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Abstract. A novel method for the discrimination between discrete states
of brain consciousness is proposed. This is achieved by examining non-
linear features within the electroencephalogram (EEG). To allow for real
time mode of operation, a convex combination of a linear and nonlinear
filter is used within a collaborative adaptive filtering architecture. The
evolution of the mixing parameter within this structure is then used to
indicate the predominantly linear or nonlinear nature of the EEG. Simu-
lations illustrate the suitability of this approach to differentiate between
the coma and quasi-brain-death states.

1 Introduction

The investigation of the information processing mechanism of the brain, espe-
cially consciousness states, is an active area of research. One important topic
is the identification of brain death - the legal definition of brain death is ‘irre-
versible loss of forebrain and brainstem functions’ [1], however, it is very difficult
to implement brain death diagnosis effectively. Specialized personnel and tech-
nology are needed to perform a series of tests which are expensive and time
consuming and can put patient at a risk.

Some of the brain death tests require that medical care instruments be re-
moved, further still, some tests require that the patient be transported out of the
intensive care unit (ICU). Other, confirmatory tests, need to be performed sev-
eral times with intervals of up to ten hours and can take as long as 30 minutes
each. Although the diagnostic criteria are different from country to country,
these tests can put the patient at potential medical risk due to the requirements
of implementing tests. The tests also put stress on the already compromised
organ [2]. To overcome the above difficulties, a preliminary EEG test has been
proposed [3] to determine whether further brain death tests, especially those
requiring patients to be disconnected from important medical devices, need to
be implemented or not. From this test an initial prognosis of quasi-brain-death
(QBD) is given. The term “quasi-” means that this is a preliminary decision,
the final diagnosis of brain death needs further medical tests.
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Fig. 1. The Electrode placement.

There are various methods used for studying brain states using EEG signals
[4, 5]. These methods use tools like phase synchrony [6, 7], coherence [8] and non-
linear dynamical analysis [9, 10]. There is conclusive evidence [11] that tracking
the dynamics of nonlinear characteristics in signals can provide a platform for
analyzing EEG signals.

In [10, 11], it is argued that the assessment of the nonlinear nature in EEG
signals can provide a platform for the identification of the brain consciousness
states. One method for performing the assessment of EEG signals is by tracking
the mixing parameter of collaborative adaptive filters. Such filters offer real time
processing ability and hence reduce the risk to the patient when performing QBD
tests. In addition, unlike the hypothesis testing based methods [10], which are
block-based, such as the Delay Vector Variance (DVV) [12], this approach also
performs testing for the degree of nonlinearity in nonstationary environments.
The linear and nonlinear filter within this structure operate in parallel, producing
parameterized feature maps. Thus, providing a convenient, flexible method which
can, for instance, simultaneously test for several fundamental signal properties,
such as the degree and type of nonlinearity (NARMA, bilinear) and sparsity [13].

In this work, we focus on the role of the degree of nonlinearity in the iden-
tification of states of brain consciousness (awake, coma, QBD). The usefulness
of this approach is first evaluated on synthetic benchmark linear and nonlinear
signals. It is then illustrated that such an approach can discriminate between
the awake, coma and quasi-brain-death states based on real world EEG signals.

2 The EEG data

The EEG data were recorded in the ICU in HuaShan Hospital, Shanghai, China.
The room was quiet, but the surrounding noise generated by other monitoring
machines was high. The standardized 10-20 system was used for the EEG record-
ing, the patients involved were all lying on bed facing up with eyes closed, and
the data was obtained via nine electrodes on the forehead with channels based on
the 10-20 system. That is, the electrodes were placed at positions F3, F4, F7, F8,
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Fig. 2. Collaborative combination of two adaptive subfilters.

Fp1, Fp2 as well as GND, and also two were placed on the ears (denoted by A1
and A2 respectively). The electrodes placed on the ears act as a reference for the
measurements, calculated as (A1+A2)/2. The measured voltage signal was then
digitized via a portable EEG recording instrument with a sampling frequency
of 1000 Hz. The position of the electrodes can be seen on Fig. 1. Experimental
data were obtained from 34 patients of the ages ranging from 17 to 85 years old;
17 of the patients were in a state of coma, 17 of them were in quasi-brain-death
status. A total recording of EEG signal from these 34 patients with an average
signal length of five minutes were stored and analyzed.

3 The Hybrid Filtering Architecture

The convex combination of two adaptive subfilters refers to an architecture,
in which both subfilters operate in parallel and feed into a mixing algorithm
which produces the single output of the filter [14]. The mixing parameter λ(k)
adaptively combines the outputs of each subfilter to minimize the instantaneous
square error of the overall filter, as shown in Fig. 2. Originally, the applications
of hybrid filters focused mainly on the improvement in the performance over
the individual constituent filters. However, recent research has shown that by
appropriately selecting the subfilters, the evolution of the mixing parameter
λ(k) can give an instantaneous indication of some fundamental properties of the
input signal, such as nonlinearity and sparsity [11, 13].

As our aim is to discriminate between brain states based on the nonlinear-
ity within the EEG, the collaborative filter compromises a linear FIR adaptive
subfilter trained by the least mean square (LMS) algorithm [15] and a nonlin-
ear FIR subfilter trained by the normalized nonlinear gradient descent (NNGD)
algorithm [16]. In this case, we are not interested in the overall performance of
the filter but in whether the dynamics of the mixing parameter λ(k) can give an



illustration of which subfilter is responding to the modality of the input signal
most effectively.

The output of subfilter 1 trained by the LMS algorithm is generated as

yLMS(k) = x
T (k)wLMS(k)

eLMS(k) = d(k) − yLMS(k)

wLMS(k + 1) = wLMS(k) + µeLMS(k)x(k) (1)

and yNNGD(k) is the corresponding output of the NNGD trained subfilter 2 and
is given by

net(k) = x
T (k)wNNGD(k)

yNNGD(k) = Φ(net(k))

eNNGD(k) = d(k) − yNNGD(k)

wNNGD(k + 1) = wNNGD(k)

+ η(k)eNNGD(k)Φ
′

(net(k))x(k)

η(k) =
µ

[(Φ′(net(k)))2||x(k)||22] + C
(2)

where d(k) is the desired output, x(k) = [x1(k − 1), x2(k − 2), ..., xN (k − N)]T

is the tap input vector, Φ(·) is the nonlinear activation function, C is the regu-
larization parameter and µ is the step-size for both algorithms. Each subfilter is
adapted based on their own errors eLMS(k) and eNNGD(k) respectively to give
the individual weight updates wLMS(k) and wNNGD(k).

The overall filter output y(k) is the convex combination of the outputs of the
subfilters and is given by

y(k) = λ(k)yLMS(k) + (1 − λ(k))yNNGD(k) (3)

where λ(k) is updated based on minimization of the quadratic cost function
E(k) = 1

2e2(k), where e(k) denotes the overall filter error. Using the following
gradient descent adaptation

λ(k + 1) = λ(k) − µλ∇λE(k)|λ=λ(k) (4)

where µλ is the adaptation step-size, the update of λ(k) can be obtained as [13]

λ(k + 1) = λ(k) −
µλ

2

∂e2(k)

∂λ(k)

= λ(k) + µλe(k)(yLMS(k) − yNNGD(k)) (5)

To illustrate the effectiveness of the hybrid filter in tracking signal nonlinearity
synthetic inputs were formed by alternating nonlinear and linear signals every
1000 samples. This gives the benchmark signal of 10000 samples in length com-
prising the nonlinear signal [17]

z(k + 1) =
z(k)

1 + z2(k)
+ n3(k) (6)

and stable linear AR(4) process
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Fig. 3. The evolution of the mixing parameter λ(k) for a signal nature alternating
between nonlinear to linear.

r(k) = 1.79r(k − 1) − 1.85r(k − 2) + 1.27r(k − 3)

− 0.41r(k − 4) + n(k) (7)

where n(k) is a zero mean, unit variance white Gaussian process.
In all the simulation, the filter length was N = 10. By design, the value of

λ(k) varies between 0 and 1, with 1 indicating strong linearity in signal nature
and 0 a strong nonlinearity. The initial value of mixing parameter λ(k) was set
to 0.5, as there was no prior assumption of the signal linearity or nonlinearity.

The simulation result shown in Fig. 3 presents the evolution of the mixing
parameter λ(k) on the prediction of such a synthetic signal. As desired, the value
of λ(k) decreases towards 0.3 in the first 1000 samples, which correctly suggests
the nonlinear nature of the signal described by (6). In contrast, for the linear
process (sample 1000 to sample 2000), λ(k) increased towards 0.9 indicating the
linear nature of the benchmark input signal described in (7). This suggests that
the hybrid filter has great potential for tracking the linearity and nonlinearity
characteristics of real world signals.

4 Simulation results

We will now consider the use of hybrid filters for application on real world EEG
signal for the purpose of brain consciousness identification. The step size used
for the adaptation of λ was 0.01 and the initial value of λ(0) = 0.5. The learning
rate of the linear FIR adaptive subfilter was 0.002. The learning rate for the
nonlinear FIR subfilter trained by NNGD algorithm was 0.01. Results shown in
Fig. 4, Fig. 5 and Fig. 6 present the typical EEG signals for the states of ‘awake’,
‘coma’ and ‘quasi-brain-death’, and the corresponding evolution of the mixing
parameter λ(k) for different brain consciousness states.
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Fig. 4. Typical awake signal (top) and the dynamics of the mixing parameter λ(k) of
awake patient (bottom).
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Fig. 5. Typical coma signal (top) and the dynamics of the mixing parameter λ(k) of
coma patient (bottom).
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Fig. 6. Typical quasi-brain-death signal (top) and the dynamics of the mixing para-
meter λ(k) of quasi-brain-death patient (bottom).

Fig. 4 shows the EEG data of a patient in an ‘awake’ state. The top plot
presents the amplitude of the brain signal over 100 seconds. The evolution of the
corresponding mixing parameter λ(k) is shown in the bottom graph. It can be
seen that the value of λ(k) for the awake EEG data moves towards λ = 1 as the
adaptation progresses. This suggest the linearity of the EEG signals of awake
patients. Fig. 5 presents the EEG signal of a ‘coma’ patient; the curve of λ(k)
suggest no clear indication of signal nonlinearity. During the analysis of quasi-
brain-death signals of the same time length (100 seconds), the mixing parameter
λ(k) moved towards zero, indicating the nonlinear nature of the signal.

Results in Fig. 7, Fig. 8 and Fig. 9 show the average mixing parameter λ(k)
with the standard deviation of 34, 32 and 30 patients. The results of coma
patients were shown in black. The QBD analysis results were shown in grey. The
errorbars were shown every 2000 iterations. It can be seen from all three figures
that the average response of λ(k) for ‘quasi-brain-death’ patients shows the
nonlinearity characteristics of the underlying signals. However we can conclude
that, on the average, for the coma patient, the results were not decisive with the
value of λ(k) around 0.5. The data were quite noisy and subject to artifacts. Thus
for instance when we use all the available data, the mean curves representing
the evolution of the mixing parameter λ are quite far apart, however the error
bars overlap considerably, even after convergence. If we, however, include only
the pair of 15 least noisy recordings, the results are excellent, as shown in Fig.
9, where perfect identification of the brain death and coma patient is achieved
after convergence.

Further still, the classification method of Support Vector Machine (SVM)
was applied using a Gaussian kernel to evaluate the effectiveness of the analysis.
The classification accuracy and the standard deviation were envaluated on the
average of 100 trials. The classification accuracy of 34, 32 and 30 patients as
shown in Fig. 10 was 77.8333, 73.75 and 68.5385. Classification results can be
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Fig. 7. The average mixing parameter λ(k) of patients in different brain states with
standard deviation - 17 coma patients, 17 QBD patients.
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Fig. 8. The average mixing parameter λ(k) of patients in different brain states with
standard deviation - 16 coma patients, 16 QBD patients.
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Fig. 9. The average mixing parameter λ(k) of patients in different brain states with
standard deviation - 15 coma patients, 15 QBD patients.

increased if applying SVM to the converged values of λ. However, the results
shown in Fig. 10 obtained over the whole evolution of the mixing parameter
λ takes the convergence into consideration. Classification results further proved
that analyzing the the signal linearity using mixing parameter λ(k) is an effective
approach to identify the coma and QBD brain status.
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Fig. 10. The accuracy of learning using SVM.

5 Conclusion

We have proposed the nonlinearity analysis of EEG signals as a potential tool
for brain states identification and illustrated how the hybrid filter can be used
for this purpose. By monitoring the evolution of the mixing parameter within
a hybrid filter, it has been possible to gain insight into the fundamental signal
nature. Simulation results show great potential of the methodology and its ap-



plication in signal nonlinearity tracking, thus providing a feature to determine
brain activities.

References

1. H. K. Beecher, “A definition of irreversible coma. Report of the ad hoc committee
of the Harvard Medical School to examine the definition of brain death.,” The

Journal of the Americal Medical Association, vol. 205, pp. 337–340, 1968.
2. A. Paolin, A. Manuali, F. Di Paola, F. Boccaletto, P. Caputo, R. Zanata, G. P.

Bardin, and G. Simini, “Reliability in diagnosis of brain death,” Intensive Care

Med., vol. 21, pp. 657–662, 1995.
3. J. Cao, “Analysis of the quasi-brain-death EEG data based on a robust ICA

approach,” LNAI 4253, vol. Part III, pp. 1240–1247, KES 2006.
4. C. J. Stam, T. Woerkom, and W. S. Pritchard, “Use of non-linear EEG measures

to characterize EEG changes during mental activity,” Electroencephalography and

Clinical Neurophysiology, vol. 99, pp. 214–224, 1996.
5. L. Li, Y. Saito, D. Looney, T. Tanaka, J. Cao, and D. Mandic, “Data fusion via

fission for the analysis of brain death,” in Evolving Intelligent Systems: Methods,

Learning and Applications, P. Angelov, D. Filev, and N. Kasabov, Eds. John Wiley,
2008.

6. B. Boashash, Time Frequency Signal Analysis and Processing: A Comprehensive

Reference, Elsevier Science, 2003.
7. J. Bhattacharya and H. Petsche, “Phase synchrony analysis of EEG during music

perception reveals changes in functional connectivity due to musical expertise,”
Signal Processing, vol. 85, pp. 2161–2177, 2005.

8. G. C. Carter, Coherence and Time Delay Estimation, IEEE Press, 1993.
9. H. Kantz and T. Schreiber, Nonlinear time series analysis Cambridge nonlinear

science series, Cambridge University Press, 1997.
10. T. Gautama, D. P. Mandic, and M. M. Van Hulle, “Indications of nonlinear

structures in brain electrical activity,” Phys. Rev. E, vol. 67, no. 4, pp. 046204,
Apr 2003.

11. D. P. Mandic, M. Golz, A. Kuh, D. Obradovic, and T. Tanaka, Signal Processing

Techniques for Knowledge Extraction and Information Fusion, Springer, 2008.
12. Temujin Gautama, Danilo P Mandic, and Marc Van Hulle, “The delay vector vari-

ance method for detecting determinism and nonlinearity in time series,” Physica

D: Nonlinear Phenomena, vol. 190, no. 3-4, pp. 167 – 176, 2004.
13. B. Jelfs, S. Javidi, P. Vayanos, and D. Mandic, “Characterisation of signal modal-

ity: Exploiting nonlinearity in machine learning and signal processing,” Journal of

Signal Processing Systems, 2009.
14. J. Arenas-Garcia, A. R. Fiqueiras-Vidal, and A. H. Sayed, “Mean-square perfor-

mance of a convex combination of two adaptive filters,” IEEE Transactions on

Siganl Processing, vol. 51, no. 3, pp. 1078–1090, 2006.
15. B. Widrow and S. Stearns, Adaptive Signal Processing, Prentice-Hall, 1985.
16. D. P. Mandic, “NNGD algorithm for neural adaptive filters,” Electron. Lett., vol.

39, no. 6, pp. 845–846, 2000.
17. K. Narendra and K. Parthasarathy, “Identification and control of dynamical sys-

tems using neural networks,” IEEE Transactions on Neural Networks, vol. 1, no.
1, pp. 4–27, 1990.


