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Abstract

Witnessing the sheer amount of user-contributed photos and videos, we argue to leverage such freely available image
collections as the training images for image classification. We propose an image expansion framework to mine more
semantically related training images from the auxiliary image collection provided very few training examples. The
expansion is based on a semantic graph considering both visual and (noisy) textual similarities in the auxiliary image
collections, where we also consider scalability issues (e.g., MapReduce) as constructing the graph. We found the expanded
images not only reduce the time-consuming (manual) annotation efforts but also further improve the classification
accuracy since more visually diverse training images are included. Experimenting in certain benchmarks, we show that
the expanded training images improve image classification significantly. Furthermore, we achieve more than 27% relative
improvement in accuracy compared to the state-of-the-art training image crowdsourcing approaches by exploiting media
sharing services (such as Flickr) for additional training images.

Keywords: object recognition, image classification, web image search, crowdsourcing, semantic query expansion

1. Introduction

Image classification is challenging and one of the en-
abling techniques for semantic understanding and effective
manipulation over large-scale images and videos [1]. The
intent of the classification process is to decide whether an
image belongs to a certain category or object. The prob-
lem has been an active research subject for recent works
(e.g., [2, 3, 4, 5, 6, 7], etc.). Witnessing the challenging
problems in large-scale image and video datasets, where
the subject of interest might suffer from noises such as
changes in viewpoints, lighting conditions, occlusions, etc.,
the prior works focus more on various feature representa-
tions and sophisticated classification algorithms. However,
a promising and orthogonal avenue for the problem is to
leverage the web scale images for increasing the training
data for image classification. It has been hypothesized that
increasing the quantity and diversity of hand-labeled im-
ages improves classification accuracy [8] even with prelim-
inary features and learning methods. Although many su-
pervised learning methods prevail in the literatures, man-
ually collecting the required training images/videos is still
very painful and time-consuming.

With the prevalence of capture devices and the ease of
social media sharing services such as Flickr and YouTube,
the amount of freely available image collections on the web
is ever increasing. Aside from the visual signals in social
media, there are also rich textual and visual cues, device
metadata, and user interactions for context-aware social
and organizing purposes. The textual cues come from user-

provided tags, descriptions for the media, and so on. For
the social media, the viewers may leave comments or rat-
ings , bookmark as favorites, or even mark “notes” (visual
annotation) surrounding certain regions in the images or
videos. The capture devices can also provide geo-location,
time, camera settings (e.g., shutter speed, focal length,
flash, etc.), which reflect the capturing environment for
the scene. These associated information are accumula-
tion of human interactions and (noisy) knowledge. They
are promising for solving practical problems (e.g., image
classification, question and answering) in the manner of
crowdsourcing – exploiting the mass interactions on the
web. More promising applications are illustrated in [9].

Along with the early attempts (see the reviews in Sec-
tion 2), in this work, we aim to leverage the rich social
media for improving image classification by automatically
providing supplemental and diverse training images and
auxiliary semantic features. However, we observe the fol-
lowing issues as leveraging the web resources for image
classification.

• Noises: The crowdsourcing nature of social annota-
tions brings the challenge when learning media se-
mantics, i.e., the inaccuracies and incompleteness of
the annotations. It stems from several factors includ-
ing user subjectivity, video- and album-level annota-
tion, and lack of control on annotation quality. This
setback can greatly affect the learning performance if
“noisy” tags are directly applied.

• Diversities: It is believed that training data with
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Figure 1: The need for training image expansion. The top ranked
images retrieved from the auxiliary image collection with the training
image (a) as the query, by fusing multiple visual features (b) and by
the proposed (automatic) semantic expansion framework (c). The
latter yields more visually diverse but semantically related images,
shown very effective for augmenting image classification.

high diversity would benefit classification performance
(e.g., a landmark might have certain variant appear-
ances, cf. Figure 1(c)). Though having enormous
images on the web, the automatic mining methods
for acquiring the diverse training images pose another
great challenge.

To leverage user-contributed images for reducing human
labors in acquiring training data and further improving di-
versity (completeness) in training image pools, we propose
learning by semantic expansion to augment training data
with supplemental diverse images and additional seman-
tic features. Lacking textual information in the training
images, we correlate them to visually similar images from
the social media for furhter graph-based expansion. The
key is that given the auxiliary image collection from so-
cial media (i.e., Flickr), we can find very similar images to
the training image even when matching with simple image
features as demonstrated in [8]. Given an original train-
ing example (Figure 1(a)), Figure 1(b) demonstrated the
expanded results from the auxiliary image collection us-
ing visual features only. However, they bear strong visual
similarity with each other (i.e., low diversity) by content-
based image retrieval (CBIR) methods. By incorporating
rich (but noisy) textual information from the auxiliary im-
age collection, we can further improve the diversity of the
expanded images. Figure 1(c) shows the top 15 images
expanded by semantic expansion from the initial CBIR
results.

The proposed expansion method, provided the few pro-
vided training images, aims to mine semantically related
(probably visually diverse) images by expansion over ef-
fective image graphs (textual and visual). Note that we
do not need to provide a list of category names of interest
required in previous works (e.g., [10, 11, 12]) but only few
training images. Evaluating in common benchmarks, our
proposed method shows significant classification gains by
expanding training images to bring more diverse external

images into the training process (as shown in Figure 1(c)),
and also outperforms the prior state-of-the-art in crowd-
sourcing for image classification. Meanwhile, we also con-
sider scalability issues as constructing the image graphs.
We will show the potential reduction for human annota-
tions for supervised learning and further investigate pa-
rameterizing factors for the proposed framework (cf. Fig-
ure 2).

The key contributions of this paper include:

• We propose the novel semantic expansion method
which exploits social media for training example ex-
pansion. In comparison to other state-of-the-art
methods, our method improves classification accuracy
by more than 27%.

• We incorporate efficient image graph construction and
such graphs have been shown effective for image ex-
pansion by efficient random-walk-like methods. The
combinational (multimodal) image graph provides a
mean to efficiently merge web-based knowledge into
the semantic expansion scheme.

• The expansion method promisingly improves the di-
versity issue for image classification. We also investi-
gate impacts of diversity in both image retrieval and
classification.

The remainder of this paper is organized as follows. We
will discuss related approaches in crowdsourcing for image
classification in Section 2. We provide detailed descrip-
tions for the proposed semantic expansion and classifica-
tion techniques in Section 3. We will detail the experi-
mental settings and results in Section 4. We conclude and
discuss the future extensions in Section 5.

2. Related Work

In his work, ranter than on sophisticated learning mod-
els or complex features that researchers had exploited, we
are to focus on crowdsourcing from auxiliary image col-
lection for more training images. Especially, there is a
need for large-scale semantic understanding for images and
videos [13, 1], where hundreds or thousands supervised
learning are required. The need for efficiently collecting
training images or reducing the number of training im-
ages is vital. The most intuitive solution is to grab the
(training) images directly from the search engine by key-
words. However, the text (or tag) associations with images
are noisy [14]. Manual cleanup for the retrieved images is
formidable for large-scale image classification.

Generally, two directions are promising for leveraging
Internet image collections. The first is to improve anno-
tation quality or filter out spurious results returned by
keyword queries as acquiring a new collection of images
that can be used for training. The second is to derive al-
ternative representations for the training images – reflect-
ing the image semantics. The former is to automatically

2



identify the correct association between the labels (textual
tokens or tags) and images without any human interven-
tion; for example, researchers select effective images from
web image search engines (by keyword-based queries) as
training data [10, 12, 11, 15]; other researches have used
the captions associated with the news photos to learn face
recognition models without manual supervision [16]. The
latter for leveraging web resources for alternative (seman-
tic) representations is proposed in [17, 18], where the tags
from similar images in the image collection are used as
another semantic feature representation. However, auto-
matic acquisition of images has not been taken into con-
sideration. Our approach deals with the both directions
discussed above and significantly improves classification
results. Meanwhile, we will compare the proposed method
with [17] in the experiments (cf. Section 4.4.1).

Leveraging crowdsourcing for image classification, an
alternative way is to conduct semi-supervised learning
among labeled and unlabeled images. It benefits the
learning process using a limited amount of labeled images
[19, 20, 21]. In [21], image tags associated with labeled and
unlabeled images were used to improve the classifier. The
classifier was learned using both content and keywords by
labeled images to score and choose the unlabeled ones in
an auxiliary image collection. The purpose is very similar
to our proposed method in obtaining additional examples
to train classifiers. However, we observe that the textual
(tag) information is mostly noisy and missing. Assuming
the text availability for both training and test images is
unrealistic. In contrast, by utilizing multimodal (visual
and textual) visual graphs, we can expand the semanti-
cally related (and diverse) training images and automati-
cally generate text cues as additional features for classifi-
cation even though we are not provided any keywords as
training input. Meanwhile, it is worth noting that most
of the existing semi-supervised approaches heavily rely on
the images labeled by human. As the result, an sufficient
amount of labeled images are needed to ensure that the
pre-constructed model is stable enough to select accurate
examples and further refine them. We will show that our
method can tolerate very few images provided (e.g., 5)
where the other methods require more (e.g., 30 or more),
experimented in a image benchmark.

3. Proposed Framework

The goal of this work is to enable automatic expansion
of training examples to improve the image classification
or even easing the annotation efforts for supervised learn-
ing. Figure 2 shows the expansion and classification pro-
cedure. With an auxiliary image collection from social
media, given a few training images, we do content-based
image retrieval first, which maps our training examples to
the similar images within the auxiliary image collection
by visual features (described in Section 3.1). Due to the
semantic gap problem, most of CBIR methods are not sat-
isfying and suffer from the common problem of high preci-

sion and low recall in the retrieval results. Dominated by
visually similar images, the diversity issue, most ignored
in prior crowdsourcing methods, is usually poor.

Our approach – semantic expansion – is to improve the
search quality for common content-based image retrieval
(CBIR) methods and tackle the low diversity problem. As
illustrated in Figure 2, in the offline stage, we model im-
ages in the auxiliary image collection as visual and textual
(tag) graphs (introduced in Section 3.2.1). Such graphs
model the multimodal semantic correlations from the noisy
images and can be later used to mine more semantically re-
lated images or tags for learning image classification. We
will introduce the expansion procedure in Section 3.2.2.
Also, other semantic representations can be derived in Sec-
tion 3.3. Such expanded images, with visual diversity and
complementary semantic representations, have great po-
tential to benefit classification problems. Finally, the clas-
sification is conducted in Section 3.4.

3.1. Initial Image List Generation

The first step in our expansion scheme is mapping the
training examples to visually similar images in the auxil-
iary image collection as seeds for expansion over the se-
mantic graph. Given few training images, we derive the
initial image list by CBIR methods. Note that the ini-
tial images are retrieved automatically and they are not
restricted to any categories. To construct a robust CBIR
baseline, we investigate variant visual features and fusion
strategies. The effectiveness are then demonstrated in the
experiments (cf. Section 4.2).

Visual words (VW): Scale-invariant feature transform
(SIFT) feature [22] is widely used in image retrieval and
recognition. We adopt Hessian-affine detector to extract
salient patches from each image that contains rich local
information. The SIFT features are then quantized into
bag-of-visual words. A vocabulary of 10K VW is used.
Each image is then represented by a histogram of VW
occurrences.

Gist: Gist feature [23] is proven as an effective descriptor
in scene representation. Gist describes visual information
which was caught by a glance at the scene. The process of
extracting the gist of an image uses features from several
domains, calculates holistic characteristics, and still takes
into account coarse spatial information. Each image is
represented by a 960 dimensional Gist descriptor.

PHOG: PHOG [24] captures the shape characteristics of
images. For each image, the edge contours are extracted
using Canny edge detector and the orientation gradients
are then computed using Sobel mask. A histogram of gra-
dient vector is computed for each grid cell at each pyramid
level. The final descriptor is a concatenation of all HOG
vectors. We take 20 bins for the graidents and adopt 3
pyramid levels.

Color: The color features are extracted in RGB domain.
For each pixel, we quantize each channel to 8 bins and
assign pixels to the corresponding color bins, ranging from
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Figure 2: We leverage the social media as the auxiliary image collection and build a combinational image graph from them in the offline
stage. The few training images first derive an initial image list (a) by the CBIR method the auxiliary image collection and further refined
by our expansion scheme (b). The expanded images (c) are used as extra training examples for classification in (d). Our expansion method
additionally derives semantic text features as byproducts and further facilitates multimodal classification though provided visual training
images only. Comparing with the conventional learning model, we can expand more visually diverse (but semantically related) images for
robust learning.

1 to 512. The bins are then normalized. Each image is
represented as a 512 dimensional histogram.

Unified: Unified feature is the concatenation of the
above four visual features with empirically determined
weights.

3.2. Semantic Expansion

We formulate the semantic expansion as a random walk
[25, 26] problem over image graphs, where nodes are im-
ages and the link between each node is the pairwise simi-
larity. We then derive more semantically related images by
the random walk process from the initial CBIR list, also
illustrated in Figure 2. Note that since we target to oper-
ate in large-scale image graphs, we also consider effective
methods for visual and text graph construction. We also
consider the noisy and missing text tokens (tags) problems
commonly observed in images from social media.

3.2.1. Graph Construction

The semantic expansion is first based on graph construc-
tion. We construct two complementary types of graphs:
visual and textual. For visual representation, the images
are represented by 10K VWs. For textual graph, we col-
lect textual information associated with images from so-
cial media website (Flickr). The raw texts are not di-
rectly used as feature representation. They are further ex-
panded by Google snippets from their associated (noisy)
tags. Through the expansion process, semantically related
user-provided tags (e.g., “Eiffel” vs. “Eiffeltower”) can
still have high similarities. Each image then can be rep-
resented with 50K text tokens. In our experiments, the
photo information “title,” “description,” and “tag” col-
lected from Flickr are used as textual information to con-
struct the graph.

The graphs are constructed with visual and textual sim-
ilarity of images in auxiliary image collection in the offline
stage. However, it is very challenging to construct image
graphs from large-scale datasets. To tackle the scalabil-
ity problem, we construct image graphs using MapReduce

model [27], a scalable framework that simplifies distributed
computations. The visual and textual graphs are con-
structed separately. We take the advantage of the sparse-
ness and use cosine measure as the similarity measure.

We observe that the textual and visual features are
sparse for each image and the correlation between images
are sparse as well. Our algorithm extends the method pro-
posed in [28]. The algorithm uses a two-phase MapReduce
model: indexing phase and calculation phase, to calculate
pairwise similarities. At indexing phase, each input image
feature vector is mapped to a list of feature-image-value
tuples, and then all the tuples are organized into inverted
lists according to their features. At calculation phase, the
inverted lists are used to compute a similarity value for
each pair of images in each inverted list. Then the values
for each pair of images are aggregated into a single value,
which is the pairwise similarity value of corresponding fea-
ture pair of images. Unlike df-cut for documents in [28], we
found that tf-idf is a better choice to reduce computation
for images.

It takes around 42 minutes to construct a graph of 550K
images on 18-node Hadoop servers. Through the evalua-
tion on a small-scale dataset, we found the quality to be
close to the brute-force algorithm.

Fusing the visual and text image graphs (Gv and Gt

respectively), we build a final combinational (multimodal)
image graph G, where we conduct the random walk process
for image expansion. Assuming we have N images in the
auxiliary image dataset, the graphs (i.e., Gv, Gt, G) are
then N × N . However, we observe that they are quite
sparse and most of the entries are zero. To simplify, G can
be generated directly by a linear combination as follows:

G = αGt + (1 − α)Gv (1)

α ∈ [0, 1] and (1 − α) are the weights for the two image
graphs. The sensitivity for α is investigated in Section 4.5.
We will show how each image graph improves the overall
results in the experiments. In the following section, we will
leverage the graphs for example-based semantic expansion.
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3.2.2. Expansion on Semantic Graph

Give the few training images, we initially identify those
visually similar images (assuming their semantic similari-
ties to the query images) in the auxiliary image collection
by CBIR methods described in Section 3.1. The goal is to
link the initial training images to the rich image collections
through these visually similar images. We then try to ex-
pand and identify more semantically related images from
the semantic graph G. It is observed that those connected
images in the graph are with certain (visual and textual)
similarities. The higher the weights the more semantically
similar they are. Based on the observations, we can utilize
the semantic graph G, constructed in the offline stage, to
mine more semantically related images from the auxiliary
image collections, which are potential for augmenting the
training images for image classification, as illustrated in
Figure 1.

The problem can actually be modeled as a random walk
problem [29], which had been shown effective in certain
applications such as image/video reranking [30] and prod-
uct search by multiple similarities [26]. Given the semantic
graph G, let us assume a surfer randomly surf the image
graph. The surfer starts from certain initial nodes in the
graph and then jump to different nodes iteratively. The
probability for jumping from one to another is propor-
tional to their pairwise similarity, also called the transi-
tion probability, G

′

, where ensuring the row summariza-
tion is 1 by normalizing G. When converging, the station-
ary probabilities over the nodes are set as the final image
list ordered as the probability a random surfer stays. We
set the top K CBIR-retrieved images (from the auxiliary
image collection) as the initial nodes for random walk1.
Let v ∈ [0, 1]N×1 be the initial state vector for the im-
ages in the auxiliary collection. We set v for the K ini-
tially retrieved images by their similarities to the (multi-
ple) queries (normalized by the sigmoid function) and 0
for the others. Note that we also normalize v and ensure
|v| = 1. Here we investigate two alternative methods for
random walk.

Random Walk (RW): Besides G
′

, usually, there is also a
possibility that the surfer does not follow the probabilistic
transition matrix induced from the image graph G

′

but
jumps to another image uniformly from the collection. It
is used to make graph connected and ensures the existence
of stationary probability. In RW the transition matrix
can be modified as P = ǫG

′

+ (1 − ǫ)U , where U is a
uniform matrix with the same size of G and ǫ is used to
modulate the weights on the normalized semantic graph
and the uniform jump.

Random Walk with Restart (RWR): During each RW
iteration, the random surfer would restart from the ini-
tial states (specified by v) with probability 1-ǫ, and jump
between states following the transition probability of G′

1Through the sensitivity test we found that the quality for the
expanded results are quite similar as varying K from 10 to 50. Here
we set K = 20.

with probability ǫ. For RWR, the transition matrix can
be modified as P = ǫG

′

+ (1 − ǫ)V , where V = evT (e
is an N -dimensional column vector with all 1). The in-
tuition is that the random surfer tends to persevere his
preferences, specified by v, during each random surfing.

For RW and RWR, we then adopt Power Method for
solving the random walk problem – deriving the dominant
eigenvector from the transition matrix (P ) for the station-
ary probability π ∈ [0, 1]N×1 [29]. The top L images in
the auxiliary image collection with the highest stationary
probability π are selected later for training for image clas-
sification. Note that we will vary L and investigate how
they impact the classification performance in the exper-
iments (cf. Section 4). More technical details regarding
random walk can be found in [29, 30], which also suggests
setting ǫ = 0.85 for the experiments.

3.3. Semantic Similarity from Auxiliary Image Collection

Besides using the image graph to do training example
expansion, we also leverage it to obtain alternative seman-
tic representation for our training (or testing) examples.
Having an auxiliary image collection from the social media,
for each image, the semantic similarity can be discovered
by mining the related text features.

Text feature (Text): The feature is derived using the
auxiliary images and their associated textual information.
The set of captions of each image is collected from the
“title,” “description,” and “tags.” Through the expan-
sion process, we derived certain expanded images for each
training or test image. By summing the tag counts in the
expanded image collection, we can use the (normalized)
occurrence frequencies as another semantic feature repre-
sentation for the training (testing) images. The intuition
is to locate the semantically-related images in the auxil-
iary image collection and propagate their associated tags
(or text tokens) to the (training or testing) image. See the
illustration in Figure 1(c). Such method is similar to that
in [17].

3.4. Classification

Various classifiers could be applied to such expansion
scheme we proposed. For our experiments of image clas-
sification, we use the chi-square kernel for our features
in a SVM classifier. In the same manner as [24], multi-
way classification is achieved using a one-versus-all SVM:
a classifier is learned to separate each class from the rest,
and a test image is assigned the label of the classifier with
the highest classification margin. However, single feature
alone is not sufficient to distinguish all types of images.
Leveraging the text and visual features, the fusion is con-
ducted by combining two kernel functions (as a late fusion
method). The experiments for image classification base-
line and the impacts by varying expanded images will be
shown in Section 4.
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Table 1: The overall retrieval performance (P@10 in %) for the ini-
tial CBIR image list by varying different features such as VW (V),
GIST (G), HOG (H), and Unified (U). “Mq ” stands for utilizing
multiple queries from the training images. The best setting is to use
multiple queries combined with unified features. The setup is used
for following experiments.

VW Gist HOGColorUnifiedMq VMq GMq HMq CMq U

38.3 24.6 29.7 9.7 39.3 40.7 49.3 41.6 18.0 57.7

4. Experiments

In this section, we first introduce the datasets used in
our experiments including training, test, and auxiliary im-
age sets. Since the expansion result would be affected by
the quality of the initial CBIR list, illustrated in Figure
2 (a), we will also brief the CBIR performance by differ-
ent features in Section 4.2. Then, we measure the quality
of the expanded images (cf. Figure 2 (c)) in Section 4.3.
Finally, in Section 4.4, we discuss the impacts for image
classification by the proposed image expansion methods
(cf. Figure 2 (d)).

4.1. Datasets

4.1.1. Training and Test Set – Caltech-6

To compare with the traditional approaches and exist-
ing works that use web resources for classification, we first
conduct experiments on 6 selected categories from the Cal-
tech 256 dataset [7], which are widely used benchmark in
object classification. The categories include three land-
mark (The Eiffel Tower, The Golden Gate Bridge, The
Tower of Pisa), two animals (Giraffe, Penguin), and one
equipment category (Basketball Hoop).

4.1.2. Auxiliary Image Collection from Social Media –
Flickr13K

Flickr13K is a large dataset consisting of 13,381 medium
resolution (500x360) images. Most of them are the subset
of the Flickr550 dataset [31] downloaded from Flickr. We
manually labeled 873 images as our ground truth across
three categories including the Tower of Pisa (139), the Eif-
fel tower (544), and the Golden Gate Bridge (190). We fur-
ther collected 1,535 positive images for the other three cat-
egories: giraffe (428), penguin (579) and basketball hoop
(528) from Flickr. We also randomly selected 10k images
among 550k images as background images. We merge the
ground truth and background images as our auxiliary im-
age collection with the size of 13K.

4.2. CBIR for Multiple Modalities and Images

The first step of our expansion scheme is content-based
image retrieval, which maps our training examples to the
images in the auxiliary image collection; the latter will be
the seeds for semantic expansion to further discover the se-
mantically related images (for training) in the multimodal

Table 2: The retrieval performance (P@10) of the initial CBIR image
list over six categories with single query and multiple queries (Mq U)
from the training images. Note that both use “unified” (multimodal)
features.

BasketballEiffel GiraffeGoldenPenguin Pisa

Single 0.16 0.41 0.43 0.25 0.47 0.48

Mq U 0.36 0.72 0.51 0.42 0.40 0.78
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Figure 3: Retrieval performance (in AP) over six categories by the
variant expansion methods, which further improve the initial CBIR
results significantly. See more discussions in Section 4.3.

image graph. We observe that the quality of the initial list
might be essential for expansion results. We first evaluate
the retrieval results by varying features and fusion strate-
gies. Since only top K images are set as the initial states
during the semantic expansion procedure, we just evaluate
the performance of top ranked images in the initial list by
P@10 (precision at the top 10 retrieved images).

From the evaluations in Tables 1 and 2, landmark cate-
gories (e.g., pisa tower and golden gate bridge) are much
easier to get good retrieval results by visual words. Still,
some query images are with sparse visual words but benefit
from the global contextual features (e.g., Gist and PHOG).
As the result, we fuse the four visual features mentioned
in Section 3.1, as “Unified” and achieve 0.393 in averaged
P@10 (across six categories). Note that the queries are
evaluated in a leave-one-out manner in order to utilize the
whole ground truth images.

Since there might be multiple training images provided
for image classification, we are keen to know the effective-
ness as aggregating multiple training images (i.e., 5) and
multiple queries (multq or Mq ); The results look reason-
able across different features as using multiple queries as
showing constant improvements. With multiple features,
multiple queries (Mq U) can improve the single query
(Unified) from 0.39 to 0.58 (P@10). See details in Ta-
bles 2 and 1. Note that the multiple queries are randomly
selected and repeated many times for each query.

4.3. Quality for Expanded Images

Given the few training images, our purpose is to expand
more semantically related and diverse images later for aug-
menting the training images for classification. Note that
we take the CBIR retrieved images in the auxiliary image
collection by multiple (i.e., 5) queries and multiple modal-
ities (Unified) as the seeds for expansion. We will evaluate
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the expansion quality first and then evaluate their impacts
in classification in the next section.

In Figure 3, we can clearly see the significant improve-
ments (in MAP2) by the proposed semantic expansion
methods. Landmark-related categories (e.g., the Tower
of Pisa, the Eiffel Tower, the Golden Gate Bridge) all get
higher than 0.6 in AP after the expansion. In general,
through semantic expansion, we can improve the perfor-
mance by more than 100% for each category. In other
words, the noises of expanded images have been eliminated
through our semantic expansion procedure. Comparing
Table 2 and Figure 3 at once, we can see that the ex-
pansion is sensitive to the quality of the initial CBIR list.
Initial lists by multiple queries result in much better ex-
pansion performance than those by single query only. For
topic “penguin,” since the P@10 by multiple query (0.4) is
less than that by single query (0.47), the expansion MAP
is lower as well. In topic “basketball hoop”, due to low
precision by single query (0.16), the MAP is not improved
after expansion. However, Most CBIR results by multiple
queries (multiq) are significantly boosted by the expansion
process.

We also compare expansion using different graph refine-
ment methods mentioned in Section 3.2.2. In our exper-
iments, simple random walk (RW) is superior to random
walk with restart (RWR) in certain query categories. On
the average, RW performs better than RWR. However,
both of them have small differences in accuracy. Definitely
the expanded results are better than the initial list only
(CBIR or CBIR multiq). See more details in Figure 3.

Note that in our experiments later, the expansion ac-
curacy is not proportional to the classification accuracy.
We will show that the diversity for the expanded images
pose another importance factor. We will show that the
proposed semantic expansion method by multimodal im-
age graphs can actually improve the diversity rather than
retrieval accuracy only. See the discussions in Section 4.6.

4.4. Classification Results by Semantic Expansion

The expanded images from the expansion framework are
combined with the few initially annotated images (fixed
at 5 in our experiments) for further training image clas-
sification models for the separated test set. To assess the
effectiveness of our proposed expansion scheme, the eval-
uations focus on: (1) Comparing the image classification
performance with different expansion methods. (2) Com-
paring the expansion methods with human annotations for
the training images only. (3) Comparing our method with
one of the state-of-the-art, [17], also exploiting auxiliary
image collection to derive additional (textual) features for
each image. See the descriptions in Section 3.3. All exper-
iments are also evaluated based on different modalities.

2MAP: mean average precision across all the queries to evaluate
the overall system performance. Average precision is to approximate
the area under a non-interpolated precision-recall curve for a query.
See more introductions in [31]

Table 3: Semantic expansion significantly improves image classifica-
tion on the test set of the six categories selected from Caltech-256.
(a) Image classification accuracy by learning from the top K CBIR
images by the provided 5 query images from the Caltech-256 training
set (cf. Figure 1(a)). (b) Learning by the top K images by semantic
expansion (cf. Section 3). Note that we have K=70 and evaluate at
different features and fusion strategies for image classification. See
more discussions in Section 4.4.1.

(a) No Expansion (b) Semantic Expansion
VW Unified Text Fusion VW Unified Text Fusion

Basketball0.45 0.47 0.42 0.49 0.78 0.70 0.40 0.71
Eiffel 0.30 0.33 0.67 0.63 0.72 0.76 0.82 0.90

Giraffe 0.63 0.64 0.57 0.68 0.66 0.82 0.86 0.93

Golden 0.72 0.75 0.73 0.82 0.90 0.96 0.70 0.95
Penguin 0.52 0.62 0.67 0.72 0.74 0.78 0.86 0.87

Pisa 0.83 0.74 0.84 0.83 0.86 0.80 0.80 0.94

Accuracy 0.58 0.59 0.65 0.70 0.78 0.80 0.74 0.88

4.4.1. Expansion v.s. Non-Expansion

We first evaluate if the proposed expansion method is
effective for bringing more semantically related image from
the auxiliary image collection. The top K expanded im-
ages (cf. Figure 1(c)) from the auxiliary image collection
are used to train image classifiers for the six categories
from Clatech-256 test set. We compare that with the top
K CBIR images only (cf. Figure 1 (a)) without the se-
mantic expansion. Note that we have K = 70 and the
CBIR images are by multiple (i.e., 5) query images from
the Caltech-256 training images. The results are compared
in Table 3. Even without semantic expansion, the auxil-
iary textual features (Text) (cf. Section 3.3 and [17] ) still
shows the effectiveness (0.65) over the visual features only,
0.58 (visual words) and 0.59 (unified) in classification ac-
curacy. The fusion of visual and textual features can even
improve the accuracy to 0.70, which matches the observa-
tion reported in [17].

For our expansion method, the performance is listed in
the four columns to the right in Table 3. We can observe
that our expansion method can improve the classification
(averaged) accuracy from 0.70 to 0.88 (27% relatively) by
the fusion feature. Apparently the proposed expansion
method is complementary to the textual feature proposed
by [17]. Besides, it is worth mentioning that classification
with semantic expansion using text feature does not out-
perform the one using visual features. The reason might
be that the (semantically) expanded images are derived
from the image graph which consists of both visual and
textual similarities.

4.4.2. Expansion v.s. Human Annotation

Furthermore, we are interested in the impacts of increas-
ing the number of expanded images. We also compare our
method to the traditional supervised approaches with 30
human-annotated images. Figure 4 shows the performance
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Figure 4: The image classification accuracy by varying expanded im-
age numbers (based on 5 initially provided annotated images). We
also show the performance as using 30 manually annotated images
from the benchmark. The experiment shows that the automatically
expanded images significantly benefit the classification and even out-
perform human annotations.

with different number of expanded (training) images for
classification on the test set. In ‘M -Manual’ labels, M de-
notes how many images are manually annotated and then
used as seeds to expand more images for training. We
evaluate at varying numbers (i.e., 5 to 100) of expanded
images by the multimodal image graph. We also compare
classification performances by different features and fu-
sion strategies give the expanded training images. As we
increase more expanded images automatically, we found
a notable increase in classification accuracy. The accu-
racy of our results with 30 training images (5 annotated
plus 25 expanded by our method with feature “unified”)
yields 70.7%, which is close to 75.8% by 30 manually an-
notated images. A superior performance is obtained when
the number of expanded images (from the auxiliary im-
age collection) exceeds 35. Moreover, further using 50 ex-
panded, we achieve similar accuracy with visual features
only against the best performance of using 30 manually
annotated training images (80.3% versus 80.5%). Note
again that our system uses only 5 annotated examples to
expand training images automatically3. Finally, our fusion
results are well improved and are much better than non-
expansion (manually annotated) methods because of the
high diversity in training data. Also, the semantic correla-
tions discovered through expansion is highly complemen-
tary to visual features. The best performance we obtained
is 88.4% (learning from the automatically expanded train-
ing images by 5 annotated ones only).

Comparing with the state-of-the-art approach with the
similar goal for mining tags form the similar images from
the auxiliary image collection as the additional (text) fea-
ture [17] (i.e., 80.5% by 30 manually annotated training
images), the proposed learning by expansion method is
significantly better. Meanwhile, our method requires very
few annotated images and demonstrates its superiority to

3The results are the averaged performances among the repetitive
experiments by randomly sampling 5 training images from the train-
ing set.
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Figure 5: The quality (in MAP) for the expanded images over the
multimodal image graph by varying α in Eqn. 1 for visual and textual
fusion. The best MAP is achieved as α = 0.7. See more discussions in
Section 4.5. We show its impacts on image classification (for training
images) in Section 4.6.

its counterpart with manually annotated training images.

4.5. Significance of Weights on Image Graph Combination

To analyze the impact of weights on image graph combi-
nation, we compare the quality of the expansion results (in
MAP) by varying α in Eqn. 1, which denotes the weight
of text graph. We plot the result in Figure 5. It states
that in the best case, the weight for Gt is around 0.7.
The performances of α from 1 to 0.3 are in the plateau.
However, when the text graph weight is less than 0.3, the
performance decreases dramatically. Since the initial list
is generated by CBIR with visual features only, expansion
by image graphs, parameterized with text cues for expan-
sion, is really beneficial. On the contrary, heavily relying
on the visual graph for expansion causes bias and degrades
the expansion quality (in MAP). With the combination of
image graphs, we can leverage both visual and textual fea-
tures and improve expansion quality. Note that though the
expanded images are with similar (retrieval) MAPs, they
will have different impacts on learning for image classifi-
cation – majorly due to the diversity from the expanded
images. We will look into the issues in Section 4.6.

4.6. Diversity on Expanded Images for Classification

We evaluated the significance of weights on fusing visual
and textual image graphs in Section 4.5. From Figure
5, we observe that the expansion results with α ranging
from 1 to 0.3 are flat with quite closed (retrieval) MAPs
(rather than classification accuracy). For investigation, in
Figure 6, we further list the top 10 expansion results of the
two categories (“penguin”and “basketball”) with different
α, 0.8 and 0.4 respectively, i.e., incurring different visual
diversities for the expanded images. Note that they have
similar performances in (ranking or retrieval) MAP (see
Figure 5) but different in visual diversities. If we weight
more on visual graph (i.e. α = 0.4), the random surfer
tends to rely on visual cues more for the expansion, more
visually similar images will be expanded, i.e., low diversity.
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(a) = 0.4 (low diversity)

(b) = 0.8 (high diversity)

(a) = 0.4 (low diversity)

(b) = 0.8 (high diversity)

Figure 6: Expanded images for “penguin” and “basketball” with different α for controlling the image diversity. The similar performance (in
retrieval ranking by MAP) are achieved, but the results are with varying degrees of visual diversity. Higher α, weighting more on textual
cues, bring more diversity. See more discussions in Section 4.6.
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Figure 7: The classification performance (in error rate) by varying
image diversity over difference classification features. High diversity
helps image classification a lot across classification features.

On the contrary, as weighting more on text graph (i.e.
α = 0.8), more semantically similar but visually diverse
images are yielded.

We further take the expended images (with the two di-
versities respectively) as training images for image classi-
fication. The classification over different classification fea-
tures are shown in Figure 7. Note that their MAPs for the
ranking of expanded images are about the same but with
different classification accuracies consistently across clas-
sification features. It states clearly that more diverse (but
semantically consistent) training images help image classi-
fication more since they might cover more on the possible
feature space for the positives. We also report the clas-
sification accuracies across image categories in Figure 8,
the diverse images still help image classification (with low
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Figure 8: The classification performance (in error rate) by varying
image diversity across different image categories. High diversity helps
image classification consistently across image categories.

error rates) even across image categories.
The experiments show that the expansion over the mul-

timodal image graphs bring more semantically consistent
but visually diverse images from the auxiliary image col-
lection (i.e., Flickr) and can further improve the image
classification quality as learning on more diverse training
images. Note that such images are expanded in an auto-
matic fashion by few training images only and can further
save the efforts required for image annotation, as discussed
in Section 4.4.2.

5. Conclusions and future work

We have proposed a novel semantic expansion frame-
work to mine more semantically-related images as supple-
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mental training images from the explosive user-contributed
images and their associated tags. Such mined images are
freely available and very helpful for image classification
as reducing the number of manual annotations and even
improving the detection accuracy by including more visu-
ally diverse images for learning. The scalability issue is
also considered as constructing the image graph for ex-
pansion by distributed computation (i.e., MapReduce).
Experimenting in certain benchmarks, we show that the
proposed method outperforms the state-of-the-art crowd-
sourcing method by more than 27%. For our future work,
we are extending the classification benchmark for further
generic evaluations and investigating scalable methods for
constructing large-scale image graphs for effective expan-
sion.

References

[1] M. Naphade, J. R. Smith, J. Tesic, S.-F. Chang, W. Hsu,
L. Kennedy, A. Hauptmann, J. Curtis, Large-scale concept on-
tology for multimedia, IEEE MultiMedia 13 (3) (2006) 86–91.

[2] A. Hegerath, T. Deselaers, H. Ney, Patch-based object recog-
nition using discriminatively trained gaussian mixtures, in:
CVPR, 2006.

[3] I. Laptev, Improvements of object detection using boosted his-
tograms, in: BMVC, 2006, pp. 949–958.

[4] S. Lazebnik, C. Schmid, J. Ponce, Beyond bags of features: Spa-
tial pyramid matching for recognizing natural scene categories,
in: CVPR, 2006, pp. 2169–2178.

[5] H. Zhang, A. C. Berg, M. Maire, J. Malik, Svm-knn: Discrimi-
native nearest neighbor classification for visual category recog-
nition, in: CVPR, 2006, pp. 2126–2136.

[6] J. Zhang, S. Lazebnik, C. Schmid, Local features and kernels for
classification of texture and object categories: a comprehensive
study, International Journal of Computer Vision 73 (2007) 2007.

[7] G. Griffin, A. Holub, P. Perona, Caltech-256 object category
dataset, Tech. Rep. 7694, California Institute of Technology
(2007).

[8] A. Torralba, R. Fergus, W. T. Freeman, 80 million tiny images:
A large data set for nonparametric object and scene recognition,
IEEE Trans. Pattern Anal. Mach. Intell. 30 (11) (2008) 1958–
1970.

[9] T. Mei, W. H. Hsu, J. Luo, Knowledge discovery from
community-contributed multimedia, IEEE MultiMedia 17 (4)
(2010) 16–17.

[10] R. Fergus, L. Fei-Fei, P. Perona, A. Zisserman, Learning object
categories from google’s image search, ICCV.

[11] T. L. Berg, D. A. Forsyth, Animals on the web, in: CVPR,
2006, pp. 1463–1470.

[12] F. Schroff, A. Criminisi, A. Zisserman, Harvesting Image
Databases from the Web, in: ICCV, 2007.

[13] J. Deng, W. Dong, R. Socher, L. jia Li, K. Li, L. Fei-fei, Im-
agenet: A large-scale hierarchical image database, in: CVPR,
2009.

[14] L. Kennedy, M. Naaman, S. Ahern, R. Nair, T. Rattenbury,
How flickr helps us make sense of the world: Context and con-
tent in community-contributed media collections, in: ACM Mul-
timedia, 2007.

[15] S. Vijayanarasimhan, K. Grauman, Keywords to visual cate-
gories: Multiple-instance learning for weakly supervised object
categorization, in: CVPR, 2008.

[16] T. L. Berg, A. C. Berg, J. Edwards, M. Maire, R. White, Y. W.
Teh, E. G. Learned-Miller, D. A. Forsyth, Names and faces in
the news, in: CVPR, 2004, pp. 848–854.

[17] G. Wang, D. Hoiem, D. Forsyth, Building text features for ob-
ject image classifications, in: CVPR, 2009.

[18] G. Wang, D. Hoiem, D. Forsyth, Learning image similarity from
flickr groups using stochastic intersection kernel machines, in:
ICCV, 2009, pp. 428–435.

[19] O. Delalleau, Y. Bengio, N. Le Roux, Large-scale algorithms,
in: O. Chapelle, B. Schölkopf, A. Zien (Eds.), Semi-Supervised
Learning, MIT Press, 2006, pp. 333–341.

[20] A. Blum, T. Mitchell, Combining labeled and unlabeled data
with co-training, in: COLT, 1998, pp. 92–100.

[21] M. Guillaumin, J. Verbeek, C. Schmid, Multimodal semi-
supervised learning for image classification, in: CVPR, 2010.

[22] D. G. Lowe, Distinctive image features from scale-invariant key-
points, International Journal of Computer Vision 60 (2) (2004)
91 – 110.

[23] A. Oliva, A. Torralba, Modeling the shape of the scene: A holis-
tic representation of the spatial envelope, Int. J. Comput. Vision
42 (3) (2001) 145–175.

[24] A. Bosch, A. Zisserman, X. Munoz, Representing shape with a
spatial pyramid kernel, in: CIVR, 2007, pp. 401–408.

[25] W. H. Hsu, L. S. Kennedy, S.-F. Chang, Reranking methods for
visual search, IEEE MultiMedia 14 (3) (2007) 14–22.

[26] Y. Jing, S. Baluja, Pagerank for product image search, in:
WWW, 2008.

[27] J. Dean, S. Ghemawat, Mapreduce: simplified data processing
on large clusters, Commun. ACM 51 (1) (2008) 107–113.

[28] T. Elsayed, et al., Pairwise document similarity in large collec-
tions with mapreduce, in: Proceedings of ACL-08: HLT, Short
Papers, 2008, pp. 265–268.

[29] A. N. Langville, C. D. Meyer, A survey of eigenvector methods
for web information retrieval, SIAM Review 47 (1) (2005) 135
– 161.

[30] W. H. Hsu, L. Kennedy, S.-F. Chang, Video search reranking
through random walk over document-level context graph, in:
ACM Multimedia, 2007.

[31] Y.-H. Yang, P.-T. Wu, C.-W. Lee, K.-H. Lin, W. H. Hsu, Con-
textseer: Context search and recommendation at query time for
shared consumer photos, in: ACM Multimedia, 2008.

10


