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Abstract

Support Vector Machines (SVMs) are a widely used technique for classification, clustering and data analysis. While efficient algo-
rithms for training SVM are available, dealing with large datasets makes training and classification a computationallychallenging
problem. In this paper we exploit modern processor architectures to improve the training speed ofLIBSVM, a well known imple-
mentation of the Sequential Minimal Optimization algorithm. We describeLIBSVMCBE, an optimized version ofLIBSVM which
takes advantage of the peculiar architecture of the Cell Broadband Engine. We assess the performance ofLIBSVMCBE on real-world
training problems, and we show how this optimization is particularly effective on large, dense datasets.
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1. Introduction

SVMs are widely used supervised learning methods which
can be employed in many classification tasks (see, e.g., [1] and
references therein). In this paper we consider the problem of
binary classification, whereN data points (training set) must
be classified in two classes.

Formally, let us considerN vectors inm-dimensional space:
xi ∈ Rm, i = 1, . . . ,N. Vector xi is associated with label
yi ∈ {−1, 1}. The setD = {(xi , yi) : i = 1, . . . ,N} is
called thetraining set. The classification problem is to separate
the two classes with am-dimensional surface that maximizes
the margin between them. The separating surface is obtained
by computing the solutionα = [α1, . . . , αN]T of a Quadratic
Programming (QP) problem of the form [2]:

minimize f (α) =
1
2
α

TQα −
N
∑

i=1

αi (1)

subject to
N
∑

i=1

yiαi = 0

0 ≤ α j ≤ C, j = 1, . . . ,N

where the entriesQi j of the symmetric positive semidefinite ma-
trix Q are defined as

Qi j = yiy jK(xi , x j), i, j = 1, . . . ,N (2)

K : Rm×Rm→ R is a kernel function which depends on the
type of the separating surface. Examples are the polynomial
kernel:
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K(xi , x j ; a, r, d) =
(

axi
Tx j + r

)d
, a, r ∈ R, d ∈ N (3)

and the Radial Basis Function (RBF) kernel:

K(xi , x j ; γ) = exp
(

−γ‖xi − x j‖
2
)

, γ ∈ R+ (4)

A SVM is trained by solving the QP problem (1) using vec-
torsxi and the corresponding labelsyi . The solutionα can then
be used to classify any new pointz ∈ Rm by computing its class
f (z) as:

f (z) = sgn
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


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b+
N
∑

i=1

yiαiK(xi , z)















(5)

where the offsetb is computed during the training step as well.
The size of real-world datasets makes the solution of (1)

using general purpose QP solvers impractical. For this rea-
son, efficient ad-hoc algorithms that take advantage of the
special structure of (1) have been developed. The Sequen-
tial Minimal Optimization (SMO) algorithm, originally pro-
posed by Platt [3], decomposes the original QP problem into
two-dimensional subproblems which can be solved analytically.
The idea of SMO is to compute a solution iteratively, by opti-
mizing two coefficientsαi , α j at each iteration. SMO is efficient
because it does not use a costly numerical QP solver in its inner
loop.

Unfortunately, training times are still significant for many
real-world datasets. The reason is that matrixQ can be very
large and can not be kept entirely in memory. Thus, the SMO
algorithm (as well as most of the existing SVM training algo-
rithms) needs to recompute the valuesQi j many times, which
in turn require many evaluations of the kernel function.

In this paper we describeLIBSVMCBE, an efficient imple-
mentation of the SMO algorithm for asymmetric multi-core
architectures. Specifically,LIBSVMCBE employs the peculiar
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features of the Cell Broadband Engine (CBE), an asymmetric
multi-core processor architecture originally developed for the
consumer market (it is used inside Sony’s PlayStationR©3 (PS3)
gaming console), but which is also used on high-end servers tar-
geted at scientific computations. The Cell processor includes a
conventional core based on the PowerPC architecture, together
with specialized vector co-processors called SynergisticPro-
cessor Elements (SPEs).LIBSVMCBE splits the evaluation of
the elements of matrixQ across the SPEs; an optimized, Single-
Instruction Multiple-Data (SIMD) algorithm for computingthe
dot product of two vectors is used inside each SPE, so that the
evaluation of kernel functions is very fast.

LIBSVMCBE is based onLIBSVM [4], an efficient and widely
used implementing the SMO algorithm.LIBSVM employs sev-
eral heuristics to reduce the training time, such as theshrinking
heuristicwhich dynamically reduces the set of coefficients to be
optimized, and a caching strategy to avoid recomputations of re-
cently used entries of matrixQ; still, evaluation of elementsQi j

is the bottleneck ofLIBSVM. LIBSVMCBE improves that bottle-
neck by offloading the computation ofQ to the vector copro-
cessors. We testLIBSVMCBE on several real-world datasets and
show how this optimization yields significant speedups overthe
sequential algorithm. Our optimization is very general, because
it can be applied to any SVM training and classification pack-
age which relies on multiple evaluations of the kernel function.

Organization of this paper.This paper is organized as fol-
lows. In Section 2 we revise some of the existing parallelization
strategies for training SVMs. In Section 3 we describe the SMO
algorithm. In Section 4 we give a brief overview of the archi-
tecture of the Cell processor, and then presentLIBSVMCBE, a
Cell-optimized version of theLIBSVM software package. In
Section 5 we evaluateLIBSVMCBE on some training datasets.
Finally, conclusions and future works are illustrated in Sec-
tion 6. We include some implementation details in Appendix
A.

2. Related Work

There have been several attempts to optimize the training
and classification times of SVMs, by considering parallel ap-
proaches to the solution of the QP (1).

In [5] the authors describe an optimized version of SMO
which makes use of Graphics Processing Units (GPUs). Mod-
ern GPUs can be considered as specialized highly parallel pro-
cessors, containing a large number (hundreds, or even thou-
sands) of relatively simple processing cores connected to ahigh
bandwidth memory subsystem. This kind of architecture is
quite different from the CBE, as the latter includes a limited
number of more powerful processing elements, each one hav-
ing access to a small (but very fast) local store.

A version of SMO for parallel machines using the Message
Passing Interface (MPI) library is described in [6]. In [7, 8] the
authors propose a parallel training and classification algorithm
for large quadratic programs which is based on the Parallel Gra-
dient Projection-based Decomposition Technique (PGPDT).
Instead of optimizing two variables at each iteration, PGPDT

decomposes the original QP problem in larger subproblems
which are be solved on a cluster of workstations using MPI.
In [9] the author shows how the CBE can be used to speed up
the PGPDT solution technique.

An hybrid algorithm using both MPI and OpenMP compiler
extensions is used in [10] to train linear SVMs. The authors use
an interior point method for solving the optimization problem;
training is performed on a cluster of multiprocessor machines.
MPI is used to distribute data amongst the processors, while
efficient OpenMP BLAS implementations are used within each
node to speed up local computations.

In [11] the authors propose Parallel SVM (PSVM), a parallel
approximation technique for SVM training and classification.
PSVM is based on an incomplete Cholesky factorization, which
greatly reduces both the memory requirement and the computa-
tion time on each node. It must be observed that PSVM is based
on an approximation technique, so it is slightly less accurate
than the other parallel SVM implementations described above.
Another recent parallel approximate training and classification
algorithm is P-packSVM [12]. P-packSVM uses a stochastic
gradient descent method, and employs a packing strategy to re-
duce multiple iterations on a single one in order to reduce the
communication costs.

We observe that the CBE architecture is remarkably dif-
ferent from both conventional clusters of workstations, and
from GPUs. A cluster of workstations is made of a large
number of nodes, where each node is equipped with a pow-
erful CPU and a large amount of RAM; however, inter-node
communications are orders of magnitude slower than compu-
tations. A GPU, on the other hand, contains a large number
of simple cores connected with a very aggressive memory sub-
system. The CBE contains a single general-purpose CPU core
connected with a limited number of independent vector copro-
cessors called SPEs. Therefore, for each of these architectures
it is necessary to use ad-hoc algorithmic strategies to achieve
good performance and scalability. To the best of our knowl-
edge, no previous attempt has been made to optimize the SMO
algorithm for the CBE architecture. The SMO algorithm is at-
tractive because it is widely used in practice and many good
open source implementations exist.

3. The SMO Algorithm

Sequential Minimal Optimization is sketched in Algorithm 1
(see [13] for a more detailed description). Algorithm 1 includes
the main loop which is used to optimize two coefficientsαi , α j

at each iteration. The selection of the indexi, j is a crucial task,
as it influences the convergencespeed.LIBSVM uses thesecond
order heuristicproposed in [13], shown in Algorithm 2.

We observe that Algorithm 1 requires multiple evaluations
of rows of matrixQ (we underlined the pseudocode statements
whereQ is used). For realistic training sets,Q is too large to
be stored in memory, so it is necessary to evaluate its elements
as they are needed. One optimization is to keep a cache of
(partially filled) rows ofQ which have been recently computed,
so that unnecessary evaluations can be avoided. Despite this
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Algorithm 1 Sequential Minimal Optimization
τ := 1e− 12 {small positive constant}
for all i := 1, . . . ,N do

Gi := 0
αi := −1

loop
Selecti, j using Algorithm 2
if i = −1 then

Stop
a := max{Qii + Q j j − 2yiy jQi j , τ}

b := yiGi + y jG j

αold
i := αi

αold
j := α j

αi := αi + yib/a
α j := α j − y jb/a
S := yiα

old
i + y jα

old
j

if αi < 0 then
αi := 0

else if αi > C then
αi := C

α j := y j(S − yiαi)
if α j < 0 then
α j := 0

else if α j > C then
α j := C

αi := yi(S − y jα j)
for all t := 1, . . . ,N do

Gt := Qti(αi − α
old
i ) + Qt j(α j − α

old
j )

Algorithm 2 Selection ofi, j
τ := 1e− 12 {small positive constant}
Ihigh := {i : yi = 1 ∧ αi < C} ∪ {i : yi = −1 ∧ αi > 0}
i := arg max{−yiGi : i ∈ Ihigh}

G+ := max{−yiGi : i ∈ Ihigh}

j := −1
I low := {i : yi = 1 ∧ αi > 0} ∪ {i : yi = −1 ∧ αi < C}
G− := min{−yiGi : i ∈ Ihigh}

O− := ∞
for all t ∈ I low do

b := G+ + ytGt

if b > 0 then
a := max{Qii + Qtt − 2yiytQit , τ}

if (−b2/a) ≤ O− then
j := t
O− := −b2/a

if (G+ −G−) < ǫ then
Return (−1,−1)

else
Return (i, j)

256K RAM

SPE

MFC

SPESPESPE SPE

SPESPESPESPEPPE

RAM

MIC

EIB

16 B/cycle

96 B/cycle

Figure 1: Architecture of the CBE

optimization, code profiling reveal that for some datasets,the
evaluation ofQ takes up to 90% of the total training time.

4. Fast kernel evaluation on the Cell Processor

The CBE is a heterogeneous multi-core processor, whose in-
ternal architecture is shown in Fig. 1. The CBE contains nine
processors on a single chip, connected with a high bandwidth
circular bus [14].

The Power Processor Element (PPE) is the main processor,
and is based on a 64 bit PowerPC architecture with vector
and SIMD multimedia extensions. The PPE is responsible for
executing the Operating System, allocating resources and dis-
tributing the workload to the other computing cores. The PPE
has direct access to the main system memory, and includes
32 KB of L1 instruction and data caches, and 512 KB of L2
cache.

The eight SPEs are SIMD processors optimized for data-
intensive computations. A SPE contains 128 registers that are
128 bits wide. A single SIMD instruction can operate on six-
teen 8-bit integers, eight 16-bit integers, four 32-bit integers or
four single-precision floating point numbers, in a single clock
cycle. Each SPE has 256 KB of private RAM, called Local
Store (LS), which holds data and instructions. A SPE can ac-
cess the system memory through asynchronous Direct Memory
Access (DMA) operations, handled by a dedicate component
called Memory Flow Controller (MFC).

The Element Interconnect Bus (EIB) is a 4-ring bus for data,
and a tree structure for commands. The EIB internal bandwidth
is 96 bytes per cycle, and supports about 100 outstanding DMA
transfers between main memory and the SPEs. The Memory In-
terface Controller (MIC) provides an interface between theEIB
and the main storage.

The PowerXCell 8i has an aggregate peak double-precision
floating-point performance of 102.4 GFLOPS [14]. However,
achieving such a high performance on a given computational
problem is challenging, First, the problem must be decomposed
so that it can be solved in parallel on the SPEs. Then, opti-
mized SIMD algorithms must be executed on each SPE. Fi-
nally, it is necessary to use an appropriate memory layout for
the program data in order to allow efficient DMA transfers,
which need to be carefully overlapped with computations in or-
der to hide the memory latency.
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Figure 2: Encoding of a sparse vector whose nonzero values are 12, 3, 9, 7 at
positions 1, 4, 5, 15 respectively.

LIBSVMCBE is based on LIBSVM version 2.89 [4].
By profiling LIBSVM, it turns out that the most time-
consuming operation (responsible for up to 90% of the
training time) is the kernel evaluation, which is done in-
side theQfloat* kernel::get_Q(int i, int l) method
(Qfloat being defined as an alias of the C languagefloat

datatype). This function returns a pointer to an array contain-
ing the valuesQi j = yiy jK(xi , x j) for j = 1, . . . , l. The firstm
elements of rowi might have been cached; ifm < l, then the
missing values need to be computed.

LIBSVM can be easily parallelized on symmetric multi-core
processors using OpenMP (see the FAQs fromLIBSVM web
page [4]). This optimization results in the parallel evalua-
tion of the elementsQi j over the CPU cores. In the case of
LIBSVMCBE, the performance gain overLIBSVM has been ob-
tained by offloading computations to the vector coprocessors of
the CBE, and hand-tuning the vector code running on these co-
processors. Current C compilers supporting standard OpenMP
can not do that automatically.

In LIBSVMCBE we compute the valuesQi j , j = m+ 1,m+
2, . . . , l in parallel across the SPEs. In particular, we partition
the rangeJ = [m + 1,m + 2, . . . , l] into K contiguous, non-
overlapping sub-rangesJ1, J2, . . . , JK so that the computation
of eachQiJk is assigned to one of the available SPE1. Each SPE
receives the following parameters: (i) the scalaryi ; (ii) the val-
uesyJk; (iii) the vectorxi ; (iv) the vectorsxJk. The value ofK
and the cardinality of each sub-rangeJk are adaptively deter-
mined by the PPE so that all input data needed to computeQiJk

fit into the SPE limited buffer space.
Another problem which must be addressed is to find an effi-

cient encoding of the training vectorsxi . Since vectorsxi are
generally sparse,LIBSVM encodes them in a compact form,
storing only the index and value of nonzero elements. In this
way the memory required for storing the training data is greatly
reduced. LIBSVMCBE uses a slightly different representation
called 4-element sparse block [9]. Each block holds indexes
and values offour contiguous elements, of which at least one
value is nonzero; a termination block holding a negative index
is used as a sentinel (see Fig. 2); the starting index of each block
is a multiple of 4. In this way, four contiguous indexes and val-
ues fit in a pair of SPE registers, and the dot product required
by the kernel evaluation can be done efficiently (see Appendix
A for details).

Note that LIBSVMCBE differs from LIB-
SVM only in the implementation of the method
Qfloat* kernel::get_Q(int i, int l) described
above, and for the data structure used to encode sparse vectors.

1With abuse of notation, ifw is a vector andA is a set of indices, we denote
with wA the subvector ofw consisting of all elements whose positions are inA

Dataset N m Density Av. nonzero

chess8 12K 12000 2 100% 2.00
mnist8n8-10k 10000 779 20.65% 160.86
uciadu6 11220 122 11.37% 13.87
web-a 49749 300 3.88% 11.64
rcv1 train binary 20242 47236 0.16% 75.58
realsim-10k 10000 20958 0.23% 48.20

Table 1: Datasets used in the experiments.

Everything else is exactly the same as inLIBSVM, including
the shrinking heuristic and the caching strategy.

5. Experimental Results

In this section we analyze the performance ofLIBSVMCBEby
measuring the training time on the datasets listed in Table 1: N
is the number of training vectors;m is the number of elements
of each vector;Densityis the average fraction of nonzero ele-
ments in each training vector (100% denotes fully dense vec-
tors); finally, Av. nonzerois the average number of nonzero
elements (computed asm× Density).
chess8 12K contains 12000 points which are randomly dis-

tributed over a 8×8 chessboard; each point is classified accord-
ing to the color of the square containing it. Themnist8n8-10k
dataset is a 10000 samples subset of the MNIST handwrit-
ten digits database (http://yann.lecun.com/exdb/mnist),
containing 5000 samples of the digit “8” and 5000 samples of
the other digits. The UCI Adult dataset [15] (uciadu6) al-
lows to train a SVM to predict whether a household has an
income greater than $50000. The Web dataset (web-a) [3]
is related to the problem of classifying Web pages into top-
ics according to keywords extracted from the pages them-
selves. rcv1 train binary is a subset of the Reuters Cor-
pus Volume 1 (RCV1) dataset [16], which consists of news
stories which are classified according to their main topic. In
rcv1 train binary two classes are considered: one includ-
ing news from the CCAT (Corporate/Industrial) or ECAT (Eco-
nomics) main classification groups, and the other including
news from the GCAT (Government/Social) or MCAT (Mar-
kets) groups. News belonging to both classes have been re-
moved. Finally,realsim-10k is a subset of 5000 positive
and 5000 negative samples from thereal-sim data, which
contains UseNet articles from four discussion groups: sim-
ulated auto racing, simulated aviation, real autos, real avia-
tion. uciadu6, web-a, rcv1 train binary andreal-sim
have been obtained fromhttp://www.csie.ntu.edu.tw/

~cjlin/libsvmtools/datasets/.
LIBSVMCBE have been implemented and tested on a

Sony PS3 running Yellow Dog Linux version 6.1 (kernel
2.6.23). The PS3 contains a 3.2GHz Cell processor (revision
5.1), with 6 SPEs available to the user. The system has 256MB
of XDR RAM; all datasets have been chosen so that they fit
entirely into the RAM.LIBSVM employs a caching strategy
to store the last computed rows ofQ in a cache. All tests on
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Figure 3: Speedup ofLIBSVMCBE on the PS3 with respect toLIBSVM running
on an Intel P4 processor (TCPU/TSPE,6)

the PS3 were performed with a cache size of 40MB (command
line option-m 40). LIBSVMCBE has been compiled with the
GNU C compiler version 4.1.1 using the-O3 flag (both for
the PPE and SPE code). For all experiments we used the RBF
kernel (Eq. (4)) with the default parameters. Tests of the se-
quential implementation useLIBSVM version 2.89 on an Intel
Pentium 4 processor running at 2.4 GHz with 512KB of L1
cache and 1GB of RAM, under Linux kernel 2.6.28.LIBSVM
was compiled with the GNU C compiler version 4.3.3 using
the default compilation flags from theLIBSVM source distribu-
tion (-Wall -Wconversion -O3 -fPIC). For the sequential
code we used the defaultLIBSVM cache size of 100MB. For
each test we computed the average execution time of 5 indepen-
dent runs. Training times have been measured by instrument-
ing the code with theclock_gettime(2) function using the
CLOCK_MONOTONIC time source; preprocessing and input/out-
put time has been excluded from the measurements.

Training times are shown in Table 2.TCPU denotes the train-
ing time ofLIBSVM on the Intel P4 processor;TPPE is the train-
ing time of LIBSVMCBE on the PS3 using the PPE only;TSPE,n

is the training time ofLIBSVMCBE on the PS3 usingn SPE.
The speedupis computed as the ratio of the execution time
on the CPU and the execution time on the Cell with 6 SPEs
(TCPU/TSPE,6).

The speedup ofLIBSVMCBE with respect to the Intel P4 is
shown in Figure 3. The larger speedup (6.35×) is achieved
on themnist8n8-10k dataset, which is the one with higher
density (number of nonzero elements) and larger vector size.
On average, each training vector ofmnist8n8-10k has 779×
0.2065 ≈ 160.86 nonzero elements. Large and dense train-
ing vectors allow the CBE to perform larger DMA transfers to
the SPEs, which can be handled more efficiently than small data
transfers. Furthermore, large training vectors improve the com-
putation/data transfer ratio, better exploiting the computational
power of the SPEs. The smaller speedup (1.72×) is achieved
on thechess8 12K dataset where all training vectors are two-
dimensional.

To evaluate the scalability ofLIBSVMCBE we consider the
relative speedupRS(n) with n SPEs, defined asRS(n) =
TSPE,1/TSPE,n. It should be observe thatTPPE/TSPE,n is not ap-
propriate to measure the scalability of an application running on
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Figure 4: Relative speedup 4(a) and efficiency 4(b) versus number of SPEs

the CBE, because the Cell processor has an asymmetric internal
architecture. This means that The PPE and SPEs have different
computational power, in particular the SPEs are optimized for
vector computations for which the PPE is not as efficient.

Another metric we consider to assess the scalability ofLIB-
SVMCBE is theefficiency Eff (n), defined asEff (n) = RS(n)/n.
By definition, 0 ≤ Eff (n) ≤ 1 for all n. The efficiency mea-
sures the fraction of time which is used by then SPEs for actual
computation. For example, if the efficiency is 0.5, then half the
execution time is used in actual computation, while the restis
devoted to communication and synchronization overhead.

Figure 4(a) and 4(b) show the relative speedup and efficiency
as a function of the numbern of SPEs. Not surprisingly, the
rcv1_train_binary dataset achieves the best scalability and
efficiency. On the other hand thechess8_12K dataset exhibits
the worst scalability and efficiency.

From Fig. 4(b) we observe that the communication and syn-
chronization overhead increases with the numbern of SPEs,
due to contention on the EIB. This means that the speedup ob-
tained by offloading the computational activity to the SPEs is
ultimately limited by the memory latency of the data transfers.
The number of DMA operations depends on the size and struc-
ture of the training datasetD and thus can not be predicted. In
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TCPU TPPE TSPE,1 TSPE,2 TSPE,3 TSPE,4 TSPE,5 TSPE,6 Speedup
(TCPU/TSPE,6)

chess8 12K 32.82 62.53 41.64 27.61 23.05 21.05 20.10 19.13 1.72
mnist8n8-10k 253.46 334.33 173.64 92.30 65.62 52.09 44.65 39.93 6.35
uciadu6 24.96 52.72 30.20 17.57 13.48 11.28 10.35 9.63 2.59
web-a 70.22 149.92 98.74 56.54 42.68 35.74 31.68 29.13 2.41
rcv1 train binary 617.17 1674.64 1079.19 560.00 387.19 301.79 251.96 218.71 2.82
realsim-10k 107.76 279.62 185.07 98.38 69.91 55.57 48.02 42.46 2.54

Table 2: Wall-clock training time, in seconds (average of 5 runs, lower is better)

fact, the computations performed by each SPE is the dot prod-
uct xi

Tx j , j ∈ Jk. The size of eachJk is dynamically com-
puted by the PPE as the largest multiple of 16 such that all in-
puts needed to computeQiJk fit in the LS. Training vectors are
transferred to the SPE using DMA List requests [14], because
the vectors might not be contiguous in memory. DMA list op-
erations are more inefficient than a single bulk DMA transfer.

However, it is possible to empirically estimate the worst-
case scalability ofLIBSVMCBE by looking at thechess8_12K
dataset. This dataset exhibits a worst-case behavior, because
training vectors have the smallest possible size: this maximizes
the communication overhead, and reduces the computation/-
communication ratio at each SPE. Despite that,chess8_12K

still exhibits a modest (1.72×) speedup with respect to the se-
quential version, which is quite remarkable. This suggeststhat
the Cell processor is effective in speeding up SVM training even
for low-dimensional datasets.

6. Conclusions

In this paper we describedLIBSVMCBE, an optimized imple-
mentation of the SMO algorithm for the Cell processor.LIB-
SVMCBE is a modified version ofLIBSVM which improves the
most time-consuming step of the training process, that is the
evaluation of the kernel function.

LIBSVMCBE has been tested on some widely used datasets;
results show speedups up to 6.35× with respect to the sequen-
tial version. High speedups are achieved on datasets with
dense, high dimensional training vectors. We remark that these
are precisely the cases in which large speedups are desirable.
Lower speedups have been observed on datasets with train-
ing vectors of low dimension. These datasets exhibit a worst-
case behavior with respect to DMA transfer from main mem-
ory to LS, requiring the transfer of many small data blocks.
In particular, for thechess8_12K dataset, which has two-
dimensional training vectors and thus represents a worst-case
scenario, we observe a speedup of 1.72×. This suggests that
the Cell processor is effective in improving SVM training times
even for low-dimensional datasets.
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Software Availability.The source code ofLIBSVMCBE, includ-
ing the datasets and scripts used to produce the results shown
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marzolla/svmcell/.
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Appendix A. Implementation details

Parallel computation of Qi j . In this section we give de-
tails on how the elements of matrixQ can be com-
puted in parallel across the SPEs. The function
Qfloat* kernel::get_Q(int i, int l) of LIBSVM
is used to computeQi j , for j = 1, . . . , l. LIBSVM first checks
whether some initial portion of rowi is already stored in the
cache. If only the firstm < l elements are available, then the
missing valuesQiJ , J = [m + 1,m + 2, . . . , l] are computed.
LIBSVMCBE optimizes the computation ofQiJ by evaluating all
elements in parallel across the SPEs.

First, we describe the memory layout ofLIBSVMCBE pro-
gram data, shown in Figure A.5. The valueyi is stored in
y_j[i]2. sz[i] contains the number of blocks encoding the
sparse vectorsxi ; the blocks are located atx[i][0] through
x[i][sz[i]-1]. All sparse vectorsxi , i = 1, . . . ,N are stored
in the arrayx_space[]. The C structsvm 4node represents a
4-element sparse block and is defined as:

typedef struct {
vec int4 index;
vec float4 val ;

} svm 4node ;

where thevec_int4 andvec_float4 types are vectors of four
integer and float elements, respectively. The size ofvec_int4

andvec_float4 is 128 bits, so they fit inside one SPE register.
Algorithm 3 is executed by the PPE to computesQiJ , J =

[m+1,m+2, . . . , l]. If J has less than 48 elements then the com-
putation is done entirely by the PPE in order to avoid the com-
munication and synchronization overhead (line 2). The thresh-
old of 48 elements has been empirically determined.

If J has at least 48 elements, then the PPE distributes the
computation ofQiJ to the SPEs. To guarantee that the data
which must be transferred to the SPEs is properly aligned, itis
necessary to identify a new range [jstart, . . . , jend] ⊆ J such
that the addresses ofy j[jstart] andy j[jend] are aligned
at 16B (quadword) boundary (lines 6–9). In fact, the Cell pro-
cessor requires that the starting address of a DMA transfer is
quadword-aligned, and also requires that the length of the trans-
ferred block is multiple of 16 bytes. Leading and trailing ele-
ments ofQiJ are evaluated by the PPE (lines 11–14). Since all
vectors are allocated at 16B boundary, then ify_j[jstart] is
quadword-aligned, also the corresponding elements of all other
vectors are aligned.

Now the range [jstart, . . . , jend] is partitioned intoK dis-
joint sub-rangesJ1, J2, . . . , JK (line 16), and the computation of
QiJk is delegated to one of the SPEs. The number of elements
of eachJk is computed by the PPE such that: (i) the input pa-
rameters needed to computeQiJk fit into the LS; (ii) the starting
address of the memory block to transfer is quadword-aligned;
(iii) the length of each block is a multiple of 16 bytes.

After having determined the partitionJ1, J2, . . . , JK , the PPE
allocates a data structure containing a description of the tasks

2For the sake of simplicity, we ignore the fact that arrays in the C language
are indexed from 0

Algorithm 3 Computation ofQiJ , PPE code
Require: Row indexi
Require: Column indexesJ = [m+ 1,m+ 2, . . . , l]

1: if (|J| < 48) then
2: ComputeQiJ on the PPE using Eq. (2)
3: else
4: jstart := m+ 1
5: jend := l
6: while (y j[jstart] is not quadword-aligned)do
7: jstart := jstart + 1

8: while (y j[jend] is not quadword-aligned)do
9: jend := jend − 1

10: {Evaluate unaligned portion on the PPE}
11: for j := m+ 1, . . . , jstart − 1 do
12: ComputeQi j on the PPE using Eq. (2)

13: for j := jend + 1, . . . , l do
14: ComputeQi j on the PPE using Eq. (2)

15: {Evaluate aligned portion on the SPE}
16: Define a partitionJ1, J2, . . . , JK of [jstart, . . . , jend]
17: Setup task queueT Q with K task descriptors

T1,T2, . . . ,TK

18: for all SPEi do
19: Send address ofT Q to SPEi

20: for all SPEi do
21: Wait for SPEi to complete

which will be executed by the SPEs. Atask descriptoris a C
struct containing the following items:

• The scalar valueyi (signed char yi);

• Effective Address (EA) of the first element of vectoryJk

(uint64 t yj ead);

• The number of elements ofJk (uint32 t yj size );

• EA of the first block of sparse vectorxi (uint64 t xi ead);

• The number of blocks representing vectorxi

(uint32 t xi size );

• EA of the array of pointers to vectorsxJk

(uint64 t xj ar ead);

• EA of the array of sizes (number of blocks) of sparse vec-
torsxJk (uint64 t xj sz ead);

• EA of the array where the resultQiJk must be stored
(uint64 t result ead);

• The type of kernel function, and all additional parameters
needed to evaluate it.

There are exactlyK task descriptorsT1,T2, . . . ,TK , corre-
sponding to the data needed to computeQiJ1,QiJ2, . . . ,QiJK .
The task descriptors are stored contiguously in main memory
as an array handled as a FIFO queue (task queueT Q). The ad-
dress ofT Q is sent to each SPE (line 19); at this point, the PPE
waits for all SPEs to complete execution (line 21).
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Figure A.5:Input represents the data transferred from main memory to LS for kernel evaluation;Outputshows the results transferred back from LS to main memory.

Each SPE executes the pseudocode shown in Algorithm 4.
First, the SPE receives the EA (main memory address) of the
task queueT Q (line 2). Then, using atomic operations, one task
descriptorTk is removed from the task queue and copied into
the LS (line 4). All data referenced by the task descriptor–the
hatched area from Figure A.5–are copied from main memory
to LS (line 5) using DMA operations. When the data transfer
completes, the resultQiJk is computed and put back to main
memory (line 8) at the EA indicated by theresult_eadfield of
the task descriptor. The steps above are repeated until the task
queue becomes empty; at that point, each SPE signals the PPE
that the computation is complete.

Algorithm 4 Computation ofQiJ , SPE code
1: loop
2: Receive task queue addressT Q
3: while (T Q not empty)do
4: Get task descriptorTk from T Q
5: Get input data forTk from main memory
6: for all j ∈ Jk do
7: ComputeQi j on the SPE using Eq. (2)

8: PutQiJk to main memory

9: Signal completion to the PPE

Computing vector dot product on the SPE.We now describe
how to compute efficiently the dot product of two sparse vec-
torspx andpy on the SPE, using SIMD vector instructions. The
dot product can be implemented by the SPE by multiplying the
values of two blocks with the same index, and accumulating the
result with the multiply-and-add SIMD instruction. The C lan-

guage SPE implementation of the dot product is the following:

float spu dot( const svm 4node ∗ px, const svm 4node ∗ py ) {
const vec int4 ∗pxidx = &(px−>index);
const vec int4 ∗pyidx = &(py−>index);
const vec float4 ∗pxval = &(px−>val);
const vec float4 ∗pyval = &(py−>val);
vec float4 result = spu splats(( float )0.0);
int idx x = spu extract( ∗pxidx, 0 );
int idx y = spu extract( ∗pyidx, 0 );
while ( idx x != −1 && idx y != −1 ) {

if ( idx x==idx y ) {
result = spu madd(∗pxval,∗pyval,result);
pxidx += 2; pxval += 2; pyidx += 2; pyval += 2;
idx x = spu extract( ∗pxidx, 0 );
idx y = spu extract( ∗pyidx, 0 );
} else {

if ( idx x < idx y ) {
pxidx += 2; pxval += 2; idx x = spu extract( ∗pxidx, 0 );

} else {
pyidx += 2; pyval += 2; idx y = spu extract( ∗pyidx, 0 );

}

}

}

return spu extract( result ,0) + spu extract( result ,1) +
spu extract( result ,2) + spu extract( result ,3);

}

Note the use of pointers rather than indexing expressions to
compute the addresses of vector elements without using mul-
tiplications. spu_splats(v,s) sets all elements ofv to the
scalar values. spu_madd(v,w,r) computesr i := r i + vi × wi

for vectors r = [r1, r2, r3, r4], v = [v1, v2, v3, v4] and w =

[w1,w2,w3,w4]. spu_extract(v,i) returns thei-th element
of vectorv.
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