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Abstract

This paper introduces a machine learning based collaborative multi-band spectrum sensing policy for cognitive radios.
The proposed sensing policy guides secondary users to focus the search of unused radio spectrum to those frequencies that
persistently provide them high data rate. The proposed policy is based on machine learning, which makes it adaptive
with the temporally and spatially varying radio spectrum. Furthermore, there is no need for dynamic modeling of the
primary activity since it is implicitly learned over time. Energy efficiency is achieved by minimizing the number of
assigned sensors per each subband under a constraint on miss detection probability. It is important to control the missed
detections because they cause collisions with primary transmissions and lead to retransmissions at both the primary
and secondary user. Simulations show that the proposed machine learning based sensing policy improves the overall
throughput of the secondary network and improves the energy efficiency while controlling the miss detection probability.
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1. Introduction

The increasing demand for wireless services has made
the usable radio spectrum a scarce and expensive resource.
Part of the scarcity problem are the spectrum allocation
policies that do not exploit the fact that the state of the ra-
dio frequency spectrum is time and location varying. Mea-
surement campaigns [1] have in fact shown that large parts
of the spectrum are underutilized because the license hold-
ers are not using the spectrum or because the fact that
wireless signals attenuate in 2− 4 power of distance is not
fully exploited. Underutilized spectrum is time-frequency-
location varying resource and radio wave propagation and
signal attenuation are important factors in determining
where spectrum opportunities or areas of harmful inter-
ference occur. Identifying temporal and spatial spectrum
holes has been the key motivation behind cognitive ra-
dio (CR) and dynamic spectrum access (DSA) [2]. Figure
1 illustrates how spectrum holes emerge in time and fre-
quency.

CR systems try to use the licensed radio spectrum in an
agile manner while guaranteeing that the licensed users
will not be interfered (see figure 1). A spectrum opportu-
nity is a situation in which secondary users (SU) are able
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Figure 1: Spectrum holes in time and frequency in a given location.
A spectrum hole emerges when a primary user (activity indicated
by the blocks) vacates its frequency. Secondary users try to oppor-
tunistically detect and access these spectrum holes (indicated by the
green arrows).

to communicate on a licensed frequency without interfer-
ing the primary user (PU) and without being themselves
interfered by the PU [3]. In order to find such spectrum
opportunities CR systems need to sense the spectrum (see
figure 2).

A CR network can be considered to consist of NS spa-
tially distributed wireless terminals that identify free fre-
quencies across a wide spectrum of interest that is assumed
to have been divided into NB subbands. In order to mit-
igate the effects of fading, cooperative detection schemes
have been proposed in the literature [2, 4, 5]. This means
that a part of the spectrum is simultaneously sensed by
multiple SUs that send their local test statistics to a fusion
center (FC) which then makes a global decision about the
state of the spectrum. With such cooperation, the prob-
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Figure 2: A cognitive radio setting. The SUs are collaboratively
sensing whether the PUs are active or not. After sensing the spec-
trum the SUs send their sensing results to a common fusion center
(FC) that makes a global decision about the state of the spectrum
and grants access to the spectrum for one of the users if the spec-
trum is found unoccupied. Cooperative spectrum sensing provides
spatial diversity to overcome the effects of slow fading caused by
large objects and fast fading caused by multi-path propagation and
mobility.

ability of detection at a given signal-to-noise ratio (SNR)
is increased, or for equal performance, simpler detector
structures may be employed.

An important function performed by the FC is the spec-
trum sensing policy, which is also the focus of this paper.
A spectrum sensing policy guides the SUs about who is
sensing, which part of the spectrum and when. One of the
main targets of a sensing policy is to select those frequency
bands for sensing that persistently provide more spectrum
opportunities and throughput for the SU network.

1.1. Contribution of the paper
In this paper a reinforcement learning based multi-user,

multi-band spectrum sensing policy is proposed. The pro-
posed sensing policy balances between exploring and ex-
ploiting different parts of the radio spectrum and different
sensing assignments. It decides which frequency bands to
sense as well as which SU is assigned to do the sensing. In
the exploitation phase the sensing assignment for the high
throughput subbands is found by minimizing the number
of assigned SUs subject to a constraint on the miss detec-
tion probability. Moreover, the probability of false alarm
is constrained by using Neyman-Pearson detectors. Mini-
mization of the number of simultaneously sensing SUs im-
proves the energy efficiency of the battery operated SUs.
The minimization is formulated as a binary integer pro-
gramming (BIP) problem that may be solved exactly by
a branch-and-bound type algorithm or approximately by
using approximative methods such as the iterative Hun-
garian method considered in this paper. The proposed
policy may reduce the number of active sensors up to a
factor of 1/D, where D is the diversity order of a fixed
sensing policy. In the exploration phase different pseudo-
random sensing assignments with fixed diversity order are
explored in order to re-adapt to possible changes in the
PU activity and channel conditions. On one hand, spatial
diversity improves the detector performance in the face of
fading and shadowing but on the other hand reduces the

number of simultaneously sensed frequency bands by the
secondary network. Cognitive network may use multiple
idle frequency bands in order to improve rate or reliability
of the network.

Some preliminary ideas and results related to this paper
were presented in [6]. The contributions of this paper are:

• We propose a machine learning based spectrum sens-
ing policy for cognitive radio that:

– provides high throughput for the SUs,

– reduces missed detections,

– is energy efficient,

– is adaptive to non-stationary PU behavior and
channel conditions.

• Analytical expressions for the convergence of the pro-
posed sensing policy in stationary scenarios are de-
rived.

• Extensive simulation results highlighting the excellent
performance of the proposed sensing policy in various
stationary and non-stationary scenarios are shown.

• We show that a simple and fast approximative algo-
rithm based on the Hungarian method may be used
to find near optimal sensing assignments.

The main difference with this paper and the related work
in the literature, in addition to the methodology, is the
exploitation of the information about the sensing perfor-
mances of the SUs to optimize the sensing assignments in
an energy efficient manner.

This paper is organized as follows. In section 2 the re-
lated work to this paper is briefly summarized. The sys-
tem model of cooperative multi-band sensing is described
in section 3. In section 4 an energy efficient reinforcement
learning based sensing policy is proposed and analytical re-
sults on the convergence rate of the Q-values in the sensing
policy are derived. Section 5 shows and discusses the sim-
ulation results of the performance of the proposed sensing
policy. The paper is concluded in section 6.

2. Related work

The task of choosing which frequency band to sense may
be formulated as a restless multi-armed bandit (RMAB)
problem. In RMAB problems a player bets on L out of
N slot machines (L ≥ 1, N ≥ L) targeting to maximize
its long term profit. The term restless comes from the
fact that also the states of the non-played machines may
change; similarly as the state of the not sensed frequency
bands may change in a CR setting. In [3, 7–13] spectrum
sensing policies are derived based on the framework of par-
tially observable Markov decision processes (POMDPs).
In [13] a closed form Whittle index policy for perfectly
known Markovian reward distributions was derived and
shown to be optimal under certain conditions.

2



In a case where the player does not have prior knowl-
edge about the reward distributions of the different ma-
chines (or as in this case about the throughputs of the
different frequency bands), it is obviously impossible to
derive optimal action selection policies. In such case ma-
chine learning is an attractive approach for solving the
problem. A known issue with machine learning methods
is the so-called exploitation-exploration trade-off, which
emerges when the player has to decide whether to try to
exploit the seemingly best machine (or frequency band)
at the moment or to explore other machines in hope of
finding even better one. A standard method for tackling
multi-armed bandit problems is the Q-learning algorithm
[14] with ε-greedy exploration [15]. An alternative way for
balancing the trade-off between exploration and exploita-
tion is to use confidence bounds. Namely, in [16] a simple
policy based on upper confidence bounds (UCB) was pro-
posed and shown to reach the optimal regret rate when the
rewards are independent and stationary. An UCB policy
that suits better for non-stationary rewards was developed
in [17]. In [18] a single-user reinforcement learning method
was proposed for selecting between 3 future actions: con-
tinuing sensing at the current frequency band b and trans-
mitting data, sensing an out-of-band frequency band b̃,
and switching the SU system to an out-of-band frequency
band b̃. Action selection is done using the softmax method.

3. System model

The SU network consists of NS cooperating wireless SU
terminals sensing the radio spectrum. The spectrum of
interest is assumed to be divided into NB frequency sub-
bands that may have different bandwidths and may be
occupied by different primary operators. The subbands
may be scattered in frequency. Depending on the front-
end design of the SU device, one SU can sense up to Ks

subbands at a time.
In this paper it is assumed that the SUs cooperate by

sending their local binary decisions to a FC, that makes a
global decision about the availability of the spectrum for
all SUs. This brings spatial diversity and increased scan-
ning speed. Spatial diversity is obtained when multiple
SUs sense the same part of the spectrum simultaneously
from different locations and then form a global decision.
Scanning speed is increased since each SU may get sensing
information about up to

∑
sKs subbands simultaneously.

The SUs are assumed to be synchronized and their oper-
ation to be divided into sensing mini time slots and poten-
tial transmission slots as illustrated in figure 3. In a sens-
ing time slot the SU senses up to Ks subbands and then
sends its local binary decision(s) to the FC via a dedicated
control channel. The global decisions about the state of
the sensed subbands is formed at the FC by combining the
local binary decisions according a fusion rule.

The FC may be a dedicated node or one or multiple
nodes could serve as a FC in an ad hoc scenario. A ded-
icated FC makes a global decision on behalf of all other

Figure 3: Time slotting of the SUs’ operation. After sensing a par-
ticular subband the SUs send their local test statistics or decisions
to the FC that makes the global decision about the state of the
spectrum (sensing mini slot). Finally the FC grants permissions to
transmit on the frequencies that were found to be idle (transmission
slot).

SUs, whereas individual FCs in an ad hoc scenario could
make independent decisions based on their own test statis-
tics and the test statistics received from other SUs.

One proposed approach to model the PU activity is a
two-state Markov chain shown in figure 4 [9]. In the model
state 0 means that the primary subband is idle (PU not
transmitting) and state 1 that the subband is occupied
(PU transmitting). However, the policy proposed in this
paper is not limited to the Markovian assumption. Markov
model is merely used for illustration purposes in the ex-
perimental part of this paper.

� �

Figure 4: The Gilbert-Elliot channel model [19]. In this paper state
0 means that the subband is idle and state 1 that the subband is
occupied by a PU.

4. Reinforcement learning based sensing policy

In the PU network, as in most communication systems,
the traffic load may vary depending on time and location.
The expected amount of available radio spectrum for op-
portunistic secondary use may, for example, be much less
during rush hours and in densely populated areas than dur-
ing night time and in rural areas. Also the radio channel
conditions fluctuate in time depending on location, veloc-
ity and frequency. Hence, the design of a sensing policy
for CR has to be approached as a dynamic problem.

4.1. The ε-greedy method

Let Qk(a) denote the estimated value of action a at
time step k and a∗k denote the selected action at time
step k. The ε-greedy policy is an ad-hoc method that
balances between exploration and exploitation by select-
ing the action that has the highest estimated action value,
i.e. a∗k = arg maxaQk(a), with probability 1− ε, or a ran-
dom action, uniformly, with probability ε regardless of the
action-value estimates [15].

The ε-greedy method is a simple and robust method
that has minor computation and memory requirements.
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The random exploration phase allows replacing the ran-
dom action selections with more carefully designed pseu-
dorandom action selection with desired properties that are
described in detail in section 4.2.1.

After taking action a reward r(a) is collected after which
the Q-value of action a is updated as [15]

Qk+1(a) = Qk(a) + αk[rk+1(a)−Qk(a)], (1)

where rk+1(a) is the reward at time step k + 1 for taking
action a and αk (0 < αk ≤ 1) is a step size parameter.

In a stationary scenario convergence is guaranteed with
probability 1 when the step size parameter αk satisfies the
following conditions [15]

∞∑
k=1

αk =∞ and

∞∑
k=1

α2
k <∞. (2)

The first condition in (2) guarantees that the step size
is large enough to overcome the initial conditions, while
the second condition guarantees that the step size is
small enough to assure eventual convergence. Step size
αk = 1/(k + 1) fulfills the conditions of (2) and results in
the standard sample-average of the past rewards. On the
other hand, for constant αk = α the estimates will never
completely converge, but continue varying in response to
the latest observed rewards. In case of tracking a non-
stationary process this is in fact desirable since the policy
should react rapidly to the changes in subband occupancy
statistics. A constant αk = α results in a weighted average
of the observed rewards, i.e. [15]

Qk+1(a) = (1−α)k+1Q0(a)+

k+1∑
i=1

α(1−α)k+1−iri(a). (3)

A constant step size α is suitable for tracking non-
stationary processes such as the channel qualities in CR
networks. It can be noticed in (3) that when α is large
more emphasis is given on the most recent rewards whereas
when α is close to 0 the algorithm will give emphasis on re-
wards obtained in the more distant past as well. This sug-
gests that for heavily non-stationary processes large values
of α would be more suitable, whereas for stationary pro-
cesses small α would give better results.

4.2. The proposed sensing policy
In this paper we propose a sensing policy using ε-greedy

exploration for selecting the frequency subbands to be
sensed and for selecting the corresponding sensing assign-
ments in a CR network. The policy is managed by the
FC that tracks two kinds of Q-values: the Q-values for
the subbands and the Q-values of all SUs to all subbands.
A natural way to define the reward rk+1(b) for selecting
subband b to be sensed is the obtained throughput:

rk+1(b) =

{
Rk+1(b), if b is accessed and free
0, if b is occupied,

(4)

where Rk+1(b) is the instantaneous throughput on sub-
band b. In this paper it is assumed that the SU who has
been granted the permission to access the band will feed
back an estimate of the achieved throughput. For exam-
ple, this may be an estimate based on the measured chan-
nel quality between the communicating SUs. Using this
feedback the FC updates the Q-values of each subband
according to (1).

The SU Q-values for particular subbands are updated
by comparing the SUs’ decision to the global decision:

rk+1(s, b) =

{
dk+1(s, b), dk+1(FC, b) = 1

Qk(s, b), dk+1(FC, b) = 0,
(5)

where dk+1(s, b) denotes the local decision by SU s for
subband b at time instant k+1 and dk+1(FC, b) denotes the
corresponding decision at the FC. The SU’s Q-value is then
updated again according to (1). Hence, the SU’s Q-value
indicates its sensing performance at subband b, assuming
that the global decision based on the local decisions from
multiple SUs made at the FC is correct.

After all the Q-value updates, with probability 1− ε the
FC exploits its knowledge and selects L subbands to be
sensed that have the highest Q-values (stage 1 in figure
5). In this paper it is assumed that the FC has an esti-
mate of the desired throughput and is able to select the
parameter L appropriately. After selecting the subbands
the FC finds an appropriate sensing assignment for them
(stage 2 in figure 5). With probability ε the sensing is done
according to predefined pseudorandom frequency hopping
codes with a fixed diversity order D, where D is the num-
ber of SUs simultaneously sensing the same subband. In
the exploitation phase the sensing assignment is the one
that minimizes the number of sensings in the SU network
while maintaining the detection performance at a desired
level. Finally, the FC sends to the SUs information about
which subbands they should sense.

4.2.1. Exploration
In this section the pseudorandom frequency hopping

based sensing policy proposed in [20] is briefly summa-
rized, since it constitutes the exploration phase of the sens-
ing policy developed in this paper. The pseudorandom fre-
quency hopping based sensing policy provides quick scan-
ning of the spectrum of interest with minimal control sig-
naling, thus being extremely suitable for exploring the
spectrum. The frequency hopping code design allows for
trading off scanning speed and diversity (and consequently
detector performance) in an elegant manner. Moreover, by
guaranteeing the desired diversity order D, reliable perfor-
mance is ensured in demanding propagation environments.
In the pseudorandom frequency hopping based multi-band
spectrum sensing policy the design of the sensing policy
has been converted into designing and allocating pseudo-
random frequency hopping codes to the SUs guiding them
which subbands are sensed and when. After each hop-
ping code period different D-tuples of the NS SUs will be
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Figure 5: Flow diagram of the operation of the SU network and
the FC. The blocks concerning the proposed sensing policy are high-
lighted with shading. In the diagram rand is uniformly distributed
between 0 and 1.

employed to scan the spectrum of interest together. The
design is made such that over time all possible SU combi-
nations of size D will be employed to sense each subband.
Fig. 6 shows an example design of the hopping codes for
NS = 4, NB = 3 and D = 2.

Figure 6: Pseudorandom frequency hopping codes for NS = 4, NB =
3 and D = 2. At each sensing instance the SU senses the subband
pointed by the current entry of its hopping code. Hopping code
entries are pointing to the physical frequencies that are maintained
in a lookup table. The possible transmission slots following after
each sensing instance have been dropped out for convenience.

In frequency hopping based sensing each SU hops ac-
cording to its hopping sequence to sense one of the sub-
bands of interest. The subband to be sensed at time in-
dex i is given by f(i) = F [Sq(i)], where Sq(i) is the qth
frequency hopping sequence, F is a table containing the
mappings to the physical subbands. Table F may include
links to the subbands’ center frequencies and bandwidths.
It is assumed that F is same for all SUs in the network.

Since it is desirable to scan as much spectrum as possible
at once, the hopping sequences are made orthogonal. The
simplest way to generate an orthogonal code family is to
cyclically shift any full sequence of integer numbers. A full
sequence is a sequence that contains all integer numbers
up to a certain number. Cyclic shifts may be generated by
the modulo operation as

Sq(i) ≡ (i+ ∆q) mod NB , (6)

where i ∈ [0, NB − 1], q ∈ [0, bNS

D c− 1] and ∆q is the shift
parameter. For more information about the choice of ∆q

and the design of the frequency hopping sequences as well

as simulation results see [20].

4.2.2. Exploitation
In many practical scenarios the cooperating SUs, al-

though being in the vicinity of each others, may be in
very different channel conditions due to fading. Then the
cooperation among the SUs may be optimized better in
order to save energy of the SUs.

Assume that the secondary network of NS SUs wants
to sense L < NB subbands in hope of spectral opportuni-
ties. These subbands have been selected in the first stage
of the sensing policy as the ones that are most likely going
to produce high reward (throughput) for the SU network.
Denote the set of all the chosen L subband indices as B
and the set of all SU indices as S. Furthermore, assume
that the SU network has knowledge about the SUs’ prob-
abilities of detection Psb, where s ∈ S and b ∈ B. In order
to conserve the SUs’ energy, we would like to minimize
the number of SUs assigned for sensing while pursuing to
guarantee a desired level of detection performance at the
subbands of interest. Hence, the sensing assignment prob-
lem (SAP) can be formulated as

min
X

∑
b∈B

∑
s∈S

wsxsb (7)

s.t. P̂ b
miss,FC(X) ≤ P b

miss,target∑
b∈B

xsb ≤ Ks

xsb ∈ {0, 1},

whereKs is a positive integer corresponding to the number
of subbands SU s can sense simultaneously and ws is the
weight of user s. X = [xsb] is NS ×L the unknown binary
sensing assignment matrix. The elements of X are

xsb =

{
1 , if SU s is assigned to sense subband b
0 , otherwise

. (8)

In equation (7) P̂ b
miss,FC(X) is the estimate of the miss

detection probability at the FC at subband b obtained
with sensing assignment X. P b

miss,target is the maximum
probability of miss detection that the secondary network
is allowed to have at band b. The first constraint in (7)
requires that the probability of miss detection at the FC
should be below the constraint, whereas the second con-
straint restricts the number of subbands SU s can sense
simultaneously to be Ks or less. The weight ws of SU s
may be chosen, for example, according to the SUs’ battery
charge. If SU s is known to have low battery charge it may
be given relatively large weights compared to other users
so that it will unlikely to be assigned for sensing.

There are many ways to design distributed detection
such that the detection performance constraint in (7)
is met. As an example we consider here hard deci-
sion combining of multiple Neyman-Pearson detectors [21].
Neyman-Pearson detectors maximize the detection prob-
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ability under a constraint on false alarm rate and hence
false alarm rate is not included in (7) as a separate con-
straint. Typically the false alarm rate constraint is set
small since false alarms equal to overlooked spectral op-
portunities. For hard decision combining, such as the OR-
rule considered in the next subsection, the false alarm rate
constraint at the FC is simply met by controlling the lo-
cal detection thresholds according to the number of SUs
assigned to sense the same subband [21].

4.2.3. Sensing assignment for the OR-fusion rule
Next the sensing assignment is illustrated for the OR-

rule where the SUs send only their local decisions to the
FC. The FC then decides a subband to be free only if all
sensing SUs have reported it to be free. Other fusion rules
such as K-out-of-N -rule could be used as well. Assuming
conditional independence of the observations at different
SUs given H0 or H1 the probability of missed detection at
the FC at subband b for the OR-rule is given by

P b
miss,FC =

Ns∏
s=1

(1− Psb)
xsb , (9)

which as such would lead to a nonlinear constraint in the
SAP given by equation (7). However, the detection per-
formance constraint can be linearized by simply taking the
logarithm of the missed detection probabilities, i.e.

ln(P b
miss,FC) =

Ns∑
s=1

ln(1− Psb)xsb. (10)

Then the SAP for the OR-rule can be formulated as a
linear binary integer programming (BIP) problem as

min
x

wTx (11)

s.t. Ax ≤ c

x is binary,

where w is an NSL × 1 vector of weights for the SUs
at different subbands, x = vec(X) is a binary vector
of size NSL × 1, A is the (L + NS) × LNS constraint
matrix containing the logarithms of the estimated lo-
cal miss detection probabilities ln(1 − P̂sb)’s and L iden-
tity matrices INS

at the bottom and c is the vector of
the constraints. The constraint vector is given as c =
[ln(P 1

miss,target), ..., ln(PL
miss,target),K1, ...,KNS

]T . Since
the detection probability can be known only up to a certain
margin of error, the constraint vector c should in practice
include a safety margin defined by a spectrum regulator.
The constraint matrix A is given by

A =


p̂1
miss 0 · · ·

p̂2
miss 0 · · ·

. . .
· · · 0 p̂L

miss

INS
INS

· · · INS

 , (12)

where p̂b
miss = [ln(1 − P̂1b), ln(1 − P̂2b), ..., ln(1 − P̂Nsb)]

and INS
is the identity matrix of size NS .

This BIP problem is NP-hard but solvable by branch-
and-bound (BB) type algorithms. The worst case running
time of BB search, although unlikely, is 2NSL, that cor-
responds to the case where no branching is possible. In
practice NSL maybe assumed to be small.

In cases where the product NSL is large, the proba-
bility that there exists multiple near optimal assignments
is high. In such cases heuristic approximation algorithms
may be applied. In [22] an iterative Hungarian algorithm
is proposed to find a sensing assignment that minimizes
the probability of miss detection. The policy assigns SUs
to sense the subbands one by one using the Hungarian
method [23]. In our problem formulation, the Hungarian
method can be employed iteratively, similarly to [22], to
find a near optimal solution for the SAP with ws = 1 by
modifying the algorithm to stop immediately once a feasi-
ble solution is found. Since the Hungarian algorithm runs
in polynomial time, this method is also polynomial time.

4.3. SU Q-value and the local detection probability

Solving the optimization problem of (7) requires the es-
timates of the probabilities of missed detection at the FC.
Defining the reward as in (5) provides simultaneously a
simple estimate for the SUs’ probabilities of detection.

Since the SU Q-values are updated according to equa-
tion (1) similarly to the subband Q-values, it can be
shown that the asymptotic expected Q-values E[Qk(s, b)]
approach the expected reward as k → ∞. From equation
(5) assuming that E[Qk+1(s, b)] =

k→∞
E[Qk(s, b)] we get

lim
k→∞

E[Qk+1(s, b)] = lim
k→∞

E[rk(s, b)] =

P1P(d(FC) = 1 ∩ d(s) = 1|H1)

P1Pd,FC + P0Pf,FC
+

P0P(d(FC) = 1 ∩ d(s) = 1|H0)

P1Pd,FC + P0Pf,FC
,

where P0 is the probability of the subband being free, P1 =
1−P0, d(s) and d(FC) are the decision at SU s and at the
FC, respectively, and Pd,FC and Pf,FC are, respectively,
the probabilities of detection and false alarm at the FC.
For notational convenience the subband index b has been
dropped.

For the OR-rule P(d(FC) = 1 ∩ d(s) = 1|H1) =
P(d(s) = 1|H1) = Pd,s and P(d(FC) = 1∩d(s) = 1|H0) =
P(d(s) = 1|H0) = Pf,s, since P(d(FC) = 1|d(s) = 1) = 1.
Then,

lim
k→∞

E[Qk+1(s, b)] =
P1Pd,s + P0Pf,s

P1Pd,FC + P0Pf,FC
≈ Pd,s

Pd,FC
,

assuming that P0Pf,s ≈ 0 and P0Pf,FC ≈ 0. It can be
seen that in order for the local detection probability esti-
mates to be close enough to the detection probability at
the FC Pd,FC should be close to one. This can be achieved
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Figure 7: The mean converged SU Q-values after 10000 sensing in-
stances ordered according to the corresponding mean SNR and the
true probability of detection curve. The mean was calculated over
100 runs. It can be seen that the SUs’ Q-values (red circles) coincide
well with the true probabilities of detection (blue curve).

through spatial diversity if the decision at the FC is based
on multiple SUs’ local test statistics or decisions.

Figure 7 shows converged SU Q-values ordered by mean
SNR and the true probability of detection curve. The de-
tection scheme is Neyman-Pearson energy detection with
a sample size 50 and Pf,FC = 0.01. The fusion rule is the
OR-rule with D = 2 and α = 0.1. It can be seen that the
Q-values align with the true probabilities of detection.

4.4. Convergence of the subband Q-values
Since all the subbands are not necessarily sensed all the

time, we need to introduce another time variable Tk(b) ≤ k
denoting the number of sensing instances (and value up-
dates) at band b up to the kth run of the ε-greedy algo-
rithm. Regrouping the components in equation (1) the
Q-value of subband b can be expressed as

QTk(b)+1(b) = (1− α)QTk(b)(b) + αrk(b).

Taking the expectation of both sides results to

E[QTk(b)+1(b)] = (1− α)E[QTk(b)(b)] + αµ(b),

where µ(b) = E[rk(b)]. This is a linear recurrence, whose
solution is given by

E[QTk(b)+1(b)] = αTk(b)+1E[Q0(b)]+
(

1− (1− α)Tk(b)+1
)
µ(b).

Assuming E[Q0(b)] = 0 the expected Q-value of band b at
the Tk(b)th update is

E[QTk(b)(b)] = (1− (1− α)Tk(b))µ(b) = µ(b).

as Tk(b)→∞. Then the expected Q-value of band b after
the kth run of the ε-greedy algorithm is given by

E[Qk(b)] = µ(b)

k∑
Tk(b)=0

P(Tk(b))(1− (1− α)Tk(b)), (13)
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Figure 8: The simulated convergence of the expected Q-value (black
solid curves) of 5 subbands and the upper (red dashed curve) and
lower bounds (blue dashed curve) for them. The number of sensed
bands is set to L = 1. The rewards are assumed to be Bernoulli
distributed with probability 0.5 and means µ(1) = µ(2) = µ(3) =
µ(4) = 1 and µ(5) = 10. The used parameters are ε = 0.1 and the
step size α = 0.1. It can be noticed that the convergence of the Q-
values of the subbands with the lowest mean rewards follows closely
the lower bound, where as the convergence at the best subband goes
closer to the upper bound.

where P(Tk(b)) is the probability that band b has been up-
dated Tk(b) times within the k runs of ε-greedy algorithm.

Upper and lower bounds can be easily obtained for
P(Tk(b)) in a stationary case:

B(Tk(b), k, ε
L

NB
) ≤ P(Tk(b)) ≤ B(Tk(b), k, 1− ε(1− L

NB
)),

where B(Tk(b), k, p) =
(

k
Tk(b)

)
pTk(b)(1− p)k−Tk(b) is the bi-

nomial probability density function. The lower bound cor-
responds to the probability that the Q-value is updated
only in the exploration phase and the upper bound to the
case that in the exploitation phase the Q-value is updated
with probability one.

The analysis for the convergence of the SU Q-values is
almost identical to the analysis above for the Q-values
of the subbands. The probability P(Tk(b, s)) that SU s
has sensed subband b during k runs Tk(b, s) times is then
bounded as

B(Tk(b, s), k, ε
L

N2
B

) ≤ P(Tk(b, s)) ≤ B(Tk(b, s), k, 1−ε(1− L

N2
B

)).

Establishing a lower bound for the probability of the num-
ber of sensings is important for guaranteeing a desired con-
vergence rate for the estimates of the probability of missed
detections in the second stage of the proposed sensing pol-
icy.

Figure 8 shows the simulated convergence of the ex-
pected Q-values of 5 subbands and the upper and lower
bounds for them. The number of sensed bands is set to
L = 1. The rewards are assumed to be Bernoulli dis-
tributed with probability P0 = 0.5 and means µ(1) =
µ(2) = µ(3) = µ(4) = 1 and µ(5) = 10.
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5. Simulation examples

In this section simulation results for the proposed sens-
ing policy are shown. The main focus is put on the ob-
tained throughput of the secondary network and miss de-
tection probability.

5.1. Stationary case
This subsection provides the results for a stationary sce-

nario in which the occupancy statistics of the primary
bands stay constant during the whole simulation period.
The results are shown for the throughput, average miss
detection probability and relative number of sensings in
the SU network with different values of ε. Furthermore,
the simulations are shown for comparison using the ex-
act BB search and an approximative iterative Hungarian
(IH) method adapted from [22]. In the stationary case the
mean detection performances of the SUs remain constant.
The simulations are done for NS = 6 SUs and NP = 10
primary subbands. The availability of each subband is
modeled according to a two state Markov chain (see fig-
ure 4) with state transition probabilities P11 = P00 = 0.9.
Different subbands are assumed to be independent of each
other. The mean SNRs of the primary signal in the sec-
ondary network is assumed to be distributed according to
the log-normal shadow model with a standard deviation
of 9 dBs. The fast fading component of the channel is
modeled as a block fading Rayleigh channel with expected
power gain of 1. Furthermore, it is assumed that 3 of the
subbands are able to provide 10 times higher throughputs
on average. For spectrum sensing Neyman-Pearson energy
detection with a sample size of 50 is used. The global deci-
sions at the FC are formed using the hard decision OR-rule
with a constant false alarm rate Pf,FC = 0.01. In the ex-
ploration phase the pseudorandom frequency hopping code
design is made using a fixed diversity order D = 2 that has
been selected such that on average the desired miss detec-
tion probability is close to Pmiss,target. In the exploitation
phase the number of subbands SUs can sense simultane-
ously is set to Ks = 1,∀s ∈ S, and the target probability
of miss detection at the subbands Pmiss,target(b) = 0.1.
The weights ws in the SAP have been set to 1 for all SUs.
The number of subbands that the SU network wants to
find is constant during the whole simulation, i.e., L = 3.
For clarity in this section the step sizes in the first and sec-
onds stage of the sensing policy are denoted as α1 and α2

respectively. In the simulations α1 = 0.01 and α2 = 0.1.
Figure 9 shows the cumulative throughput relative to

an ideal, genie aided policy. An ideal policy is assumed to
be able to find all spectrum opportunities and select the
L subbands with highest instantaneous throughputs. The
obtained throughput using the exact BB search and the
throughput using the heuristic IH method are practically
the same. However, in this case the IH method found the
assignment on average 80 times faster than the BB search.
It can be noticed that with ε = 0.1 the proposed policy is
finally obtaining 83% of the throughput of an ideal policy.
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Figure 9: Cumulative throughput relative to an ideal policy. The
dashed curves are with the IH method and the solid curves with the
exact BB algorithm. For ε = 1 the curves are exactly the same as
it corresponds to exploration only case. For ε < 1 cases the perfor-
mances are almost the same. For example with ε = 0.1 the proposed
policy is able to provide about 83% of the throughput of an ideal
policy. It can be seen that with small ε the converged throughput is
high, whereas the convergence rate is slow.
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Figure 10: Convergence of the missed detection probability for dif-
ferent choices of ε averaged over the subbands. The dashed curves
are with the IH method and the solid curves with the exact BB al-
gorithm. For ε = 1 the curves are exactly the same as it corresponds
to exploration only case. For ε < 1 cases the performances are al-
most the same. It can be seen that over time for ε < 1 the missed
detection probability converges below Pmiss,target = 0.1. Again for
small ε the converging value is compromised with slow convergence
rate.

As can be seen the trade-off with small ε comes naturally
with a slower rate of convergence.

Figure 10 shows the probability of miss detection for
different choices of ε. The diversity order for the fixed
policy (curve corresponding to ε = 1) was selected such
that on the average the target miss detection probability
is achieved. The resulting average miss detection proba-
bility using the exact BB search and using the heuristic
IH method are almost the same. When ε is decreased the
policy starts assigning those SUs with high probability of
detection to sense the corresponding subbands more often
thus decreasing the overall number of miss detections. For
ε = 0.1 and ε = 0.3 the average miss detection probability
is finally at the end of the simulation close to 0.04.
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Figure 11: Number of sensings relative to a sensing policy with fixed
diversity order D = 2. The dashed curves are with the IH method
and the solid curves with the exact BB algorithm. For ε = 1 the
curves are exactly the same as it corresponds to exploration only
case. For ε < 1 cases the performances are almost the same. It can
be seen that the proposed policy reduces the number of sensings in
the secondary network by assigning only the best SUs for sensing.
With ε = 0.1 the number of sensing SUs per subband is almost
halved, meaning that on average in the exploitation phase there is
only one SU sensing per subband.

Figure 11 shows the number of sensings over time com-
pared to a sensing policy with fixed diversity order D = 2
(exploration only). The savings in the number of sens-
ings using the exact BB search and using the heuristic IH
method are again practically same. For the case ε = 0.1
the number of sensings and transmissions of the local sens-
ing results to the FC are reduced to 56%.

5.2. Expected throughput for non-stationary cases

For a non-stationary scenario the throughput of the pro-
posed sensing policy is compared against two other meth-
ods. The results are shown only for the first stage of
the proposed sensing policy that attempts to maximize
the throughput of the secondary network. The results are
shown for a case in which the availability of the subbands
is Markov process and for a case in which the availability
is a Bernoulli process (i.e. a special case of a two-state
Markov chain). Moreover, the proposed policy is com-
pared to two other state-of-the-art policies. Namely, the
comparison is done against the discounted UCB (DUCB)
policy with a discount factor γ [17] and a near-optimal
sensing policy [13], the Whittle index policy, that assumes
the state transition probabilities in the Markov chain to be
known. The comparison between the Whittle index policy
and the two machine learning-based policies is therefore
not entirely fair since the assumptions about prior knowl-
edge are different.

Here the number of subbands has been set to NB = 5
and the number of simultaneously sensed bands to L = 1.
The missed detection probability at the FC is assumed to
be Pmiss,FC = 0.1 and the false alarm rate Pf,FC = 0.01
using Neyman-Pearson detectors. The mean through-
puts of the bands bands are [11, 21, 31, 41, 51]. In the
first scenario the transition probabilities of the Markov
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Figure 12: The sum throughput of the secondary network over time
in a non-stationary scenario with Markovian rewards. The through-
put statistics are permutated randomly among the subbands at ran-
domly selected time instants that show up as sudden deep drops
in the expected throughput. It can be seen that the DUCB pro-
vides high throughput in the beginning when all the discounted mean
throughputs in the algorithm are zero. However, the proposed sens-
ing policy with ε-greedy exploration seems to provide more stable
convergence at all times. Naturally the Whittle index based policy
has the best convergence at all times, since it is assumes that the
throughput distributions are known.

chain are initialized as P00 = [0.5, 0.9, 0.6, 0.8, 0.8] and
P11 = [0.9, 0.31, 0.7, 0.9, 0.3]. In the Bernoulli case the
probabilities of the subbands being free are initialized
as P0 = [0.87, 0.17, 0.43, 0.33, 0.78]. To simulate non-
stationary behavior the transition probabilities and the
mean rewards are randomly permutated among the sub-
bands at random time instances.

Figure 12 shows the expected mean throughput for the
non-stationary Markovian case. Since it is assumed that
the Whittle index policy knows the throughput distribu-
tions perfectly at each time, the optimized policy is nat-
urally giving the highest throughput. It can be seen that
DUCB adapts fast at the beginning when the discounted
mean throughputs in the algorithm have been set to zero.
However, after the first change in the throughput dis-
tributions the convergence of DUCB slows down signifi-
cantly. The proposed sensing policy with ε-greedy explo-
ration seems to provide more consistent convergence at all
times.

Figure 13 shows the expected throughput for the non-
stationary Bernoulli case. Here only results are shown
for the two machine learning-based policies, since neither
of them does not assume any prior knowledge about the
underlying Bernoulli process. The two machine learning
based sensing policies perform almost alike as in the first
non-stationary scenario, with the proposed policy giving
slightly better overall performance than the DUCB policy.

6. Conclusions

In this paper a machine learning based multi-band spec-
trum sensing policy is proposed. In the proposed policy the
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Figure 13: The sum throughput of the secondary network over time
in a non-stationary scenario with Bernoulli rewards. The throughput
statistics are rotated among the subbands randomly at randomly se-
lected instances that show up as sudden deep drops in the expected
throughput. The DUCB performs again well in the beginning but
degrades notably after the first change in the throughput distribu-
tions.

ε-greedy method is employed to track the occupancy statis-
tics of the PU and to estimate the detection performance
of the SUs. Using the ε-greedy method the proposed pol-
icy exploits the gained knowledge about the throughputs
of different subbands by selecting the sensed subbands as
the ones with the highest Q-value. Furthermore, knowl-
edge about the detection performances of different SUs is
exploited by minimizing the number of SUs assigned for
sensing that are collaboratively able to meet a desired miss
detection probability threshold.

Exploration of the radio spectrum and different sens-
ing assignments is realized using pseudorandom frequency
hopping codes with fixed diversity order. Firstly, the pseu-
dorandom exploration with fixed diversity order guaran-
tees reliable sensing, and secondly, eventually all possible
SU combinations of size D will be considered.

In the exploitation phase the sensing assignment prob-
lem is formulated as a binary integer programming prob-
lem in which the objective is to minimize the number of
sensorsD per subband while ensuring the desired detection
performance at each subband. By minimizing the number
of sensing SUs per subband energy of the battery operated
users is conserved and the amount of transmitted local test
statistics is reduced. The optimal sensing assignment may
be found by using exact branch-and-bound search or an
approximative algorithm such as the iterative Hungarian
method.

In this paper we demonstrate the performance of the
proposed sensing policy and derive analytical expressions
about the convergence of the policy. The simulation results
show that the proposed sensing policy provides excellent
performance in terms of throughput, detection probability
and energy efficiency.
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