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Abstract—In this paper, a new artificial neural network model 

is proposed for visual object recognition, in which the bottom-up, 

sensory-driven pathway and top-down, expectation-driven 

pathway are fused in information processing and their 

corresponding weights are learned based on the fused neuron 

activities. During the supervised learning process, the target 

labels are applied to update the bottom-up synaptic weights of the 

neural network. Meanwhile, the hypotheses generated by the 

bottom-up pathway produce expectations on sensory inputs 

through the top-down pathway. The expectations are constrained 

by the real data from the sensory inputs which can be used to 

update the top-down synaptic weights accordingly. To further 

improve the visual object recognition performance, the multi-

scale histograms of oriented gradients (MS-HOG) method is 

proposed to extract local features of visual objects from images. 

Extensive experiments on different image datasets demonstrate 

the efficiency and robustness of the proposed neural network 

model with features extracted using the MS-HOG method on 

visual object recognition compared with other state-of-the-art 

methods. 

 
Index Terms—neural networks, bottom-up and top-down 

pathways, visual object recognition, multi-scale histograms of 

oriented gradients.  

 

I. INTRODUCTION 

isual object learning and recognition is a challenging 

problem in computer vision and machine learning areas. 

Although extensive algorithms have been proposed during past 

decades, it is still very hard to recognize and learn various 

objects under different environments with significant variant 

appearances. Generally speaking, object recognition is to learn 

invariance features or so-called latent variables of the objects 

from various training data and to recognize the learned object 

from unseen data. This procedure usually consists of two steps: 

object feature extraction and classification.  In classification, 

one main challenge is to correctly represent feature 

distributions due to significant data variances. Many 

generative models have been proposed to describe such 

distributions directly, whereas the parameters of the presumed 

models are learned through probability-based methods like 
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Bayesian networks [1]. Objects are modeled as flexible 

constellations of parts and the parameters were learned 

through an expectation-maximization process in [2]. The 

approaches based on bag-of-words analogously take image 

patches as words in texts and learn the patch distributions over 

the categories based on probabilities [3]. Generative models 

usually have interpretable meanings and are able to draw 

samples or synthetic data. However, it is difficult to build 

optimal generative models with little prior knowledge of the 

object, especially with a small number of data sets. 

On the other hand, many discriminative approaches focused 

on finding separation boundaries between different categories 

in object recognition, such as nearest neighbors [4], support 

vector machines (SVM) [5], multiple classifiers [6], etc.. 

Discriminative algorithms usually have a better recognition 

accuracy compared to generative models. However, 

discriminative algorithms heavily rely on the training data 

which may lead to the over-fitting problems and poor 

generalization. 

Among these algorithms, artificial neural networks (ANN) 

have been studied and applied in different ways.  For example, 

a wavelet neural network is applied to recognize object 

boundary representations with efficient computational cost due 

to the learning of the optimal scale-translation parameters [7]. 

A neural network based intelligent machine vision system for 

cork tiles classification is described in[8], which consists of 

image acquisition, feature generation and processing. Xin et al. 

[9] propose a neural network model, where the model is built 

on individual stable spaces to recognize people faces under 

uncontrolled conditions. The graph neural network model 

extends conventional neural network models by representing 

the data in graph domains to explore their underlying 

relationships [10]. When applied on object recognition, most 

ANN models adopt the feed-forward (FF) structures and the 

supervised learning with error back-propagation from data 

space to latent space.  

However, evidence found in cognitive brain research and 

neuroscience suggests that the nervous system responsible for 

object recognition has distributed cortical structures containing 

both bottom-up and top-down pathways [11, 12]. Grossberg 

started to explore this area since 1970’s and proposed the 

Adaptive Resonance Theory (ART), which is a general 

framework for representing interactions between bottom-up 

and top-down pathways [13]. The Hopfield network was 

studied as associative memories with symmetric connections 
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between neurons back to 1980s[14]. The biased competition 

theory has been proposed in [15] to explain the top-down 

attention of spatial stimulus and different feature dimensions. 

A neural cluster model is proposed in [16] to develop 

spatiotemporal features by adapting both Hebbian rules and 

lateral inhibition from natural videos. A neural network of 

Wilson-Cowan oscillators is proposed in [17] for recognition 

of abstract object by investigating the interactions among 

topological maps, auto-associative memory and gamma-bank 

synchronization  

In this paper, we aim to explore the potentials of combining 

discriminative and generative data flows in ANN architectures. 

More specifically, we propose a novel ANN model, called 

FBTP-NN, by fusing the information from both bottom-up 

(stimulus) and top-down (expectation) pathways, and apply 

this model to object recognition.  A learning algorithm for the 

proposed FBTP-NN model is also suggested which focuses on 

the following two procedures iteratively: the impact of top-

down expectations on the modulations of neuron activity in the 

lower-layer of the ANN, and the consequential updates of 

neuron activities in the higher-layer of the ANN through the 

bottom-up propagation.   

Instead of using the predefined spatial attention to distribute 

attention strengths to different regions in the images, like most 

bottom-up and top-down approaches in neural networks [15, 

18], the top-down expectation in the proposed model is 

generated from training samples, and focuses on interpreting 

the object appearances to recognize objects instead of 

searching and localizing them.  In other words, our FBTP-NN 

model focuses on solving “what is the object?” problem 

instead of “where is the object?” problem. We believe that the 

best interpretation of an object should contain not only the 

input data but also a priori knowledge of the object that has 

been learned before, which can be realized through the top-

down expectations. Compared to other classifiers, such as 

SVM, where a specific SVM classifier has to be constructed 

for each class, the proposed FBTP-NN model is a single model 

which can be applied to multi-class recognition directly. 

Some preliminary work has been presented in our previous 

work [19].  Several major extensions are reported in this 

paper.  (1) A probability-based framework is introduced to 

describe the iterative fusion process with the constraint of 

minimizing the joint distribution of the synaptic weights of 

both bottom-up and top-down pathways.  Then a cost function 

containing both pathways is constructed and the corresponding 

learning rules are conducted. (2) To improve the overall object 

recognition performance, a new feature extraction method, 

called the multi-scale histograms of oriented gradients (MS-

HOG) method, has been proposed.  (3) Several new 

experiments on large datasets such as the MIT pedestrian 

dataset and Caltech objects datasets have been adopted to 

evaluate the efficiency of the proposed model.  

The rest of this paper is organized as follows. Related work 

is discussed in Section II.  The proposed FBTP-NN model is 

presented in Section III. The learning process of the FBTP-NN 

model is described in Section IV.  Section V presents a 

experiment without feature extraction to demonstrate the 

integration process of two pathways of the proposed model.  

Section VI describes experimental results with an advanced 

feature extraction method (i.e., MS-HOG) on different object 

recognition databases. Conclusions and future work are given 

in Section VII.  

II. RELATED WORK 

    Some work has been proposed to combine generative and 

discriminative approaches in a two-stage way: using generative 

algorithms to extract features and using discriminative models 

to learn features.  The ‘discriminatively-trained’ generative 

model is proposed in [20] to blend both discriminative and 

generative priors via a specific parameter, which can be treated 

as a general way to interpolate discriminative and generative 

extremes. A boosting algorithm is applied in [21] to select 

features considering both discrimination and reconstruction to 

achieve better robustness.  

 Some neural-network-like approaches tried to integrate 

bottom-up and top-down information for object recognition 

and interpretation. The auto encoder/decoder algorithms [22] 

and well-known Restricted Boltzmann Machine[23] focus on 

learning generative models from unlabeled data. A feedback 

model is proposed in [24] to bias the perceptual stimuli and 

facilitate the learning of sub-ordinate level representations 

suitable for object identification and perceptual expertise. 

Salinas and Sejnowski [25] propose a gain modulation theory 

to explain how the modulating neurons affect the gain or 

sensitivity of others as a widespread mechanism. A neural 

network model is proposed in [26] to restore partially-

occluded patterns using feedback signals. The Helmholtz 

machine [27] contains one generative network and one 

discriminative network independently, and a  sleep-wake 

learning algorithm is applied to search for the latent variables   

from the data in an unsupervised way. However, these 

approaches either learn the top-down pathway or bottom-up 

pathway separately without fusing the neural dynamics of both 

pathways, or tangle both pathways together by applying 

symmetric weights. Some methods mainly focus on building 

up biologically plausible models, where only very simple 

images have been considered in experiments.    

In this paper, we aim to propose a new ANN model, where 

the information in the bottom-up and top-down pathways is 

fused in a natural way under the joint probability distribution 

of synaptic weights of both pathways.  Constrained by the true 

labels and sensory data, the bottom-up stimuli and the top-

down modulation propagate iteratively to change neuron 

activities and adjust related synaptic weights of the neural 

networks.   



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

3 

III. FUSING BOTTOM-UP AND TOP-DOWN PATHWAYS IN 

NEURAL NETWORKS (FBTP-NN) 

A. The System Framework  

Although the working mechanisms of human cortex have 

not been fully understood in neuroscience and cognitive 

science, increasing evidence has revealed that the neural 

system associated with learning and object recognition is a 

distributed cortical structure containing both bottom-up and 

top-down pathways. When an object is presented, the sensory 

input may generate ambiguous hypotheses, which could get 

similar scores (from neuron activities) in the conventional feed 

forward neural networks (FF-NN). However, the top-down 

signals that contain a priori knowledge or the memory of the 

related objects can help to modulate the bottom-up pathway so 

that the ambiguousness in the stimulus can be reduced and 

more confident hypothesis can be generated and selected.  

In supervised learning of FF-NN, usually the objective 

function is to minimize the error between the predicted labels 

and the real ones. In training the FBTP-NN model, both 

sensory input data and output labels are treated equally as the 

environmental constraints. And the FBTP-NN model tries to 

learn both hypotheses from bottom-up pathway and 

expectations from top-down pathway at the same time, which 

can be achieved by updating the network weights based on the 

fusions of the bi-directional data flows.  

 
 

Fig. 1. The framework of the FBTP-NN model. The bottom-up process is 

represented in solid lines and the top-down process is described in dashed 

lines. Data and labels put constrains on the input and output layers of the 

network. At every hidden layer, the bottom-up stimuli (in solid circles) are 

fused with top-down expectations (in dashed circles) and vice versa.  

 

The general framework of the FBTP-NN model is 

developed based on the above ideas and is shown in Fig.1. The 

model may have multiple layers but contains only one input 

layer and one output layer, which are the interfaces of the 

network to the environment (i.e., input data and output labels). 

A number of hidden layers exist in between. The input layer 

receives the sensory input and generates a few hypotheses at 

the output layer through the bottom-up pathway, the output 

layer then produces expectations on the sensory stimulus via 

the top-down pathway, and this information processing 

procedure is conducted layer by layer. For example, the 

expectation information will be fused with the sensory stimuli 

to update neuron activities of the hidden layers. The updated 

neuron activities will then generate new hypotheses and send 

them to the output layer accordingly. Such procedures repeat 

until certain stop conditions are met. During the learning, the 

fusion of the neuron activities in both pathways is conducted 

only at hidden layers.   

  To train the FBTP-NN model, it is essential to define a 

cost function that considers requirements of both pathways.  

To this end, a cost function that considers both the labeling 

error at the output layer and the discrepancy at the input layer 

has been developed. The weights in both pathways of the 

neural network are updated iteratively by minimizing this cost 

function. Details about the cost function and the fusion 

technique will be discussed in later sections.  

B. The Basic Two-layer FBTP-NN Sub-network 

The proposed FBTP-NN may contain multiple hidden 

layers. Since the update of neuron activities and synaptic 

weights depend only on its adjacent layers, for the sake of 

simplicity, we will first discuss the basic two-layer FBTP-NN 

sub-network structure, as shown in Fig. 2. In this two-layer 

structure, the bottom layer },...,{ 21 Nxxx  is called the data 

layer with N neurons. The top layer },...,{ 21 Myyy is called the 

feature layer with M neurons, which is considered as the 

features of the data layer. Each layer contains a number of 

neurons. Neurons of different layers are fully connected. For 

example, iuw is the synaptic weight of the bottom-up pathway 

from neuron ix to uy ; and uiq is the synaptic weights of the 

top-down pathways from neuron uy
 

to ix . Note that the 

assumption of a fully-connected structure may not be plausible 

in real visual cortical systems, where neurons of different 

layers are connected sparsely according to the receptive fields 

with various sizes. Since we mainly focus on exploring vertical 

data flows here, it is assumed that the network has fully-

connected inter-layer connections.  

The sub-network (inside the dotted square) is stimulated by 

the environment, which may contain both data vector 

},...,{ 21 NdddD  and the feature vector },...,{ 21 MlllL . 
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Fig. 2.  The basic two-layer FBTP-NN sub-network.  

 

 In such a sub-network, the neuron activity of a neuron x on 

the data layer is defined as: 
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where )1( txi  is the neuron activity of i-th data neuron at 

time step t+1, which depends on its  neuron activity from the 

last time step )(txi  and the stimuli from the current time step 
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sum of top-down expectations from all its related feature 

neurons uy  and the corresponding top-down weights uiq . The 

expectation is then fed into the activation function g, which is 

a sigmoid function defined as )1(1)( xexg   to represent 

the activation characteristic of neurons. )1,0(1  is a factor.  

Similarly the neuron activity of a feature neuron y is defined 

as: 
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where )1( tyu is the neuron activity of u-th feature neuron at 

time step t+1, which  depends on its previous neuron activity 

)(tyu and the current stimuli of 

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connected data neurons )1( txi  with the corresponding 

bottom-up weights iuw . )1,0(2  is a factor.  

  Now we will provide a simple convergence proof of the 

neuron dynamics in Eqns. (1) and (2).   We will use Eqn. (2) 

as an example here. Eqn. (2) can also be written as: 
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Where the new stimuli of moment k is 
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function is within the range of (0,1),  we have 

)1()(0 2 kyu . Suppose that from time step k  , the 

bottom-up weights iuw  are fixed, if the neuron activities of the 

input layer ktkxtx ii    where),()( are also fixed, the 

stimuli of the feature layer can be written as 

ktCkyty uu   where,)1()()( 2  and the constant 

C is the result of the activation function. Therefore, from Eqn. 

(4), we have  
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  (5) 

Eqn. (5) shows that given the fixed bottom-up weights and 

neuron activities of the lower layer, the activities of feature 

neurons can be approximated by the sum of a geometric series 

which will converge over time. Eqn. (5) means that the neuron 

activity will converge if the related weights are learned. 

Similar proof can be applied to Eqn. (1).  

Ideally the converged neuron activity will be applied to the 

cost function (defined in later section) and be used to update 

the related connection weights.  Practically, the neuron 

activities after several iterations are adopted to learn the 

synaptic weights of the network. Meanwhile, the input sensory 

data, the true labels and the neuron activities are regulated 

inside the range of (0, 1) to narrow down the convergence 

range of the neuron dynamics as well.   

A multi-layer neural network can be constructed by 

assembling a number of basic two-layer sub-networks.  More 

specifically, the first basic sub-network consists of the input 

layer (as the data layer) and the first hidden layer (as the 

feature layer).  Then, the second basic sub-network includes 

the first hidden layer (as the data layer) and the second hidden 

layer (as the feature layer). This procedure continues all the 

way up to the output layer, which is the feature layer of the last 

basic sub-network.  For a multi-layer neural network, the input 

layer is the sensory input, and the output layer is the 

corresponding labels.  Any hidden layer can be either treated 

as the data layer or the feature layer depending on which basic 

sub-network it is referring to at the current moment.  
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IV. THE LEANING ALGORITHMS 

A. The Learning Objective 

All given training data D and the corresponding labels L can 

be treated as the samples of data-label variables },{ LD . On the 

other hand, all possible values of weights of the FBTP-NN 

model construct the weight variables },{ QW , where W and Q 

refer to the synaptic weights of bottom-up and top-down 

pathways, respectively. The discriminative representation of 

the joint distribution of all above variables can be defined as: 

),()(),(),,,( QWPQDPWDLPQWLDP     (6) 

where ),( WDLP  is the discriminative likelihood along the 

bottom-up pathway, representing the probability of true labels 

L given the data D and the current synaptic weights W of the 

bottom-up pathway.  ),( QWP is the joint distribution of 

network weights. )( QDP is the marginal data prior given the 

top-down generative weights. Therefore, if the network is 

considered to be parameterized by the weights of both 

pathways, the learning goal is to find proper },{ QW that can 

maximize Eqn. (6).  

 On the other hand, the generative representation of the joint 

distribution of Eqn. (6) can be defined as: 

),()(),(),,,( QWPWLPQLDPQWLDP     (7) 

where ),( QLDP is the data expectation along the top-down 

generative pathway of the network, as the conditional 

probability of data D given the label vector L and the  synaptic 

weights Q of the top-down pathway. )( WLP is the marginal 

label prior given the bottom-up weights. 

Since the prior probability ),( QWP can be assumed to be a 

uniform distribution, we can derive Eqns. (6) and (7) to the 

following two equations, respectively:  

)(),(),,,( QDPWDLPQWLDP      (8) 

)(),(),,,( WLPQLDPQWLDP      (9) 

where   denotes proportionality. 

So the learning objective is to find the corresponding 

weights },{ QW that can maximize the joint 

distribution ),,,( QWLDP , which can be defined as: 

 ),,,(maxarg},{
),(

WWLDPQW
QW

  

 It is difficult to learn both W and Q simultaneously when 

these two variables are tangled together. However, by using 

Eqns. (8) and (9), one of them can be learned with the other 

one being fixed. In Eqn. (8), the bottom-up weights W can be 

learned by maximizing the discriminative 

likelihood ),( WDLP , with the data prior )( QDP given fixed 

top-down weights Q. Similarly, in Eqn. (9), the top-down 

weights Q can be learned by maximizing the data expectation 

),( QLDP with the label prior )( WLP  given the fixed bottom-

up weights W.  

 To achieve this learning objective, a cost function can be 

constructed to maximize the discriminative 

likelihood ),( WDLP and the data expectation ),( QLDP of 

Eqns. (8) and (9) with the data prior )( QDP and the label 

prior )( WLP , which can be treated as the desired neural 

activities.  

Maximizing a likelihood probability can be achieved by 

minimizing a cost function that represents the errors between 

the ground truth and the outputs of the model with given 

parameters over training data[28].  In this manner, the 

maximization of the discriminative likelihood can be obtained 

by minimizing the errors between the network bottom-up 

outputs and the desired labels, whilst the maximization of the 

data expectation can be approached by minimizing the errors 

between the network top-down expectation and the desired 

data over all neurons.  Therefore, the cost function of the 

learning algorithm can be defined as:   

  


N

i
ii

M

u
uu txtdtytltE

1

2

1

2 ))()(())()(()(    (10) 

where )(tlu is the desired neuron activity of latent neuron u and 

)(tyu  is the current activity for the same neuron. Similarly, 

)(tdi is the desired neuron activity of data neuron i and )(txi is 

the current activity for the same neuron. 

 The first part of Eqn. (10) actually corresponds to the 

maximization of the discriminative likelihood ),( WDLP and 

the second part corresponds to the maximization of the data 

expectation ),( QLDP . Since )(tlu denotes the desired neural 

activities of latent neuron, it can be used to represent the data 

prior )( QDP . Similar, )(tdi can be used to represent the label 

prior )( WLP . We will define )(tlu and )(tdi  in next section.    

B. Fusing Bi-directional Pathways 

For neurons of any hidden layer, their neuron activities 

depend on both the bottom-up pathway (when it works as the 

latent neuron) and the top-down pathway (when it acts as the 

data neuron). However, the desired neuron activities should be 

fixed if the joint distribution ),,,( QWLDP is settled. This 

means that the neuron activity along the bottom-up pathway 

and the neuron activity along the top-down pathway for the 

same neuron should be the same for a settled joint distribution.  

In Eqn. (8), given weights Q, the data prior )( QDP  actually 

represents the desired neuron activities along the top-down 

pathway, which should equal to that along the bottom-up 

pathway. This means that the desired neuron activity along the 

top-down pathway can be used to update the corresponding 

bottom-up weights. Therefore, the desired neuron activity 

)(tlu of a latent neuron can be defined as:  

)1()1()()(  txtytl uuu         (11) 

where )(tyu is the current neuron activity of neuron u along 

the bottom-up pathway when the neuron is treated as a feature 
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neuron. )1( txu is the desired neuron activity of the same 

neuron along the top-down pathway when the neuron is treated 

as a data neuron. Since the updates of the neuron activities 

along two pathways are unsynchronized, the desired neuron 

activity along the top-down pathway is from the last time step 

t-1.  is the fusion rate under the discriminative 

representation. Eqn. (11) actually shows that the bottom-up 

propagation tries to match the top-down expectation by 

pushing )(tyu towards )1( txu . Therefore, the bottom-up 

weights W can be learned by maximizing the discriminative 

likelihood ),( WDLP , which is the first part of Eqn. (10), 

where the desired L is given by data prior )( QDP  via Eqn. 

(11).   

    Similarly based on Eqn. (9) the desired neuron activity of a 

neuron under the generative representation can be defined as: 

 )1()1()()(  tytxtd iii          (12) 

where )(txi is the current neuron activity of the data neuron i 

and )1( tyi  is the desired neuron activity of the same neuron 

along the bottom-up pathway.   is the fusion rate under the 

generative representation. Eqn. (12) shows that the top-down 

expectation also tries to match the bottom-up sensory stimuli. 

If we treat the neuron activities along the top-down pathway as 

the learned template, Eqn. (12) aims to minimize the average 

difference between the template and various sensory stimuli. 

Therefore, the top-down weights Q can be learned by 

maximizing the data expectation ),( QLDP , which is the 

second part of Eqn. (10), where the desired D is defined by 

label prior )( WLP via Eqn. (12).  

 In summary, Eqns. (10) (11) and (12) actually define an 

iterative fusion process for learning both bottom-up and top-

down weights, in an unsynchronized manner.  Since both 

pathways follow the same joint distribution, as shown in Eqns. 

(8) and (9), their desired neuron activities can be applied to 

update the corresponding weights for each other.  

C. Weights Updates 

Given Eqns. (10), (11) and (12), the gradient descent is 

applied to update the weights of both pathways so that the cost 

function defined in Eqn. (10) can be minimized. Although 

Eqn. (10) contains both label errors of discriminative 

likelihood and differences of data expectation, the synaptic 

weights of two pathways can be updated independently based 

on following derivations. For the purpose of simplicity, the 

time dependency will be omitted thereafter.   

The derivative of the cost function with respect to the 

bottom-up weight iuw can be obtained as follows: 

iu

u
uu

iu

i
ii

iu dw

dy
yl

dw

dx
xd

dw

dE
)(2)(2     (13) 

 

Substituting Eqns. (1) and (2) into Eqn.  (13), we have: 

 

 )( uui
iu

ylxg
dw

dE
       (14) 

 

where  g   is the derivative of the activation function. For the 

sigmoid function )1(1)( xexg  , ))(1)(()( xgxgxg   is a 

constant for a given input.  ix represents the activity of the 

related data neuron.   ul  and uy  are the desired neuron 

activity and the real neuron activity of the latent neuron, 

respectively. Therefore, to minimize the cost function E, the 

change of weight iuw is defined as: 

 

)(1 uuiiu ylxrw  ,        (15) 

 

where 1r  is the learning rate of the bottom-up weights. Eqn. 

(15) is a Hebbian-like error-driven learning method.  

 Similarly, we can get the derivative of the cost function with 

respect to the top-down weights Q, and the update rule for a 

specific uiq   can be derived as:  

)( iiu
iu

xdyg
dq

dE
          (16) 

 )(2 iiuui xdyrq                 (17) 

 

where 2r is the learning rate of the top-down weights.  

D. The Learning Algorithm for the FBTP-NN Model 

By defining the desired neuron activities for all the layers, 

the supervised learning can be conducted through a number of 

bottom-up, top-down, and fusion iterations. Driven by the 

input data, the network generates hypotheses layer by layer 

through the bottom-up pathway. Then expectations are 

generated based on these hypotheses along the top-down 

pathway. For hidden layers, the stimulus and expectation are 

fused to generate the desired neuron activities.  The supervised 

learning procedure of the FBTP-NN can be summarized as 

followings. 

Generally, a FBTP-NN is a multi-layer neuron network 

consisting of a number of basic two-layer models described in 

Section III.A.  Given a FBTP-NN model with randomly 

initialized weights },{ QW  and a number of data-label 

pairs ),( LD , the bottom-up process starts from the input layer 

X with input data D. Here, the input layer of the network is the 

data layer and the first hidden layer is the feature layer in the 

basic two-layer model. 

 Step 1. Calculate the neuron activities on the feature 

layer Y via Eqn. (2).  

 Step 2. Update the bottom-up weights W via Eqn. (15). 

L is the feature information for the current feature layer, 

which can be defined in two cases.  If the current 

feature layer is the output layer of the neural network, L 

is the true label.  If the current feature layer is a hidden 

layer, L is defined in Eqn. (11). 

 Step 3. Move up one layer to build a new basic model.  
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The current feature layer becomes the data layer and the 

adjacent top layer becomes the feature layer in the new 

basic structure. Repeat steps 1-2 for the learning of the 

new basic structure. 

 Step 4. Repeat steps 1-3 until the output layer of the 

whole neural network. 

 

     Now we perform the top-down and fusion process from the 

output layer. Here, we start with a basic model using the 

output layer as the feature layer and the last hidden layer as the 

data layer.   

 Step 5. Calculate the neuron activities in data layer X 

via Eqn. (1).  

 Step6. Update the top-down weights Q using Eqn. (17). 

Here, the data information D can be defined in two 

cases. If the current data layer is the input layer, D is 

the true sensory data. If the current data layer is a 

hidden layer, D is defined in Eqn. (12).  

 Step 7. Move down one layer to build a new basic 

model. The current data layer becomes the feature layer 

and the adjacent bottom layer becomes the data layer in 

the new basic structure. Repeat steps 5 and 6 for the 

learning of this new basic structure. 

 Step 9. Repeat steps 5-8 until the input layer of the 

whole neural network.  

 Step 10. Repeat steps 1 to 9 until the stop condition is 

met.  

By repeating the above steps, the network will learn the 

labels in the output layer as well as the corresponding stimulus 

in the input layer by updating synaptic weights in both 

pathways.      

E.  The Testing Process of FBTP-NN Model 

Once the FBTP-NN model has been trained, it has both 

discriminative and generative abilities. When unseen data are 

presented, object recognition can be achieved by running the 

bottom-up discriminative process only. The output neuron with 

the highest activation value is considered to be the recognized 

object class.  However, if more than one output neuron has 

similar activation values, the top-down process will be 

activated to help the selection of the object class. By firing a 

single output neuron and keeping others silent, the top-down 

process can generate the expectation of the corresponding 

class at the input layer, which can be compared with the 

current sensory data to estimate the difference. Combining the 

discriminative confidence on the output layer and the 

generative difference on the input layer, the overall decision 

for object classification can be made. 

V. EXPERIMENTAL RESULTS WITHOUT FEATURE EXTRACTION 

A. Experiment Settings 

  To demonstrate the learning process of the proposed FBTP-

NN algorithm, a three-class classification experiment on visual 

object recognition has been performed. The data of bicycle, 

revolver, and treadmill are taken from Caltech 256, as shown 

in Fig. 3. The original images are transformed into gray 

images, where objects are presented as white pixels and the 

background as black pixels. For each category, objects with 

different appearances, sizes, orientations, backgrounds and 

lightening conditions are selected. For simplicity, no advanced 

feature extraction is conducted and only the pixel values of 

images are applied as inputs for the FBTP-NN model. The 

recognition with more advanced features as inputs may help to 

improve the recognition performance and will be discussed in 

the later sections. 

Then a three-layer FBTP-NN is built for object recognition.  

. The number of neurons in the input layer equals to the size of 

the training images, i.e. 32x24=768. The hidden layer has 

0.5x768=384 neurons and the output layer has 3 neurons. 

Neurons of adjacent layers are fully connected.  

Table I provides the parameter settings used in the 

experiments. They are chosen empirically by trial and error. 

The learning rates are set up as the same value for different 

weights. A fusion ratio of 0.01 produces good recognition 

performance for both pathways. For the supervised learning, 

generally 1000 iterations are adequate to achieve satisfactory 

results. The trade-off rate 21  and  of neuron activities are 

both set as 0.8 for all experiments. Sensitivity analysis of these 

parameters on the recognition performance will be discussed 

in next section. 

 

 
Fig. 3. Experimental data taken from Caltech 256. 

 
TABLE I. PARAMETER SETUPS 

Coefficient Value 

Learning rate 1r 2r   0.05 

Fusion ratio    0.01 

Max training loop 1000 

  

 The FBTP-NN model can be trained by using either the 

online learning mode or the batch learning mode. For the 

online learning mode, the training data are mixed randomly 

and presented to the network sequentially to reduce the 

forgetting influence.  
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B. Learning and Recognition Performance 

Fig. 4 shows the evolvements of top-down expectation on 

input layer. Since we applied raw pixel values of images as 

network inputs, the expectation naturally looks like original 

images. At the beginning, the network has learned nothing and 

the expectation is just noise, as shown on the top part of Fig.4. 

With more learning samples shown on the left of Fig. 4, the 

network can better capture the features of the object. The 

generated expectation has been evolved from some pure noise 

(top in Fig. 4) to a much more clear expectation prototype 

(bottom in Fig. 4). 

 For this 3-class recognition problem, each class has 50 

samples with various sizes, appearances and orientations.  50% 

data of each class are applied for training and the rest for 

testing. Fig.5 and 6 show the two types of error changes of the 

cost function defined in Eqn. (10) over training loops, 

respectively. Fig.5 shows the average label errors between the 

true labels and the outputs of the neural network over all three 

classes with all the training data.   Fig. 6 shows the average 

data discrepancy between the sensory data and the neuron 

activities of the input layer of the network over all three 

classes. From Fig. 5 we can see that the label error will 

converge to zero over time, which will ensure the recognition 

convergence.  From Fig. 6, the data discrepancy converges to a 

stable value (which is not zero) over time, this is reasonable 

because it is impossible to obtain the expectation template 

which is the same with all various input data. Fig. 5 and 6 

show that by applying the fusion process described in Eqns. 

(11) and (12), the cost function (10) can be minimized 

monotonically over learning steps.   

 

 
 

Fig. 4. Illustrative example of evolvements of the top-down expectation. With 

more samples (on the left), the network is able to generate better expectation 

of the object (on the right) from top to bottom.  

 

 
Fig. 5.The average label error changes over training loops for the 3-class 

experiment.  

 

Table II lists the average recognition rate over three classes 

with different learning rates. With a fixed training loop of 

1000, a learning rate of 0.05 seems to result in the best 

performance.  Table III lists the sensitivity analysis of the 

fusion rate on the recognition performance with the training 

loop as 1000 and learning rate as 0.05. It can be seen from 

Table III that a fusion rate of 0.01 has the best recognition 

performance. A too big fusion rate (e.g. 0.1 and 0.5) may 

cause oscillation in neural dynamics.  
 

 
Fig. 6. The average data discrepancy changes over training loops for the 3-

class experiment.  

 

Similarly, the sensitivity analysis of the training loops on the 

recognition performance is conducted, as listed in Table IV. 

From Table IV, it can be seen that once the network has 

learned the object features after a certain training loop, 

increasing training loop will not improve the recognition 

performance significantly.   

 
TABLE II. RECOGNITION RATES OVER DIFFERENT LEARNING RATES FOR THE 

THREE-CLASS EXPERIMENTS 

Learning 

Rate 

0.01 0.05 0.1 0.5 

Average 

Recognition 

Rate 

89.74% 92.15% 83.33% 71.79% 
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TABLE III. RECOGNITION RATES OVER DIFFERENT FUSION RATES FOR THE 

THREE-CLASS EXPERIMENTS 

Fusion 

Rate 

0.01 0.1 0.5 

Average 

Recognition 

Rate 

92.31% 86.15% 79.48% 

TABLE IV. RECOGNITION RATES OVER DIFFERENT TRAINING LOOPS FOR THE 

THREE-CLASS EXPERIMENTS 

Training 

Loop 

500 800 1000 1500 

Average 

Recognition 

Rate 

84.62% 91.75% 92.20% 92.15% 

 

In summary, to achieve a better recognition performance,   

the learning rate, fusion rate, and training loop needs to be set 

up by trial-and-error for a specific application.   

  Then we compare the proposed algorithm with the FF-NN 

using the back-propagation learning.   FF-NN is implemented 

using the Netlab toolbox [29]. The data are divided into two 

sets: the training set and the testing set, according to different 

training ratios. In this experiment, the training ratio is 60%, 

which means that 60% of the data are used for training and the 

rest 40% are used for testing.   The data will be trained and 

tested for five times and the average recognition rate will be 

calculated to evaluate the performance of the algorithm. Table 

V shows the comparison results of the recognition rates using 

both FF-NN and FBTP-NN. It can be seen that FBTP-NN 

outperforms the FF-NN on all object classes.    

 
TABLE V. RECOGNITION RATES OVER DIFFERENT TRAINING DATA SIZES FOR 

THE THREE-CLASS EXPERIMENTS 

Training 

Ratio 

Bicycle Revolver Treadmill 

Network FBTP FF FBTP FF FBTP FF 

60% 100 96.7 100 95.2 98.2 97.8 

  

   Due to the top-down process, the FBTP-NN model is more 

robust to noisy and incomplete data compared with feed-

forward networks. As shown in Fig.7, some incomplete 

samples are generated by randomly removing part of the data 

from images. 50% missing data means 50% of pixels in the 

images are picked out randomly and set to zero. Therefore, 

pixels missing from of the objects to be recognized are usually 

less than 50%. Then both FBTP-NN and FF-NN are trained by 

samples without missing data, and are tested using the samples 

with incomplete information. In this experiment, 40% samples 

are used as training data and all incomplete data are used for 

testing, i.e. 50 testing data for each class and the experimental 

results are listed in Table VI. From Table VI, it can be seen 

that FBTP-NN can achieve much better recognition 

performance than FF-NN.  

 

  
Fig. 7. Some incomplete samples with part of the pixels missing.  

 
TABLE  VI. RECOGNITION RATE COMPARISON ON INCOMPLETE DATA FOR 

THREE-CLASS EXPERIMENT 

Testing Data 50% Missing 

Network FBTP FF 

Bicycle 92% 90% 

Revolver 78% 70% 

Treadmill 84% 78% 

 

The above results can be explained as follows.  First, the 

information fusion process is applied in the FBTP-NN can 

push the bottom-up stimuli towards the top-down expectation. 

Therefore, the learned prototypes of the objects from sensory 

data to output labels become more compact since the average 

of all the previous samples of the same class is used.  When 

incomplete input data is presented, the FBTP-NN is able to 

generate better classification results with the help of this top-

down expectation. The second reason comes from the adoption 

of the top-down pathway during the testing process. When 

more than one hypothesis is activated from bottom-up, these 

hypotheses will be verified via the top-down pathway 

sequentially. A better classification decision can be made by 

combining the bottom-up output score and top-down 

expectation score. During the experiments, up to 13% data are 

verified by the top-down pathway. 

VI. EXPERIMENTAL RESULTS WITH AN ADVANCED FEATURE 

EXTRACTION METHOD 

A. Local Features for Object Recognition 

 Efficient feature extraction is also critical to improve the 

overall recognition performance.  Recently, the gradient-based 

local features have demonstrated to be effective for object 

recognition. The scale-invariant feature transform (SIFT) 

method was proposed to search for  key points and construct 

descriptors of corresponding regions around key points [30]. 

Histograms of Oriented Gradients (HOG) used the gradient 

orientations to describe local object appearance [31], where 

the whole image was represented by combining such 

orientation histograms across a number of small regions, called 

cells. 

The above approaches have several limitations when applied 

to visual object recognition. SIFT-based algorithms focus on 

object matching between different images. After a few key 

points are found, high-dimensional descriptors are needed to 
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represent local appearances. HOG-based methods partition the 

whole images into small cells with overlapping, and each cell 

holds a histogram, which leads to a large number of 

histograms. However, for general object recognition, we would 

like to have features with a lower dimension to reduce 

computational cost.  

Therefore, in this paper, a new feature extraction algorithm is 

proposed, which is called multi-scale HOG (MS-HOG).  First, 

the image is partitioned into a fixed number of cells and a 

histogram is constructed for each cell. Inside each cell, an 

edge-map and a contour-map are applied to filter out trivial 

gradients.  Then, to enhance the robustness, three scales of the 

original image are built and the HOG on each scale is 

extracted individually. The setting of three scales has 

demonstrated a trade-off between the representation ability and 

the computational cost. By applying this multi-scale strategy, 

the information loss due to the reduction of cell populations 

can be alleviated. On the other hand, the coarse scale can 

provide some global description of the objects, which is an 

advantage for object recognition compared with those 

approaches using local features only. In the following section, 

we will discuss the details about the MS-HOG features.   

B. Extracting MS-HOG Features 

Firstly, a multi-scale representation of the image is 

constructed using a scale-space theory. In a scale space, an 

image can be represented at different scales parameterized by 

the size of the smoothing kernel. The kernel size is controlled 

by its scale parameter, which also decides the size of image 

spatial structures that will be smoothed away in the 

corresponding scale-space level. The most widely used scale-

space is called Gaussian scale-space with the Gaussian 

function as the kernel. Given any 2D images ( , )I x y , its scale-

space representations ( , , )I x y  are defined as convolutions of 

the original image and the Gaussian kernel as: 

 

( , ; ) ( )( , )I x y g I x y           (17) 

 

Where g is the Gaussian kernel with size  

as
2 2( )/ (2 )1

2

x yg e 




  . When 0  , ( , , )I x y  is the original 

image itself. When  increases, ( , , )I x y  is the result of 

smoothing the image with a larger filter and more details of the 

images are removed. Fig.8 shows three representations 

smoothed by a Gaussian kernel with an increasing .  It can be 

seen that details about the face, clothes and backgrounds are 

smoothed out and the overall contour of the person is kept 

from the bottom image to the top image.   

After getting multi-scale representations of the object, the 

HOG features can be extracted for each representation 

individually. For simplicity, the scale parameter is omitted and 

the image of current scale is noted as ( , )I x y . First, the 

gradient map is calculated, which will be filtered by the edge-

map and the contour-map to remove trivial gradients. The 

orientations are computed on the remaining gradients, and the 

histograms of orientations can be generated accordingly. The 

magnitudes of gradients are calculated by the convolution of 

the image with 2D differential of Gaussian (DOG) 

as 2 2( ) ( ) ( )mag I I y I x      . To suppress the trivial 

gradients, we hope to keep the gradients that are local 

maximums only. Therefore we filter the gradients by edge map 

and the gradients that are identified as edges will be kept. To 

fine tune the gradients further, the contour map is applied to 

remove the isolated gradients and backgrounds. Fig.8 also 

shows the gradient-map without pruning and the corresponding 

contour map. It can be seen that small gradients are filtered 

out. 

 
(a)                           (b)                    (c)   

 
(d)   

Fig. 8. An example of extracting MSHOG features. (a) the original image 

with a person to be marked; (b) Representations of three scales are shown 

from top-scale to bottom-scale, which corresponds from the coarse contour to 

the fine image; (c) The edge and contour maps of the top-scale of (b); (d) the 

MSHOG vector of the top-scale representation. The image is divided into 16 

grid cells and each cell contains a histogram of 8 orientations, which gives 

128-length vector for each scale (as the x axis). Inside each cell, the histogram 

is normalized (as the y axis). Therefore, the complete MSHOG with three 

scales is a 384-length vector.  

 

  Then we calculate orientations for the filtered gradients 

map and construct the histogram of orientation gradients. We 

adopt histograms with 8 channels spread over 0 to 360 

degrees. The whole image is divided into a number of cells 

evenly and each cell contains a separate histogram. Many 

HOG-based algorithms extract histograms on cells with a fixed 

size, which will be affected by the image size and the width-

height ratio. Our method is independent of such parameters. 

Inside each cell, the histogram is then normalized over all 

channels for invariance under intensity changes. Fig.6 shows 

the HOG of one scale of 16 cells and 8 channels, given the 

feature vector with a length of 128 dimensions. The MSHOG 

with three scales will have 384 dimensions totally. 
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     For any given image, we construct multi-scale 

representations and extract HOG for each scale, which 

generates the multi-scale HOG of the image. Then we apply 

the MSHOG as feature vectors to train the FBTP-NN for 

object recognition tasks 

C. Experiments on MIT Pedestrians Dataset 

 Additional experiments have been conducted to evaluate the 

performance of the MS-HOG based feature extraction and the 

FBTP-NN model for classification in object recognition using 

MIT pedestrians dataset [32] with 924 images of people, 

where  2772 background patches (three patches per image) are 

randomly extracted as negative data. Fig.9 shows some 

examples of adopted images. Then different ratios of data are 

randomly chosen from datasets as training samples, and the 

rest for testing samples.   

Table VII shows the comparison results of the recognition 

rates of our proposed method (MS-HOG plus FBTP-NN) and 

a few selected state-of-the-art algorithms. Combining the body 

parts model with SVM can provide up to 88% recognition rate 

[33]. In [34], a probabilistic assembly of robust part detectors 

was applied with boosting, and the recognition rate is 87% 

with one false positive per 1.8 image. In [35], a PCA-based 

reconstruction combined with a SVM can reach a recognition 

rate of 90.69% (99.02% was claimed with more false positive 

tolerance). The proposed FBTP-NN combined with the 

MSHOG can achieve a recognition rate of 98.02% with 2% 

false positive misclassification rate of the background patches. 

Each image adopts MSHOG features of 3 scales with 36 cells 

for each scale. 370 image samples are used for the experiment 

where 40% is for training and 60% for testing. Under the same 

training ratio and training iterations, the feed-forward neural 

network (FFNN) combined with the MSHOG can achieve a 

correct recognition rate of 94.60% with 3% false positive. 

Some near-perfect recognition results using a fine tuned SVM 

was reported in [31] with more than 1000 images for training 

in [31].   

 

 
Fig. 9. Some examples of the MIT pedestrian dataset. 

 

TABLE VII. PERFORMANCE COMPARISON WITH ALTERNATIVE ALGORITHMS 

 Body 

model 

+ SVM 

[33] 

Parts+ 

Boosting 

[34] 

PCA+ 

SVM 

[35] 

MSHOG

+ 

FFNN 

MSHOG

+ 

FBTPNN 

Recognition 

Rate (%) 

88 87 90.69 94.60 98.01 

 

 
Fig. 10. Some examples of distorted images with salt and pepper noises. 

 
TABLE VIII. RECOGNITION RATE OF MSHOG + FBTPNN FOR MIT 

PEDESTRIAN DATASET WITH DISTORTIONS 

Training Data 50% Data 

15% noise 95.89% 

30% noise 92.01% 

 

To test the robustness of the proposed method to noise in 

images, the image data are intentionally distorted by adding 

salt and pepper noise. Fig.10 shows some examples of the 

distorted data with 15% or 30% pixels contaminated by noise. 

In some images the person contour has been distorted and is 

hard to recognize even by human.  Table VIII shows the 

recognition results of the proposed method (MS-HOG plus 

FBTP-NN) on the MIT pedestrian datasets with the training 

ratio of 50% and distortion ratios of 15% and 30%. It can be 

seen from Table VIII that we can still achieve reasonable good 

recognition performance even with 30% pixels being distorted 

by noise. The main reason for this is that the MS-HOG based 

feature extraction method can capture the global information 

of the object so that the noise affection can be alleviated, and 

the top-down estimation of the FBTP-NN model can 

compensate the distortion at some level.    

D. Experiments on Caltech Dataset 

In this subsection, we evaluate the proposed algorithms on 

multi-category object recognition by using the MIT 

pedestrians dataset and Caltech dataset with motorcycles, 

airplanes, cars and faces. Fig.11 shows some examples from 

the Caltech dataset. Although these images have various sizes 

and width-height ratios, we can apply the same MS-HOG 

feature extraction method on them without tailoring scanning 

windows from dataset to dataset.  

 

 
Fig. 11. Some image examples of Caltech datasets. 
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TABLE  VIIII. PERFORMANCES COMPARISON BETWEEN SS-HOG AND MS-HOG 

FOR TWO-CLASS EXPERIMENT 

Category SSHOG MSHOG 

Plane 63.2% 85.5% 

Car 96.1% 99.0% 

 

 First we evaluate the efficiency of the MSHOG feature. We 

choose airplane and car as objects and pick out 100 images for 

each category. For each image, we calculate the single-scale 

HOG (SS-HOG) by using the procedures described in Section 

VI.B on the original images, which turns out as a 128-length 

vector by applying 16 cells and 8 orientations for each cell. It 

is different to the HOG described in  [31], which scanned the 

image with a fixed-size window and generated much larger 

histogram vectors. The MS-HOG features with 3 scales, 16 

cells and 8 orientation channels are also extracted on all 

images for comparison. For simplicity we just demonstrate the 

experimental results with 1500 training loops and 25% training 

ratio. Table VIIII shows that apparently the recognition rate 

has been improved by using the MS-HOG features over SS-

HOG. The recognition rate of plane has been raised by 22.3%. 

It is worth noting that the computational cost of the MS-HOG 

is low due to its sparse feature extraction.  All the above 

experiments only adopt 16 cells over each image. More cells 

should be able to provide more detailed information about the 

object. 

Finally, the entire Caltech dataset with 4-category i.e., car, 

human face, motor and plane images, are conducted and all 

images are applied. Table X lists the comparison results of the 

proposed method with a few the state-of-the-art approaches 

reported recently.  It can be seen from Table X that the 

proposed algorithm can achieve a comparable recognition rate. 

More importantly, instead of constructing different classifiers 

for different classes, such as SVM-based classifiers, our 

algorithm is applicable to multi-category datasets using one 

single model. On the other hand, we have not found many 

approaches using neural networks as classifiers on the Caltech 

dataset, which can be compared with our algorithm. In [36] a 

three-layer feed-forward neural network is applied on face data 

of Caltech dataset, and it can achieve a recognition rate of 

84.44%, which is much lower than the recognition rate using 

the proposed method listed in Table X. We also applied the 

FF-NN combined with the MS-HOG on this 4-class 

recognition problem. However the adopted FFNN was unable 

to recognize 4 classes simultaneously at a reasonable level and 

the results are omitted here. 

 
TABLE X.  PERFORMANCE COMPARISON ON CALTECH DATASET 

Class Constellation 

[2] 

Boosting 

context[37] 

Forest-

ECOC 

[38] 

MSHOG+

FTBPNN 

Car 90.3 96.9 99.35 99.42 

Face 96.4 89.5 97.72 96.68 

Motor 92.5 95.0 93.58 94.92 

Plane 90.2 94.5 92.50 95.97 

VII. CONCLUSION AND FUTURE WORK 

In this paper, a novel neural network model, called FBTP-

NN, with both bottom-up and top-down information 

processing pathways is proposed for object recognition.  

Instead of applying symmetric weights or interpolating the 

weights of two pathways heuristically, a joint probability 

distribution is produced to describe the fusion of neural 

activities in bi-directional pathways. Correspondingly, a cost 

function is constructed to contain both the recognition label 

error and the data discrepancy based on this joint probability 

distribution. Then a learning method is proposed to minimize 

the cost function by updating the weights of both pathways. To 

improve the recognition rate, a new MS-HOG based feature 

extraction method is developed. Various experimental results 

demonstrate the efficiency and robustness of the proposed 

algorithms using normal datasets and heavily distorted dataset.  

 In the future, we will evaluate the proposed model on more 

complex datasets like Caltech 101 and compare its 

performance with the state-of-the-art approaches. We would 

also like to extend the proposed algorithm for more advanced 

recognition scenarios that may include the rotations, 

transportations and multiple objects. In addition, we intend to 

investigate more advanced fusion techniques from new neuron 

science evidences. Beyond the visual object recognition, the 

proposed model can also be applied to other real-world 

applications, such as data reconstruction, data synthesis, and 

knowledge-based reasoning.   
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