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Abstract
To construct biologically interpretable gene sets for muscular dystrophy (MD) sub-type
classification, we propose a novel computational scheme to integrate protein-protein interaction
(PPI) network, functional gene set information, and mRNA profiling data. The workflow of the
proposed scheme includes the following three major steps: firstly, we apply an affinity
propagation clustering (APC) approach to identify gene sub-networks associated with each MD
sub-type, in which a new distance metric is proposed for APC to combine PPI network
information and gene-gene co-expression relationship; secondly, we further incorporate functional
gene set knowledge, which complements the physical PPI information, into our scheme for
biomarker identification; finally, based on the constructed sub-networks and gene set features, we
apply multi-class support vector machines (MSVMs) for MD sub-type classification, with which
to highlight the biomarkers contributing to sub-type prediction. The experimental results show that
our scheme can help identify sub-networks and gene sets that are more relevant to MD than those
constructed by other conventional approaches. Moreover, our integrative strategy improves the
prediction accuracy substantially, especially for those ’hard-to-classify’ sub-types.
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1. INTRODUCTION
The muscular dystrophy (MD) [1] is a group of inherited muscle diseases characterized by
progressive muscle wasting and weakness, consisting of several sub-types with different
severity. Although many MD-related defective genes and proteins have been identified, no
effective treatments are known yet for many sub-types of MD as their disease pathways are
not clearly understood. The availability of high throughput gene expression data provides us
the opportunity to elucidate disease pathways involved in MD progression, which is an
important task in computational biology aiming for disease biomarker discovery.

Traditional disease biomarker discovery is usually performed by individual gene based
classification approaches [2], which ignore the internal relationship among genes, and thus
encounter the curse-of-dimensionality problem [3]. Many computational efforts have been
put in to address this problem by incorporating biological knowledge. For examples, several
supervised approaches [4, 5, 6] were proposed to identify phenotype-specific PPI sub-
networks so as to reveal related genetic pathways or predict clinical outcomes. Functional
gene set categorization was also combined with clinical information to classify disease
samples [7]. However, these methods, which are based on supervised learning, could easily
overlook many important biomarkers that only mildly correlate with phenotype label only
but have strong relevance to the disease status.

To address the aforementioned drawbacks of conventional approaches, we propose an
integrative scheme in this paper to fully utilize available biological knowledge such as
protein-protein network and functional gene set information to construct biologically
interpretable features for sub-type classification. The workflow of the proposed scheme is
shown in Fig. 1. Specifically, we use a modified affinity propagation clustering (APC)
approach [8] for sub-network identification, incorporating both topological adjacency and
expression similarity into the calculation of distance between genes. By doing so, we aim to
identify sub-networks comprising genes with consistent activities in the local regions of PPI
network. Besides the physical interaction information from PPI, we also use functional gene
set knowledge to argument biomarker features, since functional interactions among genes
also play important roles in cellular systems. Using both sub-network and functional gene
set as features, we then construct classifiers to predict the MD sub-types in a biologically
interpretable way, i.e, sub-type specificities are reflected in the abnormal activities of
differentially expressed sub-networks and functional gene sets. We have applied the
proposed scheme to a gene expression data set with six different MD sub-types for their
improved diagnostics. Experimental results show that the sub-networks identified by our
scheme are comprised of multiple important pathways related to MD. Moreover, the
prediction accuracy has been substantially improved, especially for those sub-types that are
difficult to classify.

2. METHODS
2.1. Sub-network construction using affinity propagation clustering(APC)

2.1.1. Protein-protein interaction(PPI) information—Proteins collaborate with each
other to perform various types of molecular functions and PPI network structure provides
potential interaction information of proteins. As the alternation of protein interactions could
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contribute to diseases onset or progression, a better understanding of disrupted protein sub-
networks is essential for the study of disease systems and biomarker discovery. However,
there are limitations associated with available PPI information. First, current PPI
measurements are quite noisy and every existing technique for PPI information acquisition
has its own limitations [9]. Second, PPI only provides the static information of protein
interactions and cannot reflect the dynamics of protein interactions in cellular systems.
Therefore, it is necessary to incorporate other data types such as gene expression in order to
identify condition-specific sub-networks.

Current computational approaches using PPI information can be categorized into three
types: The first type is to identify protein complexes, by extracting densely connected
modules [5]; the second type is to reveal condition specific gene modules utilizing both
phenotype label information and gene expression data [4, 6]; the third type is to define gene
modules by using unsupervised clustering approaches [10].

Supervised learning is a common approach to discover biomarkers that differentiate
phenotypes. However, such an approach is mainly focused on the disease outcomes, and
may easily overlook the disease mechanisms underneath. As shown in Fig. 2, human
diseases such as cancers are usually caused by genetic and environmental factors through
multiple intertwined biological functions. If we focus only on the difference in clinical
outcomes, we may lose the important information about the coherence of gene activities and
their functional roles. For example, in tumor progression, metabolic activities are the most
differentiable signals associated with clinical outcomes but provide limited information for
us to understand the underlying mechanism of disease. Another example can be found in our
MD study, where the muscle degeneration activity can be successfully used for the
diagnostic purpose but hard to be used for the treatment purpose. Aiming to identify
biologically informative sub-network biomarkers, we propose to construct sub-networks
without using clinical label information directly. Instead, we will use clinical information
later in classifiers to highlight MD sub-type specific sub-networks.

2.1.2. Affinity propagation clustering (APC)—Before we describe our sub-network
construction method, we will briefly explain the affinity propagation clustering (APC)
algorithm in this section. Given a set of data points P = {p1, ⋯, pN} and function S(i, j)
calculating the similarity between pi and pj, the goal of affinity propagation clustering is to
find a mapping function g(·) that maximizes the energy function Eg defined as:

(1)

The second term in Equation (1) represents a consistency constraint such that if one data
point is an exemplar for other data points, it has to be its own exemplar [8].

The energy function can be optimized through message passing among different data points,
and there are two types of messages (as shown in Fig. 3): ”availability” a(i, k) represents the
accumulated evidence for pk to be selected as the exemplar for pi; ”responsibility” r(i, k)
tells that how suitable pk acts as the exemplar of pi. The values of these two messages are
iteratively updated as follows:

(2)
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(3)

(4)

(5)

Once the algorithm is converged, the index of the most appropriate exemplar for i-th data
point is determined by the following formula:

(6)

The message passing algorithm of APC involves pair-wise distance calculations, which can
incur high computational complexity if the number of data points N is large, thus hinder its
applicability to gene clustering; note that APC has been used for microarray sample
grouping [11] but not for gene clustering. But with the help of PPI data, the computation
load of APC will be greatly reduced since the interactions between proteins are sparse even
when the indirectly connected interactions are considered.

In APC, every data point within one cluster can be ”represented” by a common exemplar,
which is also a data point. Such exemplar-member relationship resembles the gene module
network, where a hub gene interacts with other genes in a module. The hub gene can be a
key regulator affecting or coordinating the activities of other genes. Such resemblance
motivates us to exploit APC to reveal gene modules by incorporating PPI into the gene-gene
relevance calculations.

Let pi = [p1i, ⋯, pLi]T be the expression vector of i-th gene across L microarray samples and
pli is its gene expression level in l-th microarray sample. Then the correlation coefficient
ρ(pi, pj) between expression vectors of i-th and j-th genes can be defined as follows:

(7)

Here, μpi, μpj, σpi and σpj are the means and standard deviations of i-th and j-th expression
vectors, respectively. If we only focus on the similarity of expression vectors regardless of
up or down regulation of genes, we can measure the relevance S(i, j) between two genes i
and j using the following formula:

(8)

Here, dij can be any topological distance metric between i-th and j-th genes based on PPI
network structure [12], and γ is is a weight to control the influence of distance to S(i, j). In
this paper, we adopt the shortest distance to calculate d and set γ = 1 for simplicity. If one
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wishes to tell up- from down-regulated genes, the relevance in (8) can be modified as
following:

(9)

In both (8) and (9), the relevance is bounded between 0 and 1, with 1 indicating the highest
relevance and 0 the lowest. Notice that (9) is more favorable in practice if we need to further
combine expression patterns to construct features, as there is no ambiguity of signs.

2.1.3. Significance analysis of identified sub-networks—Unlike conventional
clustering methods, sub-networks learned by the proposed scheme can be statistically
evaluated using significance analysis. Without label information, it is infeasible to design
significance analysis for traditional clustering, and the confidence of resulting clusters
cannot be statistically evaluated. In contrast, our proposed scheme is semi-supervised by PPI
information, therefore we can shuffle the PPI and gene corresponding relationship to assess
the reliability of identified sub-networks. Let’s define a statistic to measure the compactness
of one sub-network as follows:

(10)

where, e is the exemplar gene index, M is the number of genes within a sub-network, and
S(i, e) measures the relevance between i-th gene and its hub (or, ”exemplar”). Using
randomly shuffled PPI information, we construct sub-networks and calculate their
compactness. A sufficiently large number of random shuffling (e.g. 10,000) is required to
construct the null distribution. Based on the null distribution, we can calculate the

significance value, i.e, p-value, as follows. Letting  be the compactness
measurements generated by R times of random shuffling, the empirical null distribution
FR(t) can then be defined by the following equation:

(11)

in which, 1{A} is the indication of event A. Based on the empirical null distribution, we
define the p-value of an observed compactness measurement ce as follows:

(12)

2.2. Feature construction and classification
2.2.1. Feature constructions—As the PPI information has been exploited for sub-
network construction, what we eventually have are multiple gene sub-sets based on
identified sub-networks. We first standardize expression level of each gene as z-score [13]:

(13)

where μpi and σpi are the mean and standard deviations of i-th expression vector,
respectively. For the m-th gene sub-set m with Nm gene members, we compute the activity
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of this gene sub-set in the l-th microarray sample as the aggregated expression of gene
members [6, 4]:

(14)

These gene sub-set activities will be calculated for each individual microarray sample and
treated as the features for classification. We also incorporate functional gene sets, as defined
from other biological knowledge databases, into the features to take into account the
functional interactions between genes. Instead of using all the genes within a functional gene
set, we apply a variance based filtering to eliminate the genes with less variance that are
more likely to have low signal quality. For each functional gene set, we map gene symbols
to probe set ids, and select the sub-set of probe set ids that have relatively large expression
variation across all microarray samples. We define the activity of each new gene set by
taking the average of the standardized expressions of all genes belonging to the same set,
just like what the activity for our sub-networks is calculated.

2.2.2. Classification techniques—For our MD prediction study, we used three
commonly used classification techniques: K-Nearest-Neighbor (KNN), Decision Tree (DT),
and Support Vector Machine (SVM). KNN is a non-parametric method that can describe
nonlinear decision boundaries for classification, and we include it to investigate whether
there is any nonlinearity among different MD sub-types. DT is an approach that can be used
to establish tree-like models to for classification or prediction. Since clustering analysis of
MD microarray data [14] has already revealed the hierarchical structure among different
MD sub-types, we want to further investigate if tree based models can also facilitate
classification of MD sub-types. We also use SVM classifier for this study since it is less
prone to the curse-of-dimensionality problem intrinsic to the high dimensional microarray
data [3]. While KNN and DT algorithms can naturally handle multiclass prediction, the
SVM algorithm was originally designed to perform binary classification, and later extended
to handle multiclass prediction as well, using one-versus-one (OVO) or one-versus-all
(OVA) strategy. In our study, we use the OVA strategy to construct multiclass SVM
(MSVM), because the OVA strategy has been reported to perform better than the OVO
strategy for classifying microarray data sets with small number of samples [15]. The
performance difference can be partially explained by the fact that OVO-MSVM only uses a
portion of the training data to construct each binary classifier, thus the resulting classifiers
can be more subject to the over-fitting problem.

3. EXPERIMENTS
3.1. Muscular dystrophy

Before we explain the microarray gene expression data used in this muscular dystrophy
(MD) study, we will briefly describe some clinical background of MD diseases. Muscular
dystrophy refers to a group of more than 30 genetic muscle diseases characterized by
progressive skeletal muscle weakness, defects in muscle proteins, and the death of muscle
cells and tissue. The onset of some MD types is in infancy or childhood, while others in
middle age or later. The disorders differ in terms of the distribution and extent of muscle
weakness, rate of progression, and pattern of inheritance. Among them, Duchenne Muscular
Dystrophy (DMD) is known as the most common and fatal form primarily affecting boys,
while myotonic MD is the most common form affecting adults. Becker MD (BMD) is
similar to DMD but the symptom is less severe. There are no known cures and no specific
treatments for any form of MD, and thus the goal of this MD profiling study is to gain a
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better understanding of MD sub-types so as to enable the development of novel techniques
to diagnose, treat, prevent, and ultimately cure this disorder. In this paper, we will focus on
computational analysis of six MD sub-types consisting DMD, BMD, dysferlin deficiency
(DYS), dystrophy related with fukutin-related protein defect (FKRP), dystrophy related with
the TITIN protein encoded by mutated TTN gene (TITIN), and amyotrophic lateral sclerosis
(ALS)(see Table 1).

3.2. Dataset description
We analyze a microarray dataset acquired by Children’s National Medical Center (CNMC).
The data set consists of 68 microarray samples based on Affymetrix U133-plus2 platform.
The disease group consists of 62 samples of six MD sub-types, and the control group
consists of six ’normal’ samples. A brief summary of the dataset is given in Table 1. PPI
information comprising 9,303 proteins and 35,000 protein interactions is collected from the
Human Protein Reference Database (HPRD) [16], which contains manually curated physical
interactions among proteins. 639 functional gene sets are retrieved from Molecular
Signatures Database (MSigDB) (http://ww w.broadinstitute.org/gsea/msigdb/) to take into
account the functional interactions between genes.

3.3. Differentially expressed sub-networks and gene sets
By applying our proposed scheme to the MD data set, we identified 122 sub-networks for
this MD study. For a comparison, we also applied PinnacleZ, the software implementation
of Chuang’s algorithm [4] PinnacleZ (http://chianti.ucsd.edu/~slotia/pinnaclez/help.html), to
the same data set for sub-network identification. PinnacleZ uses a phenotype label guided
approach to identify sub-networks, and follows a heuristic strategy to search for phenotype
associated sub-networks. It starts from a sub-network consisting of only one selected seed
gene, and gradually includes the adjacent genes in PPI network by examining whether
including additional genes will increase the association score (i.e., mutual information),
which is measured by the relationship between averaged gene expression pattern and
phenotype labels. It keeps growing the network until the association score stops increasing
or its increasing falls below a certain threshold. Afterwards, statistical assessments are
performed extensively to filter out irrelevant sub-networks with non-significant association
scores. With the same p-value cut-off used in our proposed approach, PinnacleZ only finds
34 sub-networks which is only 28% of the 122 sub-networks identified by our approach. In
addition, the sizes of the individual sub-networks constructed by the PinnacleZ method are
smaller than those constructed by our proposed approach (i.e. APC). 41 (34%) APC
identified sub-networks have six to ten genes and 46 (37%) have eleven or more gene
members. But 79% of PinnacleZ identified sub-networks have six to ten genes, and none has
more than ten genes. The summary of comparison is given in Table 2. The difference in the
sub-network size (constructed by the two approaches) could be partly explained by the fact
that the heuristic search scheme would limit PinnacleZ to discover complex sub-networks
with a large number of gene nodes.

To objectively assess the biological relevance of genes selected by both methods, we
conduct functional enrichment analysis using online bioinformatics tools DAVID [17]. The
enrichment p-value provides us a statistical confidence measure of a specific number of
genes falling into specific functional categories, taking the random case as the reference. All
the presented p-values are corrected by Benjamini technique to handle the multiple
hypothesis testing problem [18]. Also, to fairly compare the resulting sub-networks, we
selected the same number of sub-networks constructed by both methods according to mutual
information score.
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Overall, APC identified sub-networks reveal more biological relevance to MD disease by
capturing eight MD related pathways, while PinnacleZ identified sub-networks have only
captured three pathways with relatively lower statistical significance. Particularly, three
most statistically significant pathways captured by APC, namely Cell adhesion molecules,
ECM-receptor interaction, and Hematopoietic cell lineage are not included in PinnacleZ
identified sub-networks. Specifically, Hematopoietic cell lineage is a canonical pathway
involved in self-renewal or differentiation of blood-cell development from Hematopoietic
stem cells, which might be related to the muscle loss and resulting systematic
compensations. Actually, stem cell based therapy is one of the most promising approaches to
treat MD [19]. It has also been documented that cell adhesion molecules and ECM-repector
moleculars all have essential links with various of muscular dystrophy subtypes [1, 20].

Table 3 summarizes the KEGG pathway term, the number of genes, and the p-value for each
MD related pathway captured by APC identified sub-networks (A), and PinnacleZ identified
sub-networks (B).

Table 4 presents biological process enrichment analysis results for the APC identified sub-
networks (A) and the PinnacleZ identified sub-networks (B). Again, cell adhesion, an
important MD related biological process, is enriched only in the genes from the APC
identified sub-networks, but not in the genes from the PinnacleZ identified sub-networks.

To further compare the capability of both methods to detect sub-networks enriched with
biological functions, we defined the significance score for each biological function term T
with given gene sub-set Q as follows:

(15)

in which, p-value(T,Q) is the DAVID enrichment p-value of biological function T for given
gene sub-set Q. The score function signf(·) ranges from 0 to ∞ and the higher score
indicates the better enrichment. Thus, we can compute the significance difference of
biological enrichment between the gene sub-sets constructed by the proposed scheme and
PinnacleZ, based on individual biological function term T:

(16)

where a positive value of which indicates that our proposed scheme is better to capture the
corresponding functional term T, and a negative value suggests PinnacleZ is better. There
are totally 647 biological functional terms enriched in the gene sets from both methods, and
we draw the significance difference for each term in Fig. 4. We can see that in overall our
proposed scheme has much better capability than PinnacleZ to capture biological enriched
functions. There is no biological function term with significance difference less than −5,
while there are 22 terms associated with significance difference larger than 5.

3.4. Prediction performance
As summarized in Table 5, the prediction accuracy of MSVM based on selected sub-
network features is 68%. It is striking to observe a huge contrast between the 100% accuracy
for DMD and the 1% accuracy for TITIN. Such a large difference of prediction accuracy
could be explained by several reasons including: i) Clinically, DMD is the most rapidly-
worsening MD sub-type accompanied by highly varied expression patterns, and thus serves
as the easiest diagnostic case. ii) The number of DMD samples in the data set is much larger
than that of TITIN, and consequently the training of classifier is biased towards DMD. iii)
PPI sub-network based prediction incorporates only physical interaction information, and it
may not be sufficient to tell the sub-type differences by using PPI alone.
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As functional interaction could also play vital roles in the onset and progression of MD
diseases, we have further added functional gene set features into our prediction analysis.
Surprisingly, the results show that the accuracy for TITIN is dramatically improved from
1% to 42%, and the accuracies for DYS, and FKRP are also improved by 30% or more. Fig.
5 shows the prediction performances based on selected sub-network features, and selected
combined features (sub-networks and gene sets). Notice that the prediction accuracy of
MSVM classification results based on selected sub-network features is only 72% at best,
while the accuracy based on combined features is mostly higher than 72% and increases up
to 90%. The fact that prediction accuracy is dramatically improved when functional gene set
features are added may suggest that the functional interactions play an essential roles in
some of the MD sub-types such as DYS, FKRP and TITIN.

We performed KNN classification on our MD microarray data using three different numbers
of neighbors (k=1, 2, 3). The results for different k value are very similar, and so we will
present only the result of k=2 case. As we can observe from Fig. 5 (A) and (B), the
prediction performance of Decision Tree (DT) is the worst, while that of MSVM is the best
among the three. The poor performance of Decision Tree can be explained, at least in part,
by its complexity in training a tree structure. It also suggests that even though certain MD
sub-types may exhibit hierarchical relationship, it is still very risky to use classification only
scheme to discover such relationship, since the number of samples in the microarray data is
usually too small to fully support such relationship, and thus additional clinical information
may be needed to overcome such limitation.

3.5. Some representative Sub-networks
3.5.1. Sub-network features—We have presented four representative sub-networks in
Fig. 6. From the figure, we can observe that most of the gene nodes are directly connected
through protein interactions, and some indirectly related genes can also be identified by our
proposed APC scheme. Specifically, sub-network A consisting of 50 genes is dominantly
enriched in cell cycle biological process (GO:0007049, p-value = 2.75E-14) and
cytoskeleton cellular component (GO:0005856, p-value = 4.66E-6), indicating that the
muscle regeneration activity is vigorous in MD in order to compensate its muscle loss. It is
also very interesting to see that all the 10 genes in sub-network B are belonging to
glycoprotein category, as it has been reported that the mutation genes of several MD sub-
types can interact with glycoprotein to form protein complex [20, 21]. These genes are also
highly enriched in extracellular matrix cellular component (GO:0031012, p-value =
3.04E-9), which is also closely related to MD as we mentioned in the previous section. Sub-
network C comprising 22 genes shows similar enrichment in terms of extracellular matrix
cellular component (p-value = 3.46E-5), and it is also enriched in the skeletal muscle
growing biological processes (GO: 0001501, p-value = 4.84E-4) closely related to MD.
Unlike all the other sub-networks, sub-network D containing 20 genes emphasizes on the
leukocyte activation (GO:0045321, p-value = 2.20E-6) and regulation of immune system
process (GO:0002684, p-value = 5.90E-4), reflecting the active immune response evoked by
muscle injures and repairs. The discovery of these enriched biological processes in the
constructed sub-networks coincides with the inflammatory pathway activations in MD [22];
anti-inflammatory treatment is also developed to delay the progress of diseases [23]. In
summary, our proposed scheme has effectively prioritized the sub-networks closely related
to MD disease mechanisms. Note that additional in-depth biological experiments are
required to clarify the specific relationships of those features with MD onset and
progression.

3.5.2. Some representative functional gene-sets—In Table 6, we present a few
representative functional gene sets. As M-SigDB has various functional gene sets collected
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from multiple knowledge databases (KEGG, BIOCARTA, REACTOME, etc) [24], it
provides alternative angles for us to investigate MD sub-types. While cell cycle activities are
also detected in the gene sets, several different functional pathways are highlighted. Among
them, MAPK, TNF and Insulin signaling pathways are known to play important roles in
skeletal muscle remodeling and regeneration [25]. Specifically, the activation of MAPK
pathway has been reported to be linked with the mutation gene of another MD sub-type
named ED-MD (Emery-Dreifuss muscular dystrophy) [26]; experimental observations of
MAPK and TGFβ1 networks in muscle-wasting pathway also have been reported to
contribute to the early onset of DMD [22]. Another study disussed that TNF pathway has
links to pro-inflammatory activity and its disrupted signaling may cause exaggerated injury
response in Dysferlin sub-type patients [27]. Although biological validations by additional
experiments are required to come to any specific conclusion, we can see that those similar
biological process enrichments could be retrieved from both physical sub-networks and
functional gene sets information. The proposed integrative approach can provide us with
multiple levels and different angles to delineate the complex functional mechanisms of
diseases.

4. DISCUSSIONS AND CONCLUSIONS
In general, analysis of genetic data should be done within a biological context in order to
gain a full understanding of complex disease mechanisms. However, commonly used single
gene based machine learning approaches are unable to uncover the full picture of complex
cellular systems. Different from traditional classification applications mainly focusing on
accuracy, microarray based classification usually requires the classification features to be
biologically interpretable. The merit to utilize priori-knowledge such as pathways collected
in knowledge databases is we can interpret biological context towards resulted features, as
well as classification model. Such interpretability can also facilitate the design of follow-up
experimental validation to determine how abnormal molecular activities contribute to the
distinction between disease sub-types. The weakness is these well studied pathways may be
not as effective as some less studied and even unknown pathways to accurately describe
sub-type differences. That is also our motivation to integrate PPI information, which is not
limited to the context of known pathways, since the identification of PPI sub-networks can
potentially reveal some novel pathways in the disease. We have showed an improvement in
the prediction results using the selected features constructed from both knowledge sources.
More importantly, we have identified many potential sub-network/gene-set biomarkers
through feature selection and classification procedures.

Clinically, DMD is the most severe MD sub-type characterized by rapid progression of
muscle degeneration [1], and its expression profiles highly vary. Therefore, it is relatively
easy for classifiers to differentiate DMD from other sub-types. However, it makes difficult
to classify some less severe sub-types with lower expression variations, such as TITIN and
FKRP. In addition, since all MD sub-types share the common biological processes such as
immune response, apoptosis and cell cycle responding to muscle loss, it is even harder to
identify sub-type specific biomarkers. Due to such difficulties, supervised approaches can be
biased by dominant expression signals from DMD samples, and fail to capture the gene
expression signatures of other weakly distinguishable MD sub-types. In an effort to address
such problem, we have proposed a semi-supervised approach, which can be used to identify
more biologically interpretable features than conventional clinical label guided approaches
[4]. As the discovery of new MD biomarkers could contribute to revealing disruption of
genetic pathways in MD diseases [28], our identified sub-network and gene set features may
also imply disrupted interactions in related subtypes and provide clues for biological study.
As an extension to the proposed computational analysis, we will continue to carry out
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comparative study on normal muscle recovery experiments [29] for a better understanding
of the failed muscle regeneration processes in MD.

Since the identification of condition-specific sub-network has been proved as a NP-hard
problem [6], heuristic approaches such as simulated annealing [6] and greedy searching [4]
are usually utilized to seek sub-networks associated with large differentiation scores. Instead
of directly utilizing sub-type information, we proposed a heuristic scheme to highlight co-
expressed sub-networks, considering topological adjacency in PPI network and expression
similarity. One weakness of the proposed approach is that the given PPI information could
be very general and may consequently degrade the performance of sub-network
identification. For the future research, we will study the refinement of PPI topology through
combining other information such as co-evolution evidence and topological features [30],
and further investigate how to solve PPI refinement and sub-network identification
algorithms jointly. In our future research, other biological knowledge such as protein-DNA
interaction network structure would also be incorporated into our computational analysis for
a deeper understanding of MD diseases. However, biological knowledge contains errors and
noises, since it is collected from different sources, such as biological experiments, automatic
text-mining results, and manually curated annotations. Therefore, it is essential to carefully
examine the reliability or specificity of biological knowledge prior to its use and evaluate its
impacts on computational analysis [29]. The limitation of existing biological knowledge
poses a challenge for computation approaches to discover meaningful and true biomarkers.
Therefore, computational approaches should try to utilize further available biological
knowledge while minimizing adverse impact of the biological knowledge due to its
incompleteness. In other words, computational approaches that utilize but not restricted by
biological knowledge are more desirable for biomarker discovery [31].
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Figure 1.
Workflow of the proposed integrative analysis scheme
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Figure 2.
Different levels in the development of disease
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Figure 3.
Message passing of APC
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Figure 4.
Significance difference for different biological terms, between APC and PinnacleZ
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Figure 5.
Prediction accuracy of up to 80 selected sub-network features (A), and sub-network and
gene set combined features (B), of MSVM, KNN(k=2) and DT classifiers.

Wang et al. Page 19

Neurocomputing. Author manuscript; available in PMC 2013 September 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 6.
Four representative sub-networks constructed by APC. The nodes are genes and edges are
the protein interactions. Notice that some isolated nodes are also included as proposed APC
scheme could identify indirectly related gene nodes.
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Table 1

Six MD sub-types and control in the MD data set

Class
Index

Types of Muscular Dystrophy No. of
Samples

1 CTRL - Control 6

2 BMD - Becker muscular dystrophy 14

3 DMD - Duchenne muscular dystrophy 17

4 DYS - Dysferlin deficiency; also known as limb-girdle muscular dystrophy 2B (LGMD 2B) 10

5 FKRP - Dystrophy related with fukutin-related protein defect 9

6 TITIN - Dystrophy related with the TITIN protein encoded by mutated TTN gene 5

7 ALS - Amyotrophic lateral sclerosis; also known as Lou Gehrig’s disease 7

All Total number of samples 68
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Table 2

Comparison of sub-network size identified by the proposed APC scheme and PinnacleZ method

Methods
No. of Genes in Sub-networks

2~5 6~10 ≥11 Total

PinnacleZ 7(21%) 27(79%) 0(0%) 34(100%)

APC 35(29%) 41(34%) 46(37%) 122(100%)
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Table 3

MD related pathways captured by (A) the APC identified sub-networks, and (B) PinnacleZ identified sub-
networks.

(A)

KEGG Pathway Term No. of Genes / p-value

Cell adhesion molecules (CAMs) 24 / 9.15E-06

ECM-receptor interaction 17 / 4.88E-04

Hematopoietic cell lineage 16 / 9.51E-04

Focal adhesion 25 / 1.89E-03

Fc epsilon RI signaling pathway 14 / 1.90E-03

Natural killer cell mediated cytotoxicity 19 / 2.23E-03

B cell receptor signaling pathway 12 / 8.60E-03

Leukocyte transendothelial migration 16 / 1.50E-02

(B)

KEGG Pathway Term No. of Genes / p-value

Dentatorubropallidoluysian atrophy 5 / 1.77E-02

Calcium signaling pathway 13 / 3.14E-02

Leukocyte transendothelial migration 19 / 3.32E-02

Neurocomputing. Author manuscript; available in PMC 2013 September 01.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Wang et al. Page 24

Table 4

Gene Ontology(GO) terms captured by (A) the APC identified sub-networks, and (B) PinnacleZ identified
sub-networks.

(A)

GO ID: Biological Process No. of Genes / p-value

0022610: biological adhesion 72 / 1.32E-13

0007155: cell adhesion 72 / 1.32E-13

0032502: developmental process 173 / 1.81E-11

0048856: anatomical structure development 125 / 9.91E-10

0048518: positive regulation of biological process 79 / 3.03E-09

0009605: response to external stimulus 56 / 4.82E-09

0006952: defense response 52 / 5.72E-09

0009611: response to wounding 44 / 6.16E-09

0007049: cell cycle 68 / 6.53E-09

0002253: activation of immune response 18 / 8.13E-09

(B)

GO ID: Biological Process No. of Genes / p-value

0065007: biological regulation 106 / 1.54E-08

0050789: regulation of biological process 96 / 4.41E-07

0032502: developmental process 75 / 5.60E-07

0007242: intracellular signaling cascade 46 / 1.25E-06

0050790: regulation of catalytic activity 25 / 1.85E-06

0007165: signal transduction 79 / 3.01E-06

0030154: cell differentiation 50 / 3.29E-06

0048869: cellular developmental process 50 / 3.29E-06

0016043: cellular component organization and biogenesis 64 / 3.34E-06

0016265: death 32 / 3.62E-06
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Table 5

Prediction accuracy rates measured by MSVM classifier for each MD sub-types and control of features
selected from the sub-networks and the gene sets combined

MD sub-types

Prediction Accuracy Rates

Sub-network
Features

Combined
Features

Prediction
Improvement

CTRL 52% 76% 24%

BMD 68% 90% 22%

DMD 100% 99% −1%

DYS 61% 91% 30%

FKRP 35% 70% 35%

TITIN 1% 42% 41%

ALS 86% 97% 11%

Average 68% 86% 18%
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Table 6

Some representative functional gene sets

MSigDB gene set name Descriptions

KEGG_MAPK_SIGNALING_PATHWAY MAPK signaling pathway

BIOCARTA_STRESS_PATHWAY TNF_Stress Related Signaling

REACTOME_INSULIN_SYNTHESIS_AND_SECRETIETION Genes involved in Insulin Synthesis and Secretion

KEGG_ETHER_LIPID_METABOLISM Ether lipid metabolism

KEGG_CELL_CYCLE Cell cycle
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