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1. Introduction

Attaching a semantic meaning to human actions occurring in
video streams is useful in different situations. Detecting a crowd
running away of a building can be a sign of something having gone
wrong inside. An elderly person detected lying on the floor in a
room suggests that he may have suffered an accident and needs
attention. In both cases, an alarm can be automatically raised to the
emergency services to require their presence. Beyond surveillance,
human actions can be used to interact with automated systems.
Playing video games using realistic body gestures or automatically
adjusting the lighting of a room when somebody is detected reading
are just a couple of such interactions.

The wide variety of applications of human action recognition 
has brought the field into the focus of computer vision research-
ers for the past two decades. Recently published surveys in the 
area give an idea of the progress made over this time [1–3]. There 
has been an evolution from the single view systems used in the 
early days [4–6] to the multiple view setups currently being 
deployed [7–10]. Multiple view systems have exploited multiple 
view geometry to overcome the main weaknesses of the single 
d viewpoint invariance.

n recognition systems 
ome low level image 
ach view to extract 2D 
features such as a silhouette [7] or body limb segmentation [11] of 
the monitored human being. These features are then projected into a 
common scene model to generate a 3D human representation, such 
as visual hulls [7] or body limb configurations [11].

While these approaches have shown high accuracy in human 
action recognition tasks, they suffer from some drawbacks [9,12]:
1.
 Need for camera calibration: The usual human action recognition 
procedure is to project the perceived views into a common 
representation of the scene. Camera calibration parameters are 
necessary in order to project the recovered 2D features into a 3D 
scene model [13]. These requirements are an obstacle to system 
deployment, because calibration parameters have to be recov-
ered every time a new camera is added or its position changes 
(maybe accidentally), which is taxing.
2.
 Centralized processing: It is common practice in existing
approaches to send the features detected at the camera nodes
to a central server, where the action recognition is performed in a
common scene model. The server usually accounts for most of
the computational requirements of the system, its performance
degrades as the number of cameras increases. To make the
system scalable, the amount of resources that have to be
allocated to the central server when a new camera is added
should be minimized or, at least, bounded. The projection and
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matching of the 2D features in the 3D scene model is one of the
most load-demanding tasks to be performed. A possible way to
avoid this is to embed part of the action classification into the
cameras, using 2D pattern recognition to make a classification of
the action for the view. The different view classifications are then
combined using lightweight algorithms to create a single repre-
sentation of what is going on in the scene.
Another reason for avoiding centralized processing is fault toler-
ance. In a centralized processing scheme, the action recognition
process will not work if the central node breaks. The use of a
distributed processing scheme affords fault tolerance, as the
different action recognition steps are performed by different
nodes.
3.
The first step in order to make this decision is to compute an 
action descriptor ft

c AX from the data grabbed from each view c. X 
is the inner product space where the descriptor is defined and 
typically X � RD, although other choices are also possible, for 
example when using histogram descriptors [19]. ft

c must capture
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Fig. 1. Overview of the proposed system.
Bandwidth requirements: As noted earlier, the camera nodes
need to send the computed features to a central server. The
amount of information that has to be sent is correlated with
how much processing is done at each camera. The bandwidth
requirements for sending the acquired raw pixels are greater
than for just sending the extracted foreground, which again
requires more bandwidth than sending segmented body part
locations or just trajectory information. In order to prevent the
saturation of communication channels when new cameras are
added to the system, it is important to reduce the amount of
information exchanged by the nodes, while retaining the
utmost informativeness about what is going on. Posterior
probabilities may be a compact way of reducing the trans-
mitted information without so much loss.

Hybrid Artificial Intelligence systems [14–16] combine differ-
ent kinds of techniques to efficiently solve a wide variety of real 
world problems. In this paper we propose a system for the 
classification of human actions perceived from multiple view-
points without performing any explicit 3D reconstruction, 
exploiting the synergies between probabilistic reasoning and 
image understanding. 2D features characterizing human motion 
are extracted for each view of the scene. The features are 
introduced into a probabilistic classifier to create a posterior 
distribution on the performed action. A central server gathers 
the posterior distributions for all the views and combines them 
into a single posterior for the action. Finally, a dynamic Bayesian 
network (DBN) is used to model the uncertainty of the temporal 
evolution of the single frame posteriors. This DBN is used to 
classify the test action sequences entered into the system. To test 
the performance of the proposed system, it will be trained using 
action sequences grabbed from different synchronized views of 
the scene. Then, new action sequences are presented to the 
system and the ratio of correctly classified sequences is taken as 
the quality measure. With the proposed approach, we are able to 
outdo some of the drawbacks of other distributed multi-camera 
human action recognition systems [12,17,18], that assume a 
constant number of cameras in the system or do not handle the 
uncertainty in the classification in a proper way.

This paper is an extended version of the work presented in [8]. 
The fusion algorithms presented there are now described in the 
context of an architecture for the distributed recognition of human 
actions, and a more extensive validation of them is provided.

1.1. Contributions

The main contributions of this paper is a hierarchical discri-
minative system for the recognition of human actions from
multiple cameras. Different feature descriptors, classifiers, classi-
fier fusion algorithms and sequence models can be instantiated
for the different system levels, choosing the most appropriate one
for the action recognition task to be performed. The proposed
system achieves an accuracy similar to state-of-the-art 3D
methods when applied to the IXMAS dataset classification, using
only standard pattern recognition techniques applied at each of
the available views and combining the results of the local
classifications.

1.2. Paper organization

The paper is organized as follows. Section 2 illustrates the 
components of the proposed system. In Section 3, the methods 
used to process the images grabbed from each camera are 
introduced. In Section 4, the algorithms used to combine the 
results of the local processing are presented. Section 5 describes 
the sequence classification algorithm used in the system. In 
Section 6, the system is tested on the IXMAS dataset, and the 
results are shown and discussed. In Section 7, the state of the art 
on view-invariant action recognition is reviewed. Finally, Section 8 
presents the conclusions of this research.
2. System overview

Fig. 1 illustrates the proposed multi-camera action recognition 
architecture. C different cameras observe a scene from different 
viewpoints. It is assumed that there is only a single individual in the 
scene. This way, we can ignore data for tracking association 
problems. Without loss of generality, it is also assumed that all C 
cameras always have a perception of the individual in the scene, 
although the number of cameras observing the individual may be 
different at every instant t. This should simplify ongoing formula-

tions. The goal of the system is to select the action a performed by 
the individual from a set of N predefined actions A ¼ ða1, . . .  ,aNÞ 
known a priori given a set of image sequences fIðx,y,tÞcg, 1rtrT , 
1rcrC, of length  T simultaneously acquired by the C cameras 
observing the scene.
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enough variability in the data to be able to differentiate the actions
in A. Another desirable property is that X should be compact in
order to overcome the problems caused by the curse of dimension-

ality. Manifold learning techniques can be employed to project the
original descriptors into a more compact subspace, if necessary.

Once an action descriptor fc
t has been obtained, a probabilistic

classifier is used to create a posterior probability distribution on
the performed action given the observed descriptor, pðai9f c

t Þ, aiAA,PN
i ¼ 1 pðai9f c

t Þ ¼ 1. This posterior probability distribution measures
the uncertainty of the observed descriptors of being an instance of
each one of the categories.

The posterior probability distributions computed for each one of
the C views of the scene are combined using a classifier fusion
algorithm, generating a posterior distribution pðat9f 1

t . . . f
C
t Þ on the

action performed given the descriptor computed by the different
views.

Finally, the posterior probability distributions created at each
instant t are entered into a sequence classifier to generate a single
posterior distribution on the performed action given the observa-
tion sequence pða9f 1

1 . . . f
C
T Þ. This distribution will be finally used to

predict the action of the observed individual.
This architecture distributes the decision making process

across multiple nodes. Each node processes the image grabbed
from each camera, and makes a partial decision on the action
using the information contained just in that image. A central node
then grabs the decisions taken by each node and combines them
to make the final decision on the performed action. One advan-
tage of this approach is that if a camera breaks the action
recognition decision can still be made, as the central node would
be still collecting the decisions made by the other nodes. Other
advantage is that the computational resources needed to process
the image sequences are allocated across different nodes, redu-
cing the amount of resources needed at the central node.

A possible alternative way of structuring the system would be to
first classify each sequence at each camera and then sending just
one posterior distribution to the central node, as in [12]. However,
we are interested in performing frame by frame action segmentation
at the central node in the future, assuming different actions happen
on the input sequences. If the system would be structured in such
way it would be more difficult to make this extension.
concatenated into 216-d vector. Lastly, a principal component 
analysis (PCA) reduction of the surrounding past and future vectors 
is appended to finally generate a descriptor of DTRAN¼286 dimen-
sions. Readers are referred to [21] for more details.

3.2. Dimensionality reduction

The action descriptors just introduced have a large dimension-
ality (DTRAN¼286, DMHI¼700) and need to be projected into a 
lower dimensional space in order to prevent the problems derived 
from ‘‘the curse of dimensionality’’. There is a large corpus of 
dimensionality reduction techniques suitable for solving this 
problem (see [22] for a recent survey).

Dimensionality reduction techniques can be divided in two
major subgroups: (1) unsupervised dimensionality reduction,
whose objective is to project the data to a lower dimension
where their variance is maximized and (2) supervised dimension-
ality reduction, also called discriminant analysis, whose objective
is to project the data to a lower dimension where the separation
between the different categories of the data is maximized.

As the purpose of this paper is to introduce a general system for
the recognition of actions, only the simplest technique of each group
will be tested. Principal component analysis (PCA) is the standard
unsupervised dimensionality reduction technique and projects the
3. Single view processing

3.1. Human action representation

The first step in the proposed architecture is to compute a
descriptor to capture the variability of the input images. Two
different action descriptors will be tested in our system.

3.1.1. Motion history image
The motion history image (MHI), introduced by Bobick and 

Davies [20], is an appearance descriptor that has been widely used 
for the recognition of human actions. It recursively accumu-lates 
the silhouettes of the moving person up to the current frame. It is 
used in the system as it is the best example of a descriptor 
incorporating temporal information while providing a framewise 
output. Let D(x,y,t) be a binary image representing the silhouette of 
the observed person at time t. A MHI z is recursively defined as

zðx,y,tÞ ¼

255,

Dðx,y,tÞ ¼ 1,

maxðzðx,y,t�1Þ�r,0Þ,

Dðx,y,tÞ ¼ 0,

8>>>><
>>>>:

ð1Þ
where r is a parameter that adjusts the amount of time the
presence of the silhouette in a given pixel is remembered. A
higher value of r implies a shorter memory. The bounding box of 
the observed person in the MHI is tracked across frames, and 
resized to a 35 � 20 box. The resulting pixels are concatenated to 
generate a descriptor with DMHI¼700 dimensions. An example 
MHI image is shown on Fig. 2.
3.1.2. Tran’s descriptor
Tran et al. [21] proposed a frame descriptor combining optical flow 

and appearance. It is used in the system because it has shown a high 
experimental performance. The bounding box of a human being is 
normalized to a square box, from which human shape and optical flow 
are computed. Vertical and horizontal planes of the optical flow are 
split and blurred. A radial histogram is computed over each of the 
optical flow planes and the shape. The three histograms are 

Fig. 2. Motion history image.
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Fig. 3. Plate model of the Bayesian network used to combine the outputs from the

classifiers at each camera.
data points into a lower dimensional subspace where the variance of 
the training data is maximized. Linear discriminant analysis (LDA) 
finds projective directions by maximizing the ratio of between-class 
scatter to within-class scatter. Both methods have been used many 
times in image processing tasks, the most notable being face 
classification [23,24]. Readers are referred to any pattern recognition 
book, such as [25], for more details.

3.3. Action classification

cThe action descriptor ft computed at each frame will be 
introduced into a probabilistic classifier in order to generate the 
posterior probabilities of the performed action given the evidence 
grabbed at that instant. Examples of suitable classifiers are 
mixtures of Gaussians [26] or conditional random fields [27]. A 
support vector machine or a C4.5 tree would be invalid classifiers, 
as they do not provide a calibrated output suitable for conversion 
into a posterior probability.

We have chosen a parametric (k-means þ naive Bayes) and a
non-parametric (nearest neighbor conditional density estimator)
density estimator to test our system. The parametric splits the
feature space in different regions, estimating the conditional prob-
abilities of each class at each region. The non-parametric estimates
the conditional probabilities of each class according to the neigh-
bourhood of a test point. This way the possibility of using a local or a
global approach to classification is incorporated to the system.

3.3.1. Nearest neighbor conditional density estimator
The nearest neighbor conditional density estimator (kNN) [25]

is a well-known non-parametric conditional density estimator. 
The estimator locally captures the conditional density around a 
given test point x. Let K be a fixed neighborhood size and Ki,P

iKi ¼ K the number of neighbors of class ai

pðx9aiÞ ¼
Ki

K
: ð2Þ

3.3.2. K-means þ naive Bayes

The space of feature descriptors fc
t will be quantified using a

codebook of size K. Each feature vector will be associated with its
nearest center to obtain the word wk. Codebook centers are
computed using the k-means algorithm.

pðwk9aiÞ ¼
pðai9wkÞpðwkÞ

pðaiÞ
: ð3Þ

4. Action fusion

After extracting a set of posterior probability distributions
pðac

t 9f
c
t Þ from the frame descriptor fc

t computed for each view, they
have to be combined to generate a joint posterior probability
distribution pðat9f 1

t , . . . ,f C
t Þ representing the uncertainty in the

classification with respect to the evidence perceived by the
different cameras at an instant t.

Two different algorithms will be tested for this task. The first is
a voting scheme. The second is a Bayesian network modeling the
errors in local classifications.

4.1. Voting

The first algorithm that we tested for the fusion of single view
soft classifications is defined as the product of the posterior
probabilities:

pðat9f 1
t , . . . ,f C

t Þp
YC

c ¼ 1

pðac9f c
t Þ: ð4Þ
This algorithm is tested as baseline to measure the efficiency
of the bayesian network.

4.2. Bayesian network

The second algorithm that we tested for the fusion of single
view soft classifications is based on the Bayesian network shown
in Fig. 3. The network is composed of observation nodes 
ft

c, representing the observation at instant t and camera c, a 
node

c

      at representing the activity at time t and a set of latent nodes
at to model the single view classification.

Given a set of frame descriptors ft ¼ f 1
t , . . . ,f C

t , a set of latent
variables at ¼ a1

t , . . . ,aC
t , and the activity label at , their joint

probability is factorized as

Pðat ,at ,ftÞ ¼ Pðat9atÞPðat9ftÞPðftÞ: ð5Þ

The conditional probability given ft is then:

Pðat ,at9ftÞ ¼
Pðat ,at ,ftÞ

PðftÞ
¼ Pðat9atÞPðat9ftÞ: ð6Þ

The probability Pðat ,at ,ftÞ is defined as a product of indepen-
dent factors, assuming hidden variables ac

t to be independent:

Pðat9atÞ6
YC

c ¼ 1

Pðat9ac
t Þ: ð7Þ

With this assumption we rule out modeling correlations
between local classification errors. In this way, this assumption
reduces to two the exponential number of probability distribu-
tions that would otherwise need to be estimated. Thus, Eq. (6) can
be rewritten as

Pðat ,at9ftÞ ¼
YC

c ¼ 1

pðat9ac
t Þpða

c
t 9f

c
t Þ: ð8Þ

Marginalizing over ac
t:

Pðat9ftÞ ¼
YC

c ¼ 1

X
ac

pðat9ac
t Þpða

c
t Þpðf

c
t 9a

c
t Þ: ð9Þ

Bayesian network parameters are estimated using labeled
training samples. pðac

t 9f
c
t Þ is known, being provided by the single

view soft classifiers, so only pðat9at
cÞ needs to be estimated. Let

Oc ¼ ðoc
1, . . . ,oc

Kg be the set of K training frame descriptors com-
puted at camera c with their respective activity labels
Yc ¼ fyc

1, . . . ,yc
Kg, yc

kAA. Model parameters are estimated as

pðat ¼ ai9a
c
t ¼ ajÞ ¼

PK
k ¼ 1 gkpðac

t ¼ aj9oc
kÞPN

l ¼ 1

PK
k ¼ 1 gkpðac

t ¼ al9oc
kÞ

, ð10Þ

where gk ¼ 1 if yk¼aj and gk ¼ 0 otherwise.
5. Sequence classification

Human actions are not isolated occurrences, they happen in
sequence. By this time, the reader will probably have noted the t

subscript in our formulation. The method proposed until now
4



Fig. 4. Dynamic Bayesian network for sequence classification.

Fig. 5. The kick action in the IXMAS dataset from the five available views:

(a) Camera 1, (b) Camera 2, (c) Camera 3, (d) Camera 4 and (e) Camera 5.
considers individual frame descriptors, but ignores sequence
dynamics. So, given a sequence of frame descriptors computed
at each camera F ¼ ff 1

1 , . . . ,f C
1 , . . . ,f 1

T , . . . ,f C
T g, we need to associate it

with their respective activity a, assuming that there is only one
activity performed in the sequence. The sequence length T is not
needed to be the same for all sequences.

In this paper a discriminative Hidden Markov Model (HMM)
[28] is employed for this task. The probability of a path of hidden

node values H¼ a1, . . . ,aT given an action class a and an observed
sequence F is defined as

pðH9F,aÞ ¼ pða19aÞpða19f
1
1 . . . f

C
1 Þ
YT

t ¼ 2

pðat9at�1,aÞpðat9f 1
t . . . f

C
t Þ,

ð11Þ

where pðat9at�1,aÞ is a transition model for each action. This
factorization of the probability distribution is graphically shown
on Fig. 4. The action an performed given a sequence of observed 
actions F is

an ¼ arg max
a

pða9FÞ, ð12Þ

where pða9FÞ is defined as

pða9FÞp
X
aT

pðaT9F,aÞpðaÞ: ð13Þ

The above quantity can be recursively estimated using the 
standard forward-backward procedure [28].

The parameters of the model, pða19aÞ and pðat9at�1,aÞ, can be
estimated from labeled training samples in a similar way as for the

Bayesian network in Section 4.2. Weassumeauniform prior on p(α).
6. Experiments

6.1. Experimental setup

Experiments with different instantiations of the proposed 
system will be conducted using IXMAS: INRIA Xmas Motion 
Acquisition Sequences [7]. IXMAS is composed of 36 clips recorded 
by five different cameras in which 12 different actors perform 14 
different activities at least three times each. Sample frames are 
shown in Fig. 5. Only the 11 activities tested in [7] will be used. 
The frame descriptor proposed by Tran et al. [21] has been 
downloaded from their web page.1 The MHI has been extracted 
from the dataset using a parameter of s ¼ 10. The code of our 
system is available online.2
1 http://vision.cs.uiuc.edu/projects/activity/
2 http://www.giaa.inf.uc3m.es/miembros/rodri/
Two different evaluation protocols will be used to evaluate the
system: Leave-One-Sequence-Out (LOSO-CV) Cross-Validation and
Leave-One-Actor-Out Cross-Validation (LOAO-CV). LOSO-CV trains
the system using all the clips in the dataset except one, that is used
for validation. The process is repeated until all the clips have been
used for validation once. LOAO-CV trains the system using the clips
of all the actors except one, that is used for validation, and repeating
the process until every actor in the system has been used for
validation. LOAO-CV is a harder evaluation protocol than LOSO-CV,
aiming to study how the system performance is expected to degrade
when it observes an unknown actor.

PCA and LDA are used to project the frame descriptors into a
lower dimensional subspace. In the case of PCA, it has been tested
for d¼{10, 15, 20, 25, 30, 35, 40, 45}.

The size of the codebook used in the BN classifier has been
experimentally adjusted to k¼300 words. The k-NN density
estimators will be tested using k¼3, k¼5 and k¼7 neighbors.

A different dimensionality reducer and classifier is trained for
each camera in the system, with the images that they grabbed.
Classifier fusion and sequence classifiers are then run on the
results provided by these classifiers.

In order to compare the different system setups to be tested,
we compute the accuracy in the classification as the performance
criteria. The accuracy is defined as the ratio between the number
of correctly classified samples with respect to the total number of
samples presented to the system for validation.
5



6.2. Results

6.2.1. Single camera classification
Table 1 shows the accuracy of the single frame classifiers. 

Irrespective of the frame descriptors used, the results reported for 
cameras 1–4 are quite similar, whereas the accuracy drops by 
around 10% for camera 5.

Classifiers trained using Tran’s descriptor generally provide
better results than those trained with the MHI descriptor. Addi-
tionally, the accuracy of Tran’s descriptors increases with the
dimensionality of the PCA projection, whereas it appears to reach
saturation point and even decrease in the case of MHI descriptors.
In the case of MHI descriptors, the LDA projection always results
in worse accuracy than PCA, whereas accuracy is better when
combined with the BN classifier in the case of Tran’s descriptor.

Regarding the classification algorithms employed, k-NN algo-
rithms are more accurate than the BN algorithm for almost all the
choices of descriptor and projection algorithm. As regards the
Table 1
Results obtained after single camera classification of the IXMAS dataset.

Descriptor Tran’s

Classifier

Camera Reducer 3-NN 5-NN 7-NN

1 PCA10 00.4258 0.4283 0.4499

PCA15 00.435 0.471 0.4882

PCA20 00.4477 0.4867 0.5029

PCA25 00.4494 0.5013 0.5162

PCA30 00.4549 0.5073 0.5239

PCA35 00.4574 0.5196 0.5303

PCA40 00.4595 0.5228 0.5324

PCA45 00.4615 0.5259 0.5408

LDA 00.4809 0.4654 0.4859

2 PCA10 00.4142 0.4147 0.4341

PCA15 00.435 0.4631 0.4783

PCA20 00.4415 0.4801 0.501

PCA25 00.4564 0.4986 0.5154

PCA30 00.4595 0.5141 0.53

PCA35 00.4621 0.5216 0.5357

PCA40 00.4722 0.531 0.5421

PCA45 00.4719 0.5304 0.5456

LDA 00.4886 0.4772 0.499

3 PCA10 00.4236 0.4478 0.4652

PCA15 00.4659 0.5066 0.5203

PCA20 0.4699 0.5231 0.5388

PCA25 0.4726 0.5324 0.5466

PCA30 0.4713 0.5436 0.5505

PCA35 0.4767 0.5446 0.5568

PCA40 0.4677 0.5481 0.5577

PCA45 0.4692 0.5491 0.5608

LDA 0.4722 0.459 0.4828

4 PCA10 0.4301 0.4274 0.449

PCA15 0.4461 0.4692 0.4904

PCA20 0.4648 0.493 0.5107

PCA25 0.4772 0.5214 0.5338

PCA30 0.4828 0.5307 0.5414

PCA35 0.482 0.5346 0.5503

PCA40 0.4824 0.5372 0.5531

PCA45 0.4836 0.5398 0.5544

LDA 0.5033 0.4965 0.5195

5 PCA10 0.3708 0.3987 0.4202

PCA15 0.3614 0.4211 0.4398

PCA20 0.3658 0.4337 0.4488

PCA25 0.3563 0.4387 0.4511

PCA30 0.3696 0.4471 0.4579

PCA35 0.3606 0.4464 0.457

PCA40 0.3724 0.4506 0.4584

PCA45 0.3711 0.4583 0.4638

LDA 0.3354 0.3155 0.341
choice of the number of neighbors to use, 7-NN was found to
return better results than 3-NN and 5-NN, but the difference is
not substantial.

6.2.2. Classifier fusion
Table 2 shows the accuracies achieved after applying the classifier 

fusion algorithms to the posterior distribution generated from each 
camera. We find that whereas the voting whereas the algorithm 
always improves the accuracy of the BN classifiers at least a little, this 
is not the case for the k-NN classifiers, where the final accuracy is 
always worse than for the best single view classifier. However, the 
accuracy provided by the BN algorithm is always better than the best 
single view classifier by about 10–20%.

6.2.3. Sequence classification
Finally, the results for sequence classification are shown in 

Table 3. The accuracy improvement is notable when compared 
with frame-by-frame classification.
MHI

NB 3-NN 5-NN 7-NN NB

0.4575 0.4315 0.4337 0.4489 0.4574

0.4947 0.4511 0.4691 0.4781 0.4846

0.5121 0.4566 0.4798 0.488 0.4921

0.5169 0.4559 0.4839 0.4961 0.5063

0.527 0.4577 0.4892 0.5012 0.5045

0.5344 0.458 0.4989 0.5044 0.5084

0.5363 0.4595 0.4972 0.5045 0.51

0.5432 0.4465 0.4993 0.5042 0.5098

0.4953 0.4307 0.425 0.4382 0.4426

0.443 0.4438 0.4593 0.4743 0.4835

0.4815 0.4754 0.5168 0.528 0.534

0.5042 0.4902 0.5213 0.5273 0.5359

0.5198 0.4896 0.5306 0.5399 0.5441

0.5359 0.4817 0.5288 0.5394 0.5461

0.5393 0.4867 0.5341 0.5434 0.548

0.545 0.4821 0.531 0.5423 0.5447

0.5491 0.4684 0.5388 0.5431 0.546

0.5107 0.4528 0.4535 0.4656 0.4707

0.4694 0.4431 0.4508 0.4646 0.4716

0.5255 0.4609 0.499 0.5121 0.5171

0.5411 0.4868 0.5141 0.5279 0.5327

0.5495 0.4731 0.5192 0.53 0.5378

0.5545 0.4626 0.5195 0.528 0.5326

0.5571 0.4627 0.5137 0.5258 0.5337

0.5608 0.4535 0.5238 0.5308 0.5316

0.5612 0.4548 0.5176 0.5237 0.5292

0.4894 0.3944 0.401 0.4135 0.4223

0.4586 0.4468 0.4681 0.4843 0.4893

0.4957 0.4755 0.5013 0.5174 0.524

0.5158 0.4906 0.522 0.5336 0.5432

0.5373 0.4958 0.5299 0.5418 0.5429

0.55 0.4995 0.5287 0.539 0.5439

0.5499 0.4852 0.5307 0.5392 0.5444

0.5571 0.4961 0.5286 0.5438 0.5463

0.5589 0.4821 0.5306 0.5444 0.5472

0.5287 0.4817 0.4889 0.5012 0.5065

0.4329 0.345 0.3628 0.3693 0.3757

0.4477 0.3458 0.3767 0.3862 0.3938

0.455 0.3641 0.3993 0.4093 0.4201

0.4543 0.3651 0.4039 0.4103 0.4157

0.4645 0.3634 0.4004 0.4103 0.4174

0.4604 0.3505 0.4001 0.4088 0.4117

0.4615 0.36 0.3966 0.4071 0.4132

0.4649 0.3434 0.3995 0.4062 0.4092

0.3535 0.2842 0.281 0.2927 0.2991
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Table 2
Accuracy obtained after applying classifier fusion algorithms to the IXMAS dataset.

Descriptor Tran’s MHI

Classifier

Fusion method Reducer 3-NN 5-NN 7-NN NB 3-NN 5-NN 7-NN NB

Bayesian network PCA10 0.5558 0.5818 0.5989 0.6063 0.6033 0.6052 0.6289 0.6376

PCA15 0.5833 0.6254 0.6371 0.6412 0.6272 0.6422 0.6604 0.6701

PCA20 0.5894 0.6475 0.6567 0.6575 0.6424 0.6551 0.6739 0.6821

PCA25 0.5994 0.6581 0.6637 0.6675 0.6482 0.6632 0.6767 0.686

PCA30 0.6057 0.6674 0.674 0.677 0.6379 0.6636 0.6768 0.6858

PCA35 0.6044 0.6705 0.6757 0.6778 0.6429 0.6633 0.6811 0.691

PCA40 0.6073 0.6722 0.6777 0.6826 0.6398 0.6622 0.6803 0.6865

PCA45 0.6035 0.6753 0.6841 0.6851 0.6363 0.6647 0.6773 0.6838

LDA 0.6213 0.6246 0.6371 0.6467 0.591 0.5818 0.5945 0.604

Vote PCA10 0.515 0.4389 0.4889 0.5154 0.5106 0.4033 0.4575 0.4965

PCA15 0.5315 0.4751 0.5239 0.5498 0.5232 0.4323 0.4898 0.5271

PCA20 0.5412 0.4913 0.5359 0.5584 0.5338 0.4551 0.5166 0.552

PCA25 0.5469 0.4991 0.5433 0.5683 0.544 0.4639 0.5203 0.5544

PCA30 0.5478 0.5086 0.5557 0.5785 0.5323 0.4632 0.5125 0.5515

PCA35 0.55 0.5119 0.5534 0.5752 0.5393 0.4605 0.5133 0.5447

PCA40 0.5538 0.5161 0.557 0.5789 0.5336 0.4606 0.5163 0.5448

PCA45 0.5492 0.5211 0.5613 0.5849 0.5301 0.4587 0.5117 0.5439

LDA 0.5433 0.4074 0.468 0.5036 0.4491 0.3451 0.3917 0.4214

Table 3
Accuracy obtained after applying sequence classification algorithm to the IXMAS dataset.

Descriptor Tran’s MHI

Classifier

Fusion method Reducer 3-NN 5-NN 7-NN NB 3-NN 5-NN 7-NN NB

Bayesian network PCA10 0.7327 0.8762 0.8688 0.8515 0.8688 0.7995 0.8144 0.8366

PCA15 0.7723 0.901 0.9059 0.901 0.8812 0.7525 0.8193 0.8342

PCA20 0.7822 0.9158 0.9158 0.9134 0.8886 0.75 0.8243 0.8441

PCA25 0.7995 0.9233 0.9158 0.9233 0.896 0.7426 0.802 0.8218

PCA30 0.8144 0.9257 0.9356 0.9332 0.8936 0.7624 0.8094 0.8366

PCA35 0.8391 0.9307 0.948 0.9406 0.8812 0.745 0.8045 0.8243

PCA40 0.8589 0.9233 0.9356 0.9381 0.8911 0.7475 0.7847 0.8045

PCA45 0.8589 0.9158 0.9455 0.9406 0.8713 0.7351 0.802 0.8119

LDA 0.8837 0.9035 0.9084 0.9059 0.8144 0.7748 0.7896 0.7921

Vote PCA10 0.8243 0.8342 0.8441 0.854 0.7772 0.7252 0.7921 0.7698

PCA15 0.8663 0.8663 0.8762 0.8837 0.7772 0.7054 0.7351 0.7475

PCA20 0.8614 0.8762 0.8762 0.8861 0.7277 0.7178 0.7178 0.7178

PCA25 0.8688 0.8861 0.896 0.8886 0.7797 0.7129 0.6708 0.7228

PCA30 0.8837 0.8812 0.901 0.8985 0.797 0.7005 0.698 0.6683

PCA35 0.8837 0.8713 0.8911 0.9059 0.7475 0.6856 0.703 0.6634

PCA40 0.8985 0.8787 0.8936 0.901 0.7599 0.6634 0.552 0.6188

PCA45 0.8936 0.8985 0.8985 0.8985 0.7574 0.6436 0.6386 0.6139

LDA 0.8762 0.8267 0.8564 0.8787 0.7376 0.6733 0.7277 0.7376
The behavior of the sequence classification algorithm depends
on the origin of the instant classification posteriors that it
combines. When using the output from the BN classifier fusion
algorithm, the result varies slightly with respect to the number of
dimensions used in the frame descriptor for any given classifier.
In the case of k-NN classifiers some overfitting can be observed, as
the final accuracy starts to drop as the dimensionality grows.
When using the voting algorithm, the variation of the results is
greater. While the behavior is similar to BN’s when applied to
Tran’s descriptor, the result quickly overfits when applied to the
MHI descriptor and drops with the dimensionality.

6.3. Discussion

The results reported in Section 6.2 show that Tran’s descriptor 
is better than the MHI descriptor at the task of recognizing the
actions included in the IXMAS dataset. A possible explanation is
that Tran’s descriptor includes appearance and local motion cues,
whereas MHI is based on appearance only. The use of different
cues improves the variability of the descriptor, better capturing
the variance of the action. Note that classifiers using MHI
descriptor start to overfit earlier than classifiers using Tran’s
descriptor when the dimensionality increases. This again suggests
that the content of the Tran’s descriptor is richer than the content
of MHI descriptor: the latter can be compressed to a smaller
number of dimensions than the former.

Another remarkable result is that the use of label information
for dimensionality reduction does not improve the results in most
cases, or at least not significantly. This might be due to the fact
that LDA assumes that each class is unimodal and can be
approximated by a Gaussian distribution, whereas the data
actually used probably do not fit that assumption.
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Table 4
Comparison of the accuracy of the proposed method to other works evaluated

with IXMAS dataset.

Method Protocol Accuracy Type

LOSO 81 2D

LOAO 81.4 Multi-camera

LOSO 93.33 3D

LOSO 94.59 3D

Tran et al. [21] 
Srivastava et al. [12]

Weinland et al. [7] 
Peng et al. [29] 
Our LOSO 94.88 Multi-camera

LOAO 91.3
The BN classifier fusion algorithm has been proved to outper-
form the voting algorithm. The reason is that the BN attaches
different weights to the posteriors produced by each camera,
according to a model of the usual errors in the classification,
whereas the voting algorithm does not use any prior information
about classification accuracy.

The results for sequence classification, when compared to
instant classification, show that actions are not isolated occur-
rences, but happen in sequence. It is not enough to consider just
one instant in order to recognize actions, and, whenever already
available, the past and the future frames have to be employed to
make the decision about what is happening or happened.

When globally examining the results, there is one discouraging
observation: the best algorithm configuration found for one tier of
the system does not guarantee that the best accuracy will be
achieved on the next tier up. We observed many times that the
accuracy given after the classifier fusion by the classifiers with the
best single frame performance is smaller than the reported for
other classifiers with a worse performance at the single frame
level. There are also similar examples of these phenomena
involving the classifier fusion and sequence classification results.
This implies that action recognition systems cannot be con-
structed incrementally in order to find the best configuration, as
the configuration with the best result at the highest level is not
the configuration with the best result at intermediate levels.

Finally, the accuracy of the proposed system is compared to other 
proposals reporting results on the IXMAS dataset. Table 4 compares 
the proposed system to other alternatives. All algorithms are 
deterministic for stored images. To the best of our knowledge, the 
proposed system achieves an accuracy similar to the best reported to 
date [29]. Let us stress that while the best result was based on the 
classifications of the 3D visual hull, this proposal relies on only well-
known simple 2D pattern recognition techniques, without any need 
of recovering camera calibration parameters.
7. Related work

The research considering how to achieve view-invariant action
recognition can be divided into two separate groups: (1) methods
proposing action representations that are invariant to camera
view and (2) methods combining the perceptions from multiple
cameras to take a view-independent decision.

7.1. View-invariant features

The problem of viewpoint action recognition has been studied 
from the geometrical perspective. Rao et al. [30] introduce a 2D 
view- invariant descriptor for 3D point trajectories projected in 
the affine plane. They search the spatio-temporal trajectory 
curvature to find instants of change. Parameswaran and Chellappa 
[31] present 2D and 3D invariants for body pose configurations. 
Gritai et al. [32] propose a metric to compare the trajectories of 
body parts under anthropometric, temporal and viewpoint
transforms. Sheikh et al. [33] approximate the variability in action 
data as a linear combination of different action bases in spatio-
temporal space. The main drawback of these approaches is that 
they assume that an accurate 3D tracking of the body parts is 
available, and this is very difficult to achieve in a real scenario.

Other authors have relied on machine learning techniques to 
create view- invariant action models using only 2D features. 
Martinez-Contreras et al. [34] project motion history images (MHI)
[20] into a subspace that groups viewpoint and movement in a 
principal manifold using Kohonen self-organizing feature maps. The 
winner neuron is used to classify the action being performed using 
HMM smoothing. Tran et al. [21] proposed another approach to 
achieve view invariance, where view-invariant models are learned 
using non-parametric classification from a frame descriptor 
extracted from multiple views including appearance and local 
motion information. The main weakness of these approaches is 
the use of only a single view to predict new actions, as different 
categories may appear similar if they are not observed from the 
appropriate viewpoint.

7.2. Multi-view systems

Traditionally, multi-view systems have projected the silhou-
ettes obtained from the different views into 3D to create a visual 
hull [35] of the observed human being. Then, different action 
descriptors can be extracted from the visual hull. Weinland et al.
[7] extended MHI to 3D, introducing motion history volume 
(MHV). Peng et al. [29] perform a multi-linear analysis of the 
visual hull to create a descriptor of reduced dimensionality that is 
introduced in a HMM. These approaches achieve good recognition 
performance, but visual hull computation requires camera cali-
bration and a lot of centralized processing.

A number of ideas have been proposed to avoid visual hull 
computation. Srivastava et al. [12] compute a histogram over 
quantized spatio-temporal salient points [36] for each view. They 
are then concatenated, and a k-NN classifier is used to decide the 
performed action. Wu et al. [17] and Määttä et al. [18] propose 
different ways to combine 2D descriptors computed from differ-
ent views, but their proposals either assume that there is a 
constant number of cameras observing the view or use the data 
coming from the best one only. Our approach improves their 
proposals as uncertainty is propagated to the upper levels every 
time that they are classified, taking into account the observations 
from all the cameras.
8. Conclusions

This paper has presented a distributed human action recognition
system. 2D descriptors have been extracted for the frames captured
at each one of the available views. They have been projected into a
lower dimensional space and introduced into a probabilistic classi-
fier to generate a posterior probability of the performed action. The
posteriors for the different cameras have been merged using a
classifier fusion algorithm, whose results have been fed into a
sequence classifier to make the final decision on the performed
action. The system has been tested with different algorithms,
exploiting the flexibility provided by the well-defined interfaces
between levels. As result, the system achieves an accuracy similar to
the state-of-the-art of human action recognition algorithms for
classifying the IXMAS dataset.

In the future, we intend to explore the possibility of exploiting 
the well-defined interfaces between the system levels to include 
other types of sensors, such as time-of-flight cameras [37] or 
motion capture devices [38], in order to improve the accuracy of 
the recognition process. Implementing these ideas with a
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multi-agent system, such as the one proposed by Castanedo et al., 
would be another challenging task [39]. Other future line would be 
to test in the system more advanced methods. Authors are 
specially interested in exploring the dimensionality reduction 
literature to find appropriate methods to reduce the high dimen-
sionality of the action descriptors.
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