Fast Training of Support Vector Machines on the Cell Promess

Moreno Marzolla

Dipartimento di Scienze dell'Informazione, UniversiicBablogna (Italy)

Abstract

Support Vector Machines (SVMs) are a widely used techniquelassification, clustering and data analysis. Whileient algo-
rithms for training SVM are available, dealing with largdatsets makes training and classification a computatioohfylenging
problem. In this paper we exploit modern processor archites to improve the training speedldBSVM, a well known imple-
mentation of the Sequential Minimal Optimization algomithWe describ&IBSVMcgg, an optimized version of IBSVM which
takes advantage of the peculiar architecture of the Cel@and Engine. We assess the performantéB8VMcge on real-world
training problems, and we show how this optimization isipatarly effective on large, dense datasets.
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1. Introduction

SVMs are widely used supervised learning methods which K(xi, Xj;a,r,d) = (axiij + r)d, areR,deN (3)
can be employed in many classification tasks (see, e.g.ngl] a
references therein). In this paper we consider the problem @nd the Radial Basis Function (RBF) kernel:
binary classification, wheré&\ data points tfaining se) must

be classified in two classes. K(xi, Xj;y) = exp(—y||xi - xj||2), veR"* 4)

‘ FO";?"_V' I_etijs cor|1\|5|de\1/1<| vectors. |nmd|m§ns:jonglr?piagei A SVM is trained by solving the QP problem (1) using vec-
Xi € A = L., N Vectorx Is assquate wit abel torsx; and the corresponding labsis The solutionx can then
Vi € {-1,1}. The setD = {(xi,y) : i = 1,...,N}is

- R i be used to classify any new point R™ by computing its class
called thetraining set The classification problem is to separate f(2) as: yany P y puling

the two classes with ardimensional surface that maximizes
the margin between them. The separating surface is obtained N
by computing the solutio = [a1,...,an]" of a Quadratic f(2 = sgn(b+ viaiK(x;, z)) (5)
Programming (QP) problem of the form [2]: i=1
where the ffsetb is computed during the training step as well.
N The size of real-world datasets makes the solution of (1)
minimize f(a) = EG’TQ(}' _ Zai (1) using general purpose QP solvers impractical. For this rea-
2 i1 son, dhicient ad-hoc algorithms that take advantage of the

N special structure of (1) have been developed. The Sequen-
subject to Zyiai =0 tial Minimal Optimization (SMO) algorithm, originally pro

i=1 posed by Platt [3], decomposes the original QP problem into

0<ej<C, j=1,...,N two-dimensional subproblems which can be solved analigtica

The idea of SMO is to compute a solution iteratively, by opti-
where the entrie®;; of the symmetric positive semidefinite ma- mizing two codficientsa;, ; at each iteration. SMO isflécient
trix Q are defined as because it does not use a costly numerical QP solver in i&sinn
loop.
Qj = yiyjK(xi. xj), 1L,j=1...,N 2 L?nfortunately, training times are still significant for man
K : R"x R™ - R is a kernel function which depends on the real-world datasets. The reason is that ma@ixan be very
type of the separating surface. Examples are the polynomi&®rge and can not be kept entirely in memory. Thus, the SMO
kernel: algorithm (as well as most of the existing SVM training algo-
rithms) needs to recompute the valu@s many times, which
in turn require many evaluations of the kernel function.
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features of the Cell Broadband Engine (CBE), an asymmetridecomposes the original QP problem in larger subproblems
multi-core processor architecture originally developedthe  which are be solved on a cluster of workstations using MPI.
consumer market (it is used inside Sony’s PlaySt&@&i8rfPS3)  In [9] the author shows how the CBE can be used to speed up
gaming console), but which is also used on high-end seraerst the PGPDT solution technique.
geted at scientific computations. The Cell processor iresad An hybrid algorithm using both MPI and OpenMP compiler
conventional core based on the PowerPC architecture teget extensions is used in [10] to train linear SVMs. The authses u
with specialized vector co-processors called SynergRta  an interior point method for solving the optimization preii;
cessor Elements (SPEs)LIBSVMcge splits the evaluation of  training is performed on a cluster of multiprocessor magin
the elements of matriQ across the SPEs; an optimized, Single-MPI is used to distribute data amongst the processors, while
Instruction Multiple-Data (SIMD) algorithm for computirtge  efficient OpenMP BLAS implementations are used within each
dot product of two vectors is used inside each SPE, so that theode to speed up local computations.
evaluation of kernel functions is very fast. In [11] the authors propose Parallel SVM (PSVM), a parallel
LIBSVMcge is based o IBSVM [4], an dficient and widely — approximation technique for SVM training and classificatio
used implementing the SMO algorithidBSVM employs sev- PSVM is based on an incomplete Cholesky factorization, whic
eral heuristics to reduce the training time, such astitenking  greatly reduces both the memory requirement and the computa
heuristicwhich dynamically reduces the set of ¢beients to be  tion time on each node. It must be observed that PSVM is based
optimized, and a caching strategy to avoid recomputatibriso  on an approximation technique, so it is slightly less adeura
cently used entries of matri®; still, evaluation of elementQ;;  than the other parallel SVM implementations described abov
is the bottleneck oEIBSVM. LIBSVMcge improves that bottle-  Another recent parallel approximate training and classifio
neck by dfloading the computation d@ to the vector copro- algorithm is P-packSVM [12]. P-packSVM uses a stochastic
cessors. We tesBSVMcge on several real-world datasets and gradient descent method, and employs a packing strategy to r
show how this optimization yields significant speedups ¢iver  duce multiple iterations on a single one in order to reduee th
sequential algorithm. Our optimization is very generatidaesse  communication costs.
it can be applied to any SVM training and classification pack- \We observe that the CBE architecture is remarkably dif-
age which relies on multiple evaluations of the kernel fioret  ferent from both conventional clusters of workstationsd an
from GPUs. A cluster of workstations is made of a large

. . DS > number of nodes, where each node is equipped with a pow-
lows. In Section 2 we revise some of the existing parallétize. o, cPU and a large amount of RAM; however, inter-node

strategies for training SVMs. In Section 3 we describe th&BM . mmunications are orders of magnitude slower than compu-
algorithm. In Section 4 we give a brief overview of the archi- iations. A GPU. on the other hand. contains a large number

tecture of the Cell processor, and then pres#BSVMcee, @ of simple cores connected with a very aggressive memory sub-
Cell-optimized version of th&IBSVM software package. In  gysiem. The CBE contains a single general-purpose CPU core
Section 5 we evaluatelBSVMcge on some training datasets. connected with a limited number of independent vector copro
Finally, conclusions and future works are illustrated ircSe og50rs called SPEs. Therefore, for each of these aralriésct
tion 6. We include some implementation details in Appendix;; g necessary to use ad-hoc algorithmic strategies tceaehi
A. good performance and scalability. To the best of our knowl-
edge, no previous attempt has been made to optimize the SMO
2. Related Work algorithm for the CBE architecture. The SMO algorithm is at-

tractive because it is widely used in practice and many good
There have been several attempts to optimize the trainingpen source implementations exist.

and classification times of SVMs, by considering parallel ap
proaches to the solution of the QP (1).
In [5] the authors describe an optimized version of SMO3. The SMO Algorithm
which makes use of Graphics Processing Units (GPUs). Mod-
ern GPUs can be considered as specialized highly paraiel pr  Sequential Minimal Optimization is sketched in Algorithm 1
cessors, containing a large number (hundreds, or even tho(see [13] for a more detailed description). Algorithm 1 irdes
sands) of relatively simple processing cores connectettipha  the main loop which is used to optimize two ¢beientsa;, o
bandwidth memory subsystem. This kind of architecture isat each iteration. The selection of the indgkis a crucial task,
quite diferent from the CBE, as the latter includes a limitedas itinfluences the convergence spdgB8SVM uses thesecond
number of more powerful processing elements, each one haerder heuristicoroposed in [13], shown in Algorithm 2.
ing access to a small (but very fast) local store. We observe that Algorithm 1 requires multiple evaluations
A version of SMO for parallel machines using the Messageof rows of matrixQ (we underlined the pseudocode statements
Passing Interface (MPI) library is described in [6]. In [TH8e  whereQ is used). For realistic training set®, is too large to
authors propose a parallel training and classificationrdlgn ~ be stored in memory, so it is necessary to evaluate its elesmen
for large quadratic programs which is based on the Paratkel G as they are needed. One optimization is to keep a cache of
dient Projection-based Decomposition Technique (PGPDT )patrtially filled) rows ofQ which have been recently computed,
Instead of optimizing two variables at each iteration, PGPD so that unnecessary evaluations can be avoided. Despte thi

2

Organization of this paperThis paper is organized as fol-



Algorithm 1 Sequential Minimal Optimization

T:=1e-12
forali:=1,...,Ndo
Gi =0
aj = -1
loop
Selecti, j using Algorithm 2
if i =—-1then
Stop
a:= maXQi + Qjj — 2yy;Qyj. 7}
b:= viGi + ijj
a?' = q
a‘j"d =qj
aj = @ +yib/a
j = —y,—b/a
S = yia? +yja?
if @i <Othen
a;:=0
elseif a; > C then
a;:=C
aj = Yj(S - yiai)
if j <Othen
oj = 0
elseif a; > C then
oj = C
@i = Yi(S - yja;)
forallt:=1,...,Ndo
Gt = Qu(ei — ) + Qj(aj —

{small positive constapt

d

Algorithm 2 Selection of, j

T:=1e-12 {small positive constaht
|highi={iiyi=1 A a’i<C}U{iZyi=—1 A aj >0}
i :=argmax-VyiG; : i € lnign)
G* = max{—ini ‘e Ihigh}
ji=-1
low ={i:Vi=1 A aqi>0U{i:yi=-1 A a; <C}
G = min{—ini RS Ihigh}
O =
for all t € ljgw do
b:=G"+ tht
if b> Othen
a:= maxQi + Qu — 2yiy:Qit, 7}
if (-b?/@) < O~ then
ji=t
O = -bh?/a
if (G*—G") < ethen
Return (-1, -1)
else
Return (i, j)

SPE

256K RAM

MFC
PPE SPE SPE SPE SPE —
él—G B/cycle
96 Bl/cycle
MIC SPE SPE SPE SPE
[
RAM

Figure 1: Architecture of the CBE

optimization, code profiling reveal that for some datastts,
evaluation ofQ takes up to 90% of the total training time.

4. Fast kernel evaluation on the Cell Processor

The CBE is a heterogeneous multi-core processor, whose in-
ternal architecture is shown in Fig. 1. The CBE contains nine
processors on a single chip, connected with a high bandwidth
circular bus [14].

The Power Processor Element (PPE) is the main processor,
and is based on a 64 bit PowerPC architecture with vector
and SIMD multimedia extensions. The PPE is responsible for
executing the Operating System, allocating resources &ad d
tributing the workload to the other computing cores. The PPE
has direct access to the main system memory, and includes
32 KB of L1 instruction and data caches, and 512 KB of L2
cache.

The eight SPEs are SIMD processors optimized for data-
intensive computations. A SPE contains 128 registers tieat a
128 bits wide. A single SIMD instruction can operate on Six-
teen 8-bit integers, eight 16-bit integers, four 32-biegers or
four single-precision floating point numbers, in a singleckl
cycle. Each SPE has 256 KB of private RAM, called Local
Store (LS), which holds data and instructions. A SPE can ac-
cess the system memory through asynchronous Direct Memory
Access (DMA) operations, handled by a dedicate component
called Memory Flow Controller (MFC).

The Element Interconnect Bus (EIB) is a 4-ring bus for data,
and a tree structure for commands. The EIB internal bandwidt
is 96 bytes per cycle, and supports about 100 outstanding DMA
transfers between main memory and the SPEs. The Memory In-
terface Controller (MIC) provides an interface betweenBHg
and the main storage.

The PowerXCell 8i has an aggregate peak double-precision
floating-point performance of 102.4 GFLOPS [14]. However,
achieving such a high performance on a given computational
problemis challenging, First, the problem must be decomgos
so that it can be solved in parallel on the SPEs. Then, opti-
mized SIMD algorithms must be executed on each SPE. Fi-
nally, it is necessary to use an appropriate memory layaut fo
the program data in order to allowffigient DMA transfers,
which need to be carefully overlapped with computationgin o
der to hide the memory latency.



vall 0 120 0 3 9 0 0 o 0 0 7 X X XX Dataset N m Density Av. nonzero
index| 0O 4 12 -1

chess8_12K 12000 2 100% D0
mnist8n8-10k 10000 779 2B5% 16086
Figure 2: Encoding of a sparse vector whose nonzero valee$28, 9,7 at uciadué 11220 122 1B7% 1387
positions 14,5, 15 respectively. web-a 49749 300 B8Y% 1164
rcvl_train binary 20242 47236 16% 7558
realsim-10k 10000 20958 23% 4820

LIBSVMcge is based onLIBSVM version 2.89 [4].
By profiling LIBSVM, it turns out that the most time-
consuming operation (responsible for up to 90% of the Table 1: Datasets used in the experiments.
training time) is the kernel evaluation, which is done in-
side theQfloat* kernel::get_Q(int i, int 1) method
(Qfloat being defined as an alias of the C langudgeat
datatype). This function returns a pointer to an array donta
ing the valuex);; = yiy;K(xi, x;) for j = 1,...,1. The firstm
elements of row might have been cached;ni < |, then the 5 Eyperimental Results
missing values need to be computed.

LIBSVM can be easily parallelized on symmetric multi-core |, this section we analyze the performanc&tESVMcge by
processors using OpenMP (see the FAQs fildBSVM web  measyring the training time on the datasets listed in Tabhé 1
page [4]). This optimization results in the parallel evalua ig the number of training vectors is the number of elements
tion of the elements); over the CPU cores. In the case of of gach vectorDensityis the average fraction of nonzero ele-
LIBSVMcge, the performance gain ovefBSVM has been ob-  ments in each training vector (100% denotes fully dense vec-

tained by dfloading computations to the vector coprocessors ofyrs): finally, Av. nonzerds the average number of nonzero
the CBE, and hand-tuning the vector code running on these cjements (computed asx Density).

processors. Current C compilers supporting standard OpenM
can not do that automatically.

Everything else is exactly the same asLiBSVM, including
the shrinking heuristic and the caching strategy.

chess8_12K contains 12000 points which are randomly dis-
tributed over a & 8 chessboard; each point is classified accord-

In LIBSVMcge we compute the valuegj, j = m+ 1L m+ 4 (g the color of the square containing it. Tineist8n8-10k
2,...,lin parallel across the SPEs. In particular, we partitionyatiaset is a 10000 samples subset of the MNIST handwrit-
the range = [m+ 1, m+ 2,...,1] into K contiguous, non-

. s ten digits databas@{tp://yann.lecun. com/exdb/mnist),
overlapping sub-ranges;, J,, ..., J« so that the computation  ;ntaining 5000 samples of the digit “8” and 5000 samples of
of eachQ;,, is assigned to one of the available SPEach SPE the other digits. The UCI Adult dataset [15}diadus) al-
receives the following parameters: (i) the scafauii) the val- 15,5 10 train a SVM to predict whether a household has an
uesys,; (iii) the vectorx;; (iv) the vectorsx,,. The value oK jhcome greater than $50000. The Web dataseb{a) [3]
and the cardinality of each sub-rangeare adaptively deter- g ygjated to the problem of classifying Web pages into top-
mined by the PPE so that all input data needed to com@ufe  ics according to keywords extracted from the pages them-
fitinto the SPE limited bier space. . . selves. rcvl_train_binary is a subset of the Reuters Cor-
_Another p_roblem Whlch must be addre_ssed is to findfén e pus Volume 1 (RCV1) dataset [16], which consists of news
cient encoding of the fraining vectors. Since vectorsi are  giqries which are classified according to their main topic. |
generally sparse,IBSVM encodes them in & compact form, ,.y4 train binary two classes are considered: one includ-
storing only the index and value of nonzero elements. In thlsf,ng news from the CCAT (Corporatedustrial) or ECAT (Eco-
way the memory required for storing the training dataistyea omics) main classification groups, and the other including
reduced. LIBSVMcge uses a slightly dferent representation naws from the GCAT (GovernmeSocial) or MCAT (Mar-
called 4-element sparse block [9]. Each block holds indexeﬁets) groups. News belonging to both classes have been re-
and values ofour contiguous elements, of which at least one ,qveq. Finally,realsim-10k is a subset of 5000 positive
value is nonzero; a termination block holding a negativeind 5,4 5000 negative samples from theal-sim data, which
is used as a sentinel (see Fig. 2); the starting index of @ack b ;onains UseNet articles from four discussion groups: sim-
is @ multiple of 4. In this way, four contiguous indexes anti va |ated auto racing, simulated aviation, real autos, rei-av
ues fit in a pair of SPE registers, and the dot product requiregy, uciadu6, web-a, rcvi_train binary andreal-sim

by the kernel evaluation can be dorfa@ently (see Appendix  pave been obtained fromttp: //www.csie.ntu.edu. tw/

A for details). ~cjlin/libsvmtools/datasets/.

Note tha}t LlBS\,/MCBE differs from  LIB- LIBSVMcge have been implemented and tested on a
SVM only in the |mplem.enttat|on of the m_ethod Sony PS3 running Yellow Dog Linux version 6.1 (kernel
Qfloat* kernel::get_Q(int i, int 1) described 5 g 53) The PS3 contains a 3.2GHz Cell processor (revision
above, and for the data structure used to encode sparseszectqs_l) with 6 SPEs available to the user. The system has 256MB

of XDR RAM,; all datasets have been chosen so that they fit

1with abuse of notation, ifv is a vector andh is a set of indices, we denote  €Ntirely into the RAM.LIBSVM employs a caching strategy
with wa the subvector ofv consisting of all elements whose positions aréin  to store the last computed rows Qfin a cache. All tests on
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Figure 3: Speedup dfIBSVMcge on the PS3 with respect tdBSVM running
on an Intel P4 processof ¢pu/Tspes) (a) Relative Speedup

1
the PS3 were performed with a cache size of 40MB (command W\\
line option-m 40). LIBSVMcge has been compiled with the 0.8 N o~ I
GNU C compiler version 4.1.1 using the3 flag (both for _
the PPE and SPE code). For all experiments we used the RBF £ 06 N
kernel (Eq. (4)) with the default parameters. Tests of the se ”g
quential implementation uddBSVM version 2.89 on an Intel 8 04 ;\&
Pentium 4 processor running at 2.4 GHz with 512KB of L1 g T
cache and 1GB of RAM, under Linux kernel 2.6.28BSVM T rovd_train_binary
was compiled with the GNU C compiler version 4.3.3 using 02 ﬁ vnv‘gliifn&mk
the default compilation flags from thiéBSVM source distribu- —8— uciadué
tion (-Wall -Wconversion -03 —fPIC). For the sequential o L O chess8 12K
code we used the defaultBSVM cache size of 100MB. For ! 2 3 4 > 6
each test we computed the average execution time of 5 indepen Number of SPE 1

(b) Efficiency

dent runs. Training times have been measured by instrument-
ing the code with thelock_gettime(2) function using the
CLOCK_MONOTONIC time source; preprocessing and injout-
put time has been excluded from the measurements.
Training times are shown in Table Z¢py denotes the train-
ing time of LIBSVM on the Intel P4 processoFppgis the train-
ing time of LIBSVMcge on the PS3 using the PPE onlspen
is the training time ofLIBSVMcge on the PS3 using SPE.
The speedups computed as the ratio of the execution time . i -
on the CPU and the execution time on the Cell with 6 SPEs Another metric we consider to assess the scalability|Bf
(Tepu/Tspes). SVMCB_E |s theefficiency Hf(n), defined agff(n) = RSn)/n.
The speedup oEIBSVMcge with respect to the Intel P4 js BY definition, 0< Eff(n) < 1 for all n. The eficiency mea-
shown in Figure 3. The larger speedup3@®) is achieved Sures the fraction of time which is used by th8PEs for actual
on themnist8ns-10k dataset, which is the one with higher COMputation. For example, if théfigiency is 0.5, then half the

density (number of nonzero elements) and larger vector siz&*€cution time is used in actual computation, while the isest
On average, each training vectormfist8ns-10k has 779« devoted to communication and synchronization overhead.
0.2065 ~ 16086 nonzero elements. Large and dense train- Figure 4(a) and 4(b) show the relative speedup ahdency
ing vectors allow the CBE to perform larger DMA transfers to as a function of the number of SPEs. Not surprisingly, the
the SPEs, which can be handled moffeceently than small data rcvl_train_binary dataset achieves the best scalability and
transfers. Furthermore, large training vectors improeectim-  €fficiency. On the other hand thess8_12K dataset exhibits
putatioridata transfer ratio, better exploiting the computationalthe worst scalability andfciency.

Figure 4: Relative speedup 4(a) arfi@ency 4(b) versus number of SPEs

the CBE, because the Cell processor has an asymmetricahtern
architecture. This means that The PPE and SPEs hffeeatit
computational power, in particular the SPEs are optimioed f
vector computations for which the PPE is not &ceent.

power of the SPEs. The smaller speeduy2k) is achieved From Fig. 4(b) we observe that the communication and syn-
on thechess8_12K dataset where all training vectors are two- chronization overhead increases with the numbef SPEs,
dimensional. due to contention on the EIB. This means that the speedup ob-
To evaluate the scalability dfIBSVMcge we consider the tained by d¢floading the computational activity to the SPEs is
relative speedufRSn) with n SPEs, defined aRkRSn) = ultimately limited by the memory latency of the data transfe

Tspe1/Tspen- It should be observe thd8ppg/Tspen is Not ap-  The number of DMA operations depends on the size and struc-
propriate to measure the scalability of an application migon  ture of the training datas€®? and thus can not be predicted. In



Tepu Tepe Tsper  Tspez Tspes Tspea  Tspes Tspes Speedup
(Tcpu/ Tspes)
chess8_12K 32.82 62.53 41.64 27.61 23.05 21.05 20.10 19.13 1.72
mnist8n8-10k 253.46| 334.33 173.64 92.30 65.62 52.09 44.65 39.93 6.35
uciadu6 24.96 52.72 30.20 17.57 13.48 11.28 10.35 9.63 2.59
web-a 70.22 149.92 98.74 56.54 42.68 35.74 31.68 29.13 2.41
rcvl_train binary | 617.17| 1674.64| 1079.19 560.00 387.19 301.79 251.96 218{71 2.82
realsim-10k 107.76 | 279.62 185.07 98.38 69.91 55.57 48.02 42.46 2.54

Table 2: Wall-clock training time, in seconds (average afis;, lower is better)

fact, the computations performed by each SPE is the dot prodn this paper, is available attp://www.cs.unibo.it/pub/

uct xiTx,-, j € J The size of eacl is dynamically com-

puted by the PPE as the largest multiple of 16 such that all in-
puts needed to compu@@;, fit in the LS. Training vectors are

transferred to the SPE using DMA List requests [14], because
the vectors might not be contiguous in memory. DMA list op- References
erations are more ifigcient than a single bulk DMA transfer.

However, it is possible to empirically estimate the worst- 1]
case scalability of.IBSVMcge by looking at thechess8_12K

dataset. This dataset exhibits a worst-case behaviorubeca
training vectors have the smallest possible size: this mees

the communication overhead, and reduces the computation [3)
communication ratio at each SPE. Despite thagss8_12K

still exhibits a modest (¥2x) speedup with respect to the se-
quential version, which is quite remarkable. This suggmsts
the Cell processor idkective in speeding up SVM training even

for low-dimensional datasets.

6. Conclusions

(5]

(6]

In this paper we describddBSVMcgg, an optimized imple-

mentation of the SMO algorithm for the Cell processbiB-
SVMcge is a modified version oEIBSVM which improves the

most time-consuming step of the training process, thatés th

evaluation of the kernel function.
LIBSVMcge has been tested on some widely used datasets;

results show speedups up t@5x with respect to the sequen-

tial version. High speedups are achieved on datasets witH?!
dense, high dimensional training vectors. We remark thegteh

(8]

are precisely the cases in which large speedups are desirabl
Lower speedups have been observed on datasets with train-

ing vectors of low dimension. These datasets exhibit a worst™

case behavior with respect to DMA transfer from main mem-

ory to LS, requiring the transfer of many small data blocks.[12]

In particular, for thechess8_12K dataset, which has two-
dimensional training vectors and thus represents a wassg-c
scenario, we observe a speedup af2k. This suggests that

the Cell processor iskective in improving SVM training times

even for low-dimensional datasets.

[14
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Appendix A. Implementation details

Algorithm 3 Computation 0fQ;;, PPE code

Require: Row indexi

Parallel computation of . In this section we give de-
tails on how the elements of matriX)Q can be com-
puted in parallel across the SPEs. The function
Qfloat* kernel::get_Q(int i, int 1) of LIBSVM
is used to comput€;j, for j = 1,...,1. LIBSVM first checks
whether some initial portion of rowis already stored in the
cache. If only the firsm < | elements are available, then the
missing value€Q;, J = [m+ 1, m+ 2,...,1] are computed.
LIBSVMcge optimizes the computation @iy by evaluating all
elements in parallel across the SPEs.

First, we describe the memory layout bilBSVMcge pro-
gram data, shown in Figure A.5. The valygeis stored in
y_j[i]2 sz[i] contains the number of blocks encoding the %

2:

© 0 No gk

10:

sparse vectors;; the blocks are located at[i] [0] through 1%
x[i] [sz[i]-1]. All sparse vectors;,i = 1,...,N are stored  13:
in the arrayx_space []. The C strucsvm _4node representsa 14
4-element sparse block and is defined as: 15:
typedef struct  { 16:
vec_int4 index; 1
vec _float4 val;
} svm _4node; 18:
where thevec_int4 andvec_float4types are vectors of four 19:
20:

integer and float elements, respectively. The sizeeef int4
andvec_float4is 128 bits, so they fit inside one SPE register. %%

T1,To,..

Require: Columnindexed =[m+1,m+2,...,1]
1: if (JJ] < 48)then

ComputeQ;; on the PPE using Eq. (2)

else

jstart :=m+1
jend :=|
while (y_j [jstart] is not quadword-alignedjo
jstart := jstart+1
while (y-j [jend] is not quadword-aligneajo
jend = jend -1
{Evaluate unaligned portion on the PPE
for j:=m+1,...,jstart —1do
ComputeQ;; on the PPE using Eq. (2)
for j ;= jend+1,...,1do
ComputeQ;; on the PPE using Eq. (2)
{Evaluate aligned portion on the SPE
Define a partitionJ;, Jp, ..., Jk of [jstart,..., jend]
Setup task queueTQ with K task descriptors
STk
for all SPEi do
Send address afQto SPEi
for all SPEi do
Wait for SPEi to complete

Algorithm 3 is executed by the PPE to compu@s, J =
[m+1,m+2,...,1]. If Jhas lessthan 48 elements then the com-
putation is done entirely by the PPE in order to avoid the com-
munication and synchronization overhead (line 2). Theste
old of 48 elements has been empirically determined. .

If J has at least 48 elements, then the PPE distributes the
computation ofQ;; to the SPEs. To guarantee that the data *®
which must be transferred to the SPEs is properly alignes, it
necessary to identify a new ranggstart,. .., jend] € Jsuch
that the addresses ¢fj [jstart] andy_j [jend] are aligned
at 16B (quadword) boundary (lines 6-9). In fact, the Cellpro e
cessor requires that the starting address of a DMA transfer i
quadword-aligned, and also requires that the length of émest
ferred block is multiple of 16 bytes. Leading and trailing-el
ments ofQ;; are evaluated by the PPE (lines 11-14). Since all o
vectors are allocated at 16B boundary, thepLij [jstart] is
quadword-aligned, also the corresponding elements offadiro
vectors are aligned. *

Now the range{start,..., jend] is partitioned intoK dis-
joint sub-ranges;, J, . . ., Jk (line 16), and the computation of
Qiy, is delegated to one of the SPEs. The number of elements
of eachJy is computed by the PPE such that: (i) the input pa-
rameters needed to comp@e, fit into the LS; (ii) the starting .
address of the memory block to transfer is quadword-aligned
(iii) the length of each block is a multiple of 16 bytes.

After having determined the partitiaR, J,, . . ., Jk, the PPE
allocates a data structure containing a description ofdblest

There are exactlK task descriptordq, To, ..
sponding to the data needed to compQg,, Qis,, ..
The task descriptors are stored contiguously in main memory

which will be executed by the SPEs. tAsk descriptotis a C
struct containing the following items:

The scalar valug; (signed char yi);

Effective Address (EA) of the first element of vecigy
(uint64 _t yj_ead);

e The number of elements df (uint32 _t yj_size);

EA of the first block of sparse vectar (uinté4 _t xi_ead);

The number of blocks representing vectox;
(uint32 _t xi_size);
EA of the array of pointers to vectorsx;,

(uint64 _t xj_ar_ead);

EA of the array of sizes (number of blocks) of sparse vec-
torsxg, (uint64 _t xj_sz_ead);

EA of the array where the resul®;;, must be stored
(uint64 _t result_ead);

The type of kernel function, and all additional parameters
needed to evaluate it.

., Tk, corre-

-5 Qige-

as an array handled as a FIFO queue (task qui€de The ad-

2For the sake of simplicity, we ignore the fact that arrayshim € language
are indexed from O

dress ofT Qis sent to each SPE (line 19); at this point, the PPE
waits for all SPEs to complete execution (line 21).
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Figure A.5:Inputrepresents the data transferred from main memory to LS foekevaluationOutputshows the results transferred back from LS to main memory.

Each SPE executes the pseudocode shown in Algorithm 4uage SPE implementation of the dot product is the following

First, the SPE receives the EA (main memory address) of thﬁoat S
. . . . pu_dot( const svm

task q_ueué'Q_(Ilne 2). Then, using atomic operations, one tgsk const vec _intd «pxidx = &(px—>index):
descriptorTy is removed from the task queue and copied into st vec _int4 «pyidx = &(py—>index);
the LS (line 4). All data referenced by the task descriptee—t  const vec _float4 xpxval = &(px—>val);
hatched area from Figure A.5—are copied from main memory const vec _float4 =pyval = &(py—>val);
to LS (line 5) using DMA operations. When the data transfer vec_float4 result = spu_splats((float )0.0);
completes, the resuf;;, is computed and put back to main int idx-x = spu_extract( =pxidx, 0 );
memory (line 8) at the EA indicated by tlhesult_ead field of int idx.y = spu-extract( «pyidx, 0 );
the task descriptor. The steps above are repeated untiske t ~ While (idxx 1= -1 && idxy 1= -1) {
queue becomes empty; at that point, each SPE signals the PPE f ( idxx==idx.y) {

L result = spu_madd(xpxval,=pyval,result);
that the computation is complete. oxidx += 2; pxval +=2: pyidx += 2. pyval 4= 2:

idx_x = spu_extract( =pxidx, 0 );
idx_y = spu_extract( =pyidx, 0 );

_4node * px, const svm _4node = py ) {

Algorithm 4 Computation 0fQ;;, SPE code

1: loop } else {

2. Receive task queue addrés® if (idxx <idxy ) {

3. while(T Qnot empty)do pxidx += 2; pxval += 2; idx_x = spu-extract( =pxidx, 0 );
4 Get task descriptoF, from T Q ) else { _ _

5: Get input data fofl, from main memory pyidx +=2; pyval +=2; idx.y = spu_extract( *pyidx, 0 );
6: for all j € J do }

7 ComputeQ;; on the SPE using Eq. (2) \ }

8 PutQjy, to main memory return spu_extract(result ,0) + spu_extract(result,1) +

9:  Signal completion to the PPE spu_extract(result ,2) + spu_extract(result ,3);

Note the use of pointers rather than indexing expressions to

Computing vector dot product on the SPBle now describe compute the addresses of vector elements without using mul-
how to compute iciently the dot product of two sparse vec- tiplications. spu_splats(v,s) sets all elements of to the
torspx andpy on the SPE, using SIMD vector instructions. The Sc@lar values. spu_madd (v,w,r) computes; := I + Vi X W

dot product can be implemented by the SPE by multiplying thdOr Vectorsr = [r1,12,r3,ra], V. = [v1,V2,v3,va] andw =
values of two blocks with the same index, and accumulatiag th [W1. Wa, W3, Wa]. spu_extract (v, 1) returns the-th element
result with the multiply-and-add SIMD instruction. The Gita  Of vectorv.
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