique involving the incremental discovery of sequential patterns is presented to obtain simplified

production rules, and compacted with bioinformatics criteria to make up a grammar.

& 2011 Elsevier B.V. All rights reserved.
1. Introduction

In recent years many approaches have been introduced as data
mining methods for pattern recognition in biological databases.
Bioinformatics employs computational and data processing technol-
ogies to develop methods, strategies and programs for processing,
organizing, and analyzing the immense quantity of biological data.

For this purpose, computational linguistics has received con-
siderable attention in bioinformatics. A study by Searls et al. [32]
pointed out that a relation exists between formal language theory
and DNA, the linguistic view of DNA sequences being a rich source
of ideas for modeling strings with correlated symbols. Most of the
work by Jiménez-Montaño et al. [19,20] has involved examina-
tions of grammar complexity and syntactic structure of DNA
sequences for the investigation of some current problems in
protein structure. Searls et al. [31] found that this kind of
linguistic approach proves useful not only in the theoretical
characterization of certain structural phenomena in sequences,
but also in generalized pattern recognition in this domain, via
parsing. The information represented in sequences involves
grammatical inference for pattern recognition.

In this work a novel approach is described that combines
hybrid techniques of association analysis and classical sequencing
algorithms of genomics to generate the grammatical structures of
a specific language. Subsequently, these structures are converted
to context-free grammars (CFG). Initially the method is applied to
context-free languages but it can be applied to other languages:
ll rights reserved.
structured programming, the genomic sequences and even the
natural languages.

We used the compiler generator tool called GAS 1.0 by López
[23], which represents an integrated development environment
(IDE) that allows a practical application to be developed within
the area for the automatic generation of language-based tools.
This practical application is based on traditional solutions and
facilitates the use of formal language theory in other disciplines
like in grammar-based systems (GBSs) by Mernik [24]. The tool
allows the complexity of the obtained grammar to be measured
automatically from textual data and thus allows us to verify the
effectiveness of the proposed method.
2. Grammars, languages and bioinformatics

2.1. Context-free grammar

A grammar G is defined as G¼ ðN,T ,P,SÞ, where N is the set of
nonterminal symbols, T is the set of terminal symbols, P is the set
of production rules and S is the initial symbol. The language of a
grammar L(G) is the set of all terminal strings w that have
derivations from the initial symbol. That is:

LðGÞ ¼ fw is in Tn9S)nwg:

A CFG has production rules such as A-a where AAN and
aA ðN [ TÞn. The substitution of A by a is carried out indepen-
dently of the place in which A appears [21]. The majority of the
programming languages are generated by grammars of this type
(enlarged with some contextual elements necessary for the
language semantics).
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Fig. 1. Use of bioinformatics in pharmacology.
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2.2. Problem of grammatical inference

Grammatical inference (GI) crosses a number of fields, includ-
ing machine learning, formal language theory, syntactic and
structured pattern recognition, computational biology, speech
recognition, and so on, according to Higuera [16].

The problem of GI is the learning of a language description
from language data. The problem of context free language
inference involves practical and theoretical questions. Practical
aspects include pattern recognition; one approach to pattern
recognition is the CFG inference that builds a set of patterns,
according to Fu [11]; another approach is investigating the ability
to infer CFGs from nature, which would enable a speech recog-
nizer to modify its internal grammar on the fly, thus allowing it to
adjust to individual speakers. Theoretical aspects are important in
regard to the serious limitations of context-free languages,
following Lee [22] and actually in constructing feasible algorithms
of learning that imitate the human language model (this last point
can be problematic, but was one of the principal motivations for
the early work in grammar inference) [17].

2.3. Language learning

The learning of a language also has to do with its identification.
In the GI literature, attention is focused on the identification in the

limit, where, in each time t the machine that is learning receives
an information unit on a language and puts out a hypothesis
Hði1, . . . ,itÞ; the learning algorithm is successful if after a finite
amount of time, all its guesses are the same and are all a correct
description in the language in question. Another learning criterion
is the exact identification using queries in polynomial time; in this
framework, the learning machine has access to the oracles that
can answer questions, and must halt in polynomial time with a
correct description of the language [22].

In the last 20 years, the inherent complexity present in the
problem of GI has rendered all the approaches unsuccessful,
according to Miclet [25]. The paper detailed by Higuera [15]
states that actually the algorithms with mathematical properties
obtain better results than the algorithms with heuristic proper-
ties, but when finite automata are used or, alternatively, when
algorithms of GI learning are constructed. It also emphasizes that
a common benchmark does not exist for the heuristic approach
and it is thus more difficult to compare and to evaluate the
effectiveness of these methods. With these points in mind, our
approach is tested on an actual data set, which we can share with
other researchers upon request to improve or ratify our work.

2.4. Grammars and bioinformatics

Bioinformatics employs hybrid techniques [1,9] to handle,
order and study the immense quantity of biological data that
have been generated and are currently being generated. For
example, for the human genome (HG), bioinformatics seeks to
find meaning in the language of the more than 37000 million
pairs of A, C, T and G that have been compiled and stored in the
book of life.

It offers us the opportunity to understand the gigantic data-
base (DB) that contains the details of the circumstances of time
and place in which the genes are activated, the configuration of
the proteins that they specify, the way in which they influence
certain proteins or others and the role that such influences can
play in diseases. It can also help us to tackle questions such as
how the HG is related to the genomes of the model organisms,
like fruitflies, mice and bacteria; the possibility that it will be able
to discover sequential patterns that show how information
fragments are related to each other; or if it will it be able to
make up a grammatical structure that shows the interpretation of
the resultant set. If we are able to infer that structure for this type
of language we will be contributing to an understanding of the
real function of the structure of DNA.

One of the applications of bioinformatics is in pharmacology,
where it offers new solutions to the old model for the creation of
new medicines. It is worth noting that one of the most elementary
bioinformatics operations is searching for resemblances between
a recently arranged fragment of DNA and the already available
segments of diverse organisms (it remembers and associates this
with the discovery of sequential patterns). The finding of approx-
imate alignments allows it to predict the type of protein that will
specify such a sequence. This not only provides trails in pharma-
cological designs in the initial phases of drug development, but
also suppresses some which will end up being a puzzle to be
solved. A popular series of programs to compare sequences of
DNA is the basic local alignment search tool (BLAST) [4,5], whose
mechanism of comparison applied in the development of new
medicine is shown in the flow chart in Fig. 1.
3. Techniques for the association analysis

Association analysis involves techniques that differ in their
operations, but all of them search for relations among the
attributes of a data set. Some techniques are:
1.
 Association rules.

2.
 Discovery of associations.

3.
 Discovery of sequential patterns.
3.1. Association rules

Association rules (AR) describe the relations of certain attri-
butes with regard to other attributes in a DB. These rules identify
cause-effect implications between the different attributes of the
DB. For example, in the registers of product purchases, it can tell
us which article of purchase is identified as related to another; for
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example: ‘‘Eighty percent of the people who buy diapers for a
baby also buy talcum powder’’.

A rule takes the form
Tab
Dat

A

2

2

2

3

2

3

3

if X then Y or X ) Y
X is called the antecedent of the rule (in the example, ‘‘buy
diapers’’); Y is called the consequent of the rule (in the example,
‘‘buy talcum powder’’).

The generation of the rule is supported by statistical and
probabilistic aspects such as the support factor ðfsÞ, confidence
factor ðfcÞ and the expected confidence factor ðfeÞ defined as

fs ¼
nr_times_rule

nr_total_registers

fc ¼
nr_times_rule

nr_times_X

and

fe ¼
nr_times_Y

nro_total_register

The minimum value of the support factor for the rules should
be greater than a given threshold. If the confidence factor is
greater than 0.5, then the rule appears in at least half the number
of instances, meaning that the rule makes certain sense. The
difference between the support factor and the expected confi-
dence factor should be minimal to ensure the effectiveness of
the rule.

For example, if we consider the data in Table 1, a rule obtained
is: A¼ 2) B¼ 2 with fs ¼ 0:43, fc ¼ 0:75 and fe ¼ 0:57, which
means that 75% of the items with A¼2 imply B¼2, and moreover,
le 1
a set for association rules.

B C D E F

2 6 0 1 0.2

2 5 0 1 0.2

2 6 1 1 0.2

2 7 1 0 0.8

3 8 1 0 0.8

3 8 1 0 0.8

3 7 1 0 0.8

Fig. 2. Discovery of associatio
43% of all the items comply with that rule and B¼2 complies with
57% of all the items.

Association rules have been widely used in bioinformatics in gene
expression data analysis, Cai et al. [7]. Although association rules have
been widely used, there is no systematic way to select interesting
rules from the millions generated from high dimensional gene
expression data. In this study, a kernel density estimation-based
measurement is proposed to evaluate the interest of the association
rules. Several pruning strategies are also devised to efficiently dis-
cover the approximate top-k interesting patterns. Finally, the over-
fitting problem of the classification model is addressed by using the
conditional independence test to eliminate redundant rules. Experi-
mental results show the effectiveness of the proposed interest
measure and classification model.

3.2. Discovery of associations

In a way similar to the AR, the discovery of associations (DA) tries
to find implications between the attribute values of different couples
such that their appearance determines a present association in a good
amount of the DB entries. To discover associations the following steps
are carried out:
1.
ns i
Associate an identifier with each transaction.

2.
 Order the transactions sequentially according to their identifier.

3.
 Count the occurrences of the articles creating a vector where

each article is counted. The elements for which the count is
below a threshold are eliminated.
4.
 Combine in a matrix the transactions’ attribute values and
count the number of occurrences, eliminating those elements
that do not surpass the threshold.
5.
 Repeat steps 3 and 4 successively until no more transaction
combinations are possible. With the data from Table 1, with
threshold¼2, the technique is applied as shown in Fig. 2 and
the following associations are generated:
(a) A2,B2,E1,F0:2-class 1
(b) A3,D1,E0,F0:8-class 2
(c) B3,D1,E0,F0:8-class 3
n da
Association (a) means: if the value of A and B is 2 and the value of
E is 1 and the value of F is 0.2, then the entries with those
characteristics can belong to a class. The other associations show
the possible characteristics of the entries for belonging to another
class or behavior.
ta from Table 1.
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A novel invariant pattern recognition approach is proposed by
Ciocoiu [8] based on a special gradient-type recurrent analog
associative memory. The system exhibits stable equilibrium
points in predefined positions specified by feature vectors
extracted from the training set, while invariance to geometrical
transformations is inferred by using the tangent distance. Experi-
mental results for handwritten character recognition and face
recognition tasks indicate that the proposed approach may yield
superior performances over classical solutions based on the
Euclidean distance metric. Possible extensions towards modular
and sequential pattern recognition are finally outlined.

3.3. Discovery of sequential patterns

Discovery of sequential patterns (DSP) is very similar to AR but
searches for patterns between transactions so that the presence of
a set of items precedes another set of items in a DB during a
period of time. For example, if the data correspond to entries of
articles purchased by clients, a description of what articles a
client buys can frequently be obtained, and above all, what the
sequence of his or her purchase is. Thus, the next time, the profile
of the client would be known, and it will be able to predict the
sequence of his or her purchase. This criteria can be applied to
another data control, for example, in the bioinformatics context,
when the data to be processed correspond to the chain of
nucleotides of the genome and sequences are discovered as the
patterns that code genes make up some protein [2,10]. DSP has
the following operation:
1.
 Identify the time-related attribute.

2.
 Considering the period of time when the sequential patterns

are to be discovered, create an array ordered by the identifier
of the transaction.
3.
 Create another array linking the articles of purchase of each
client.
4.
 Infer the sequential patterns according to the support percent.

The patterns discovered show instances of articles that appear in
consecutive form in the data as can be seen in the example in
Fig. 3 (drawn up according to [6]). Pei et al. [27] and Zaki [36]
proposed methods that efficiently discover frequent sequential
patterns based on their support from discrete sequential data.
They used a well-known criterion that evaluates their frequency.
Garofalakis et al. [12] have presented a method that discovers
sequential patterns satisfying regular expressions specified by the
Fig. 3. Discovery of sequential patterns
analysts. Sakurai et al. [30] proposed a new sequential pattern
mining method. It introduces a new evaluation criterion to
replace the previous evaluation criteria satisfying the A priori

property. The criterion is calculated by the frequency of the
sequential pattern and the minimum frequency of items included
in the items. It extracts sequential patterns that can be rules for
predicting future items with high probability. Also, the method
introduces new constraints. The constraints extract item sets
composed of items whose attributes are different and extracts
sequential patterns composed of item sets whose attribute sets
are equal to one another. The mining method based on the
criterion and the constraints can efficiently discover sequential
patterns coinciding with analysts’ interests.
4. Association analysis-based procedure for grammatical
inference

We consider the experiences acquired by Aguilar [2], the
literature and the existing theories [21,13,26], in order to process
data that are not structured in relations or tables with differ-
entiated attributes but are coded as a finite succession of
sentences. The procedure includes the following phases:
1.
in
Language generation by means of a CFG. This language will be
the data source.
2.
 Coding of the strings of the language regarding its syntactic
categories.
3.
 Disregarding the initial grammar, discover the sequential
patterns in the coded language. This discovery, called incre-
mental, is a combination of the operation of the DSP and of the
operation of the search for identical sequences in bioinfor-
matics [10]. With this, sequential patterns will be found and
replaced by an identifier.
4.
 Replace the discovered sequences with their identifiers. This
way the identifier and the sequence are stored as a
production rule.
5.
 Repeat the two previous steps until all the sentences of the
language are replaced by identifiers.

4.1. Language generation

We consider the CFG, Gæ proposed by Louden [21] in the
generation of arithmetic expressions; the majority of the
registers of product purchases.



Fig. 4. Language of arithmetic expressions on which its grammar inferred.

Fig. 5. Hybrid discovery of sequential patterns for the context-free languages.

Table 2
Modification of the GæGrammar.

GæGrammar GæGrammar

Gæ ¼ ðN,T ,P,SÞ Gæ ¼ ðN ,T ,P,SÞ
N ¼ fExp,Num,Dig,Opg N ¼ fE,d,b,o,a,cg

T ¼ f0,1,þ ,ng T ¼ f0,1,þ ,n,ð,Þg

P : Exp- Exp Op Exp9ðExpÞ9Num P : E-E o E9aEc 9 n

Num-Digþ d-bþ

Dig-091 b-091

Op-þ9n o-þ9n
a-ð

c-Þ

S¼ Exp S¼ E
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programming languages are generated by grammars of this
type. We can modify the formalism of this CFG in the following
way (Table 2) to add a new syntactic construct to specify and
search DNA patterns in data. A DNA molecule can then be
represented as a finite string of symbols from this alphabet; a
language, formally, is any set of such strings [31]. The new
grammar created, Gæ, does not change in essence the character
of the original grammar.

With the previous criteria, a sample of the language generated
by Gæ can be seen in Fig. 4, point (i). Note that each line
corresponds to a sentence accepted by the grammar.

4.2. Language coding

Considering the language that is generated with Gæ, all the
symbols of T can be coded with the symbols of N . For this
particular case the symbols to be used are fb,o,a,cg as syntactic
categories. See Fig. 4, point (ii).

4.3. Incremental discovery of sequential patterns and associations

We have developed a new DSP algorithm which calculates
the global scoring (gs) of candidate sequential patterns and
selects the largest overall scoring pattern. The algorithm builds
a weighting scheme to decide the next production rules to be
constructed.

The key element in the algorithm is to optimize the total size of
the grammar and generate production rules for GI. The algorithm
accepts as input a set of sentences of language Q, defined as a string of
length WQ, and the outputs are production rules.

The DSP algorithm is applied to coded languages with the aim
of finding key subsequences in the sentences of the language.
Each subsequence s has a length Ls that indicates the number of
symbols included in Q. Where ns represents the appearances of
the number of s in Q, we used the Boyer–Moore–Horspool
algorithm [18] to calculate ns. In this particular case 1rLsr5.
To reduce the computational cost of the experiments we also used
the Boyer–Moore–Horspool algorithm to empirically obtain the
pattern length, noting that for a pattern length r5 we will
guarantee a suitable internal representation of the data. By
convention, in the coded language many sentences exist that
make up the population of the language. The idea consists in
finding subsequences, identifying them with a symbol and repla-
cing the appearances of the subsequences in the sentences of the
population with that symbol, repeating the procedure until each
sentence is identified by a single symbol (see Fig. 5).

The detailed steps of the general algorithm can be found in [3].
Below is the pseudo-code of the proposed algorithm.

Algorithm 1. Incremental discovery of sequential patterns.

1: Input: Q a language sentence test set of length WQ

2: Output: production rules
3: initialize gs¼0
4: for all the sentences Q do
5: while WQ Z1 do
6: for Ls ¼ 1 to 5 do
7: make each subsequence s from Ls first symbols of Q.
8: compute the global scoring gs of s defined as

gs ¼
Pquant

i ¼ 1 pi
s, where Ps ¼

Lsnns
WQ

, is the scoring of s in

Q and quant is the quantity of candidate sequential
patterns.

9: end for
10: select the subsequence sn of greatest overall scoring
11: if sn has one symbol then
12: replace all the consecutive appearances of that

symbol by itself. Thus the production rule is created a-bþ (in
this particular case, all the bb are replaced by d, see Fig. 5).
13: else
14: replace all the appearances of sn in the sentences Q

creating the production rule A-contained_in_sn.
The symbol A is generated consecutively so that the
next time that another rule production is created,
B,C, yis utilized and so on (see Fig. 5).

15: end if
16: end while
17: end for
18: return to step 1 noting that with 11 and 14 the size of the
sentences of the language population changes.

With the above procedure, production rules are generated that
recognize the sentences of the language. The number of produc-
tion rules can be considerable, so we apply a particular method of
simplification.



Table 3
Frequency of subsequences for the language Læ .

Symbol Value Freq.

d bþ 0.7500

o þ9n 0.1704

a ( 0.0398

c ) 0.0398

A dod 0.4321

B aAc 0.1115

C Ao 0.1725

D BoB 0.0696

E Cd 0.1128

F adc 0.0746

G CB 0.0532

H FoE 0.0311

I CE 0.0519

J doF 0.0195

K CI 0.0311

L FoD 0.0195

M CA 0.0195

N aaFcc 0.0061

O CD 0.0195

P aaNcc 0.0039

Q CF 0.0156

R FoFoA 0.0039

S CG 0.0156

T CB 0.0195
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5. Experiments

5.1. Rule similarity

Considering the language Læ of arithmetic expressions, the
production rules of Fig. 6 were obtained by applying the DSP
algorithm.

With the right hand side of the production rules, which form
the sequential patterns of the language, a substitution matrix is
computed, which shows the similarity values between terminal
symbols, as shown in Fig. 7.

Similarity between a pair of consecutive symbols is related to
the frequency of the symbols in the language (like the BLOSUM
matrix) [14]. Subsequently, it is possible to make alignments
among those sequences by compacting them. We have used the
estimator Scoredist proposed by [33] to determine the distance
between a terminal and a nonterminal which uses a logarithmic
correction of observed divergence based on the alignment score
according to the BLOSUM score matrix and its main advantages
are computational simplicity and high robustness.

In the substitution matrix m(i, j), each row i and each column j

corresponds to a nonterminal symbol of the production rules
generated. The values of the matrix denote the importance of the
alignment among the nonterminal symbols; for example, m(d,
d)¼23 denotes a high degree of similarity between both symbols;
m(d, A)¼�1 denotes a degree of similarity of �1.

The symbols are ordered by frequency, as shown in Table 3,
that is first d, A, C, o and so on. For Læ it generated 19 symbols
A,B, . . . ,S that join with the symbols of the coding d, o, c and a and
Fig. 7. Substitution matrix for the rules generated.

Fig. 6. Production rules generated and some iterations in their simplification.
make up 23 nonterminal symbols (in the bioinformatics context,
the symbols would correspond to the amino acids).

5.2. Rules simplification and compaction

With the right hand parts of the production rules (where the
first rules generated are more important) we search for similar

sequences to compact them. The steps are:
1.
 The sequence b that can be compacted with the sequence a is
activated with the similarity function f;

f ða,bÞ ¼
1 if

Pn
i ¼ 1 mðai,biÞPn
i ¼ 1 mðai,aiÞ

ZY,

0 otherwise,

8><
>:

where n is the minimal length between the sequences a and b,
and Y is a threshold or similarity factor, with value 0.4 in this
particular case.
2.
 The similar sequences are compacted and will be derived by a
single nonterminal symbol. The remaining nonterminal sym-
bol should be replaced by the previous one in all the right
parts of the rules.
3.
 Repeat the previous steps until there are no similar sequences.

For example, for the language Læ:
The rules dod and aAc are not similar since f ðdod,aAcÞ ¼ 0

since
P

mðdod,aAcÞP
mðdod,dodÞ

¼
�10�2�11

23þ20þ23
¼�0:35

is not greater than 0.40.
Nevertheless, the rules dod and doF are similar since,

P
mðdod,doFÞP
mðdod,dodÞ

¼
23þ20�6

23þ20þ23
¼

37

66
¼ 0:56:

This way, the generated rules are simplified and compacted
iteratively (Figs. 6 and 7) until a grammar G0æ is built. The
grammar G0æ is described in Table 4. The system forms new
grammar rules from repeated sequences, and also merges rules



Table 5
similarity matrix M.

a b c d e f . . .

a 0 1 2 3 4 5 . . .

b 0 1 2 3 4 . . .

c 0 1 2 3 . . .

d 0 2 3 . . .

e 0 1 . . .

f 0 . . .

.. . . .

Table 4

The generated grammar G0æ .

G0æ ¼ ðN
0 ,T 0 ,P0 ,S0Þ

N 0 ¼ fS,R,E,D,B,A,d,b,o,a,cg

T 0 ¼ f0,1,þ ,n,ð,Þg

P 0 : S-R9E9D9B9A9d
R-DoA

E-Cd9CB9CE9CA9CD

D-BoB9BoE9BoD

C-Ao

B-aAC9adc

A-dod9doB

d-bþ

b-091

o-þ9n
a-ð

c-Þ

S0 ¼ S

Fig. 8. Simplification and compaction of the production rules generated.
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to generalize grammars, because they expect a set of sentences
drawn from a language, rather than a single long sequence, so
that the existence of sequences produced by the grammar that are
not part of the input sequences does not affect the grammar
generation. The study by Stolcke and Omohundro [34] indicates
that the performance of GI algorithms is measured by their ability
to accept test sentences from the language, and to reject new
sentences that are not in the target languages.

5.3. Automatic generation of syntactic categories

Considering language Læ as a data source (corpus) and also
supposing that we do not know the syntactic categories, the
algorithm must assume that language Læ is coded with as many
symbols as words are in the language.

The proposed algorithm can be summarized as follows:

Algorithm 2. Automatic discovery of syntactic category.

1: Input: a corpus
2: Output: syntactic category
3: for all corpus do
4: initialize a similarity matrixM.

The matrixM shows the similarity values between initial
codes, depending on the generation order (see Table 5).

5: replace all the consecutive symbols by only one.
6: let A be the subsequence with the highest frequency and

the highest size possible.
7: find each subsequence A.
8: where
9: the size is calculated for each symbol between 1 and

Minð9A9,3Þ,

10: 9A9 is the number of symbols si of A,

11: fA ¼
1

quant

Pquant
i ¼ 1

Asi
n9A9
si

is the frequency of A,

12: quant is the number of sentences of the language,

13: 9s9 is the symbol number of each sentence.

14: if the frequency of A5Y then
15: End
16: else
17: join the symbols generated consecutively, the highest

frequency subsequences with the lowest frequency
subsequences.

18: for all A sequences find all similar subsequences,
(B,C, . . . , and so on).

19: With the subsequences A,B,C, . . . , make multiplex
alignments among them to find a consensus
sequence X.

20: if A¼ab B¼ac X¼ab then
21: join the symbols of c with the symbols of b and replace

all the appearances of c by b in the coded language.
22: end if
23: if A¼abc B¼acd C¼abe X¼abd then
24: join the symbols of c and e with the symbols of d and

replace all the appearances of c and e by d in the coded
language, as in [29].

25: end if
26: end if
27: end for

The automatic generation of syntactic categories method was
applied to language Læ of arithmetic expressions, and the steps
carried out can be seen in Fig. 9.

At the beginning the language was coded with six symbols a, b,
c, d, e and f; there are as many symbols coded as different symbols
in the language. Each symbol is the tag of the syntactic category
that has a single symbol. Later, aþ consecutive patterns be
replaced by a, and all the b by a (because the most frequent
element is a). We find aca sequences and ada sequences to align
them, then we infer the union of the elements of the syntactic
category d and the syntactic category c and replace the symbol d



Fig. 9. Automatic generation of syntactic categories method.
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in the language by c. Finally four syntactic categories are created
which are labeled with the symbols a, c, e and f.
6. Practical results using GAS 1.0

GAS 1.0 by López [23] provides a basis to create new compo-
nents in application fields possibly different from the traditional
ones, more precisely in data mining for the discovery of biological
data. With this goal in mind, languages like Læ created with
grammar G0æ were considered for automatic design methods to
generate analyzers and/or language translators that can facilitate
this task of parsing a string. In this respect, we used the compiler
generator GAS 1.0 to automatically generate a scanner and a
parser for the language specification. Taking as input the gram-
mar specification G0æ, the syntactic analysis tables are created,
giving as a result a Decorated Abstract Syntax Tree (DAST), or the
syntactic error. The DAST reflects the grammar rules applied and
gives a kind of structural description of grammatical features in
the input string, exactly the kind of output that is desired in
describing certain biological sequence data [31]. We used a
measurement of complexity of the structure of the grammars
that will provide a method to evaluate the syntactic framework of
the grammars G0æ. The definition of the measurement comes from
the concepts described by López [23], which will be used in the
objective evaluation of the quality of the grammars:
�
 Number of nonterminals: This allows the size of a CFG to be
measured, by applying a fine degree metric whose use in the
evaluation of the complexity of programs is focused on the
number of procedures.

�
 Cyclomatic complexity: Defined by Pressman [28] and Wallace

[35], McCabe’s complexity, or the cyclomatic complexity V of a
flow graph G, is defined. This complexity is defined as follows:

VðGÞ ¼ A�Nþ2

where A is the number of edges of the flow graph and N the
number of nodes.

These metrics have been implemented in the tool. The measurement
of the number of nonterminal elements is trivial. With regard to the
cyclomatic complexity, in order to facilitate its understanding the
associated graph is constructed. Our approach confirms the idea that
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the grammar complexity has been applied successfully. It also
confirms the effectiveness of the proposed method. For example, for
the grammars G0æ, the complexity is on the order of 9, which
represents the minimum of all complexity of the sequences com-
puted. Its high values confirm that the obtained grammars are good,
and they can offer the best results for the analysis of biosequences,
providing sufficient discrimination.

We propose a different practical approach in this paper to the
problem of GI, which, to the best of our knowledge, has not been
discussed in the literature before. As a first step, we apply the
incremental discovery of sequential patterns to obtain simplified
production rules, and these are compacted with bioinformatics
criteria to make up a grammar. Then, we apply a measurement of
the complexity of the structure of the grammar which will be
used in the objective evaluation of the quality of the grammar.
We argue that this approach could be more beneficial than the
others, as it considers the complexity of the obtained grammar. In
order to evaluate our hypothesis and verify the effectiveness of
the proposed method we compared the complexity. We also
created a new benchmark for comparing and evaluating GI in
heuristic approaches. Therefore, the proposed method can be
used to compare and to evaluate the effectiveness of GI and
empirically performs better than the existing algorithms.
7. Conclusions

In the experiments, a language Læ generated by predetermined
CFG G0æ is considered. But later none of the properties of that grammar
were utilized to generate the set of production rules that then made
up the grammar G0æ. We have proposed a new method of automatic
generation of syntactic categories in a coded language. The approach
can be extended to the processing of data that are believed to have a
grammatical structure that could be automatically generated.

The algorithm can be applied in different fields, and we can
imagine finding something similar for the analysis of biose-
quences or for the natural languages. The IDE attenuates the
complexity of the design of the grammar specification, improves
the quality of the obtained product and sensibly diminishes the
development time and cost. We have tried to reduce the learning
time for nonexpert users in the area of compiler generation. The
tool allows the complexity of the obtained grammar to be
measured automatically from textual data and thus permits
verification of the effectiveness of the proposed method.
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