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Abstract

We propose an active set selection framework for Gaussian process classification for cases when the dataset is large
enough to render its inference prohibitive. Our scheme consists of a two step alternating procedure of active set update
rules and hyperparameter optimization based upon marginal likelihood maximization. The active set update rules rely
on the ability of the predictive distributions of a Gaussian process classifier to estimate the relative contribution of a
datapoint when being either included or removed from the model. This means that we can use it to include points
with potentially high impact to the classifier decision process while removing those that are less relevant. We introduce
two active set rules based on different criteria, the first one prefers a model with interpretable active set parameters
whereas the second puts computational complexity first, thus a model with active set parameters that directly control
its complexity. We also provide both theoretical and empirical support for our active set selection strategy being
a good approximation of a full Gaussian process classifier. Our extensive experiments show that our approach can
compete with state-of-the-art classification techniques with reasonable time complexity. Source code publicly available
at http://cogsys.imm.dtu.dk/passgp.
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1. Introduction

Classification with Gaussian process (GP) priors has
many attractive features, for instance it is non-parametric,
exceptionally flexible through covariance function designs,
provides fully probabilistic outputs and Bayesian model
comparison as principled framework for automatic hyper-
parameter elicitation and variable selection. However,
such a set of features comes in with a great disadvan-
tage since the computational cost of performing inference
scales cubically with the size, N , of the training set. In ad-
dition, the memory requirements scale quadratically also
with N . This means that applicability of Gaussian pro-
cess classifiers (GPCs) is sadly limited to problems with
dataset sizes in the lower ten thousands. The poor scaling
of specially non-linear classification methods has inspired
a considerable amount of research effort focused on sparse
approximations [1, 2, 3, 4, 5, 6, 7]. See particularly [1, 2]
for a detailed overview of sparse approximations in GPCs.
These methods attempt in general to decrease the com-
putational cost of inference in one degree w.r.t. N , i.e.
O(NM2), where M < N and M is the size of a working
set consisting on a subset of the training data or a set of
auxiliary unobserved variables. Both ways of defining the
working set basically target the same objective of getting
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as close as possible to the classifier that uses the informa-
tion of the entire training set, however they approach it
from different angles. Using a subset from the entire data
pool amounts to keep those data points that better con-
tribute to the classification task and discard the remaining
ones through some suitable data selection/ranking proce-
dure [8, 9, 10, 6, 7]. Alternatively, building an auxiliary
set tries to directly reduce the difference in distribution
between the classifier using N points and the one using
only M , by estimating the location of an auxiliary set in
the input space, usually called pseudo-input set [1, 4, 11].
The latter approach is evidently more principled, however
the number of parameters to be learnt grows with the num-
ber and size of the auxiliary set, making it unfeasible for
datasets in the upper ten thousands and sensitive to over-
fitting due to the number of free parameters in the model.
From a fully Bayesian perspective, in [12] the authors pro-
pose an efficient MCMC based inference that is made pos-
sible by using a sparse and approximate basis function
expansion over the training data set. The main computa-
tional burden is therefore the same as other sparse kernel
methods possibly with a larger pre-factor due to sampling.

Having in mind that our main goal is to obtain the best
classification performance with the least computational
cost possible, we do not attempt to estimate auxiliary sets
but rather to select a subset of the training data. The
framework presented here, Predictive Active Set Selection
(PASS-GP) uses the predictive distribution of a GPC in
order to quantify the relative importance of each data-
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point and then use it to iteratively update an active set.
Recently, [6] proposed a similar criterion in the context of
active learning with Gaussian processes. We use the term
active set because it is ultimately the one used to estimate
the predictive distribution that produces the classification
rule and active set updating scheme. In a nutshell, our
framework consists of alternating between active set up-
dates and hyperparameter optimization based upon the
marginal likelihood of the active set. We provide two ac-
tive set update schemes that target different practical sce-
narios. The first simply called PASS-GP builds the active
set by including/removing points with small/large predic-
tive probability until no more or too few data points are
included in the active set. This means that the size of the
active set is not known in advance so as the expected com-
putational complexity. The second scheme is aware that
in some applications is very important to keep the com-
putational complexity and/or memory requirements on a
budget, thus being able to specify the size of the active set
beforehand is essential. In fixed PASS-GP (fPASS-GP) we
keep the size of the active set constant by including and
removing the same amount of data points in each update
to achieve the desired behavior.

The remainder of the paper presents in Section 2 a con-
cise description of expectation propagation based inference
for GPCs. Section 3 continues with our proposed frame-
work for active set selection, followed by some theoretical
insights based upon a ‘representer theorem’ for the pre-
dictive mean of a GP classifier in Section 4. Marginal
likelihood approximations to the full GP classifier are in-
troduced in section 5. Finally, experimental results and
discussion appear in Sections 6 and 7, respectively.

2. Gaussian Processes for Classification

Given a set of input random variables X =
[x1, . . . ,xN ]⊤, a Gaussian process is defined as a joint
Gaussian distribution over function values at the input
points f = [f1, . . . , fN ]⊤ with mean vector m (taken to be
zero in the following) and covariance matrix K with ele-
ments Kij = k(xi,xj) and hyperparameters θ. For clas-
sification, assuming independently observed binary ±1 la-
bels y = [y1, . . . , yN ]⊤ and a probit (cumulative Gaussian)
likelihood function t(yn|fn) = Φ(fnyn), we end up with an
intractable posterior

p(f |X,y) = Z−1p(f |X)

N∏

n=1

t(yn|fn) ,

where the normalizing constant Z = p(y|X) is the
marginal likelihood. If we want to perform inference we
must resort to approximations. Here we use Expectation
Propagation (EP) because it is currently the most accu-
rate deterministic approximation, see e.g. [2, 13]. In EP,
the likelihood function is locally approximated by an un-

normalized Gaussian distribution to obtain

q(f |X,y) = Z−1
EPp(f |X)

N∏

n=1

z−1
n t̃(yn|fn)

= Z−1
EPp(f |X)N (f |m̃, C̃) ,

= N (f |m, c) , (1)

where q(f |X,y) ≈ p(f |X,y), the zn are the normaliza-

tion coefficients, t̃(yn|fn) and N (f |m̃, C̃) conform the site
Gaussian approximations to t(yn|fn). In order to obtain
q(f |X,y), one starts from q(f |X,y) = p(f |X,y) and up-
date the individual t̃n site approximations sequentially.
For this purpose, we delete the site approximation t̃n from
the current posterior leading to the so called cavity distri-
bution

q\n(f |X,y\n) = p(f |X)
∏

i6=n

z−1
i t̃(yi|fi) ,

from which we can obtain a cavity predictive distribution

q\n(yn|X,y\n) =

∫
t(yn|fn)q\n(f |X,y\n)df ,

= Φ

(
ynm\n√
1 + v\n

)
, (2)

where m\n = v\n(C
−1
nnmn − C̃−1

nn m̃n) and v\n = (C−1
nn −

C̃−1
nn )

−1. We then combine the cavity distribution with
the exact likelihood t(yn|fn), to obtain the so called tilted
distribution qn(f |X,y) = z−1

n t(yn|fn)q\n(f |X,y\n). Since
we need to choose the parameters of the site approxima-
tions we must minimize some divergence measure. It is
well known that when q(f |X,y) is Gaussian, minimizing
KL(p(f)||q(f)) is equivalent to moment matching between
those two distributions including zero-th moments for the
normalizing constants. The EP algorithm iterates by up-
dating each site approximation in turn and makes several
passes over the training data.
With the Gaussian approximation to the posterior dis-

tribution in equation (1), it is possible to calculate the
predictive distribution of a new datapoint x⋆ as

q(y∗|X,y,x⋆) =

∫
t(y⋆|f⋆)q(f⋆|X,y,x⋆)df⋆ ,

= Φ

(
y⋆m⋆

√
1 + v⋆

)
, (3)

where q(f⋆|X,y,x⋆) is the approximate predictive Gaus-
sian distribution (the marginal of q(f , f⋆|X,y,x⋆) w.r.t.

f) with mean m⋆ = k⋆⊤(K + C̃)−1m̃ and variance v⋆ =

k⋆⋆−k⋆⊤(K+ C̃)−1k⋆. In addition, the approximation to
the marginal likelihood p(y|X) results in the normaliza-
tion constant from equation (1), i.e. q(y|X) = ZEP. The
logarithm of ZEP(θ,X,y) and its derivatives can be used
jointly with conjugate gradient updates to perform model
selection under the evidence maximization framework. For
a detailed presentation of GP including its implementation
details, consult [2, 13].
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3. Predictive Active Set Selection

The EP algorithm is performed by iterative updates of
each site approximation using the whole dataset {X,y}.
In the active set scenario on the other hand, we only want
to approximate the posterior distribution in equation (1)
using a small subset, the active set {XA,yA}. Since ex-
ploring all possible active sets is obviously intractable even
for a fixed active set sizeM , the problem is how to select an
active set that delivers a performance as good as possible
within the available computing resources. The Informative
Vector machine (IVM) [8] for instance, computes in each
iteration the differential entropy score for all data points
not already part of the active set {XI ,yI} and perform
updates by including the single point leading to a maxi-
mum score. Despite this greedy heuristic, IVM has proved
to behave quite well in practice, giving the so far best re-
ported GP performance on the USPS and MNIST tasks
[8, 9]. We propose an iterative approach in the same spirit
with two main conceptual changes:

• Active set inclusion/deletion based directly upon
the data point weight in prediction. The ‘representer
theorem’ for the mean prediction, discussed in Section 4,
leads directly to the weight being expressed in terms of
(a derivative of) the cavity predictive probability. This
means that we can actually use the predictive distribu-
tion for a point in the inactive set to predict the weight
it would have if it would be included in the active set.
For classification we use the (cavity) predictive proba-
bility to decide upon deletion and inclusion because it
is monotonically related to weight and it is a readily
interpretable quantity.

• Hyperparameter optimization must be an integral
part of algorithm, because the weights of the examples
(and thus the active set) is conditioned on the hyperpa-
rameter values and vice versa. We therefore alternate
between active set updates and hyperparameter opti-
mization using several passes over the data set.

Next we discuss the details of our (f)PASS-GP framework
followed by a detailed comparison with the IVM. First we
need to define rules for including and deleting points of
the active set. As already mentioned, we use the predic-
tive distribution in equation (3) for inclusions since data
points with small predictive probability are more likely to
contribute to improve the classifier performance and the
quality of the active set. For deletions, we use the cavity
predictive distribution in equation (2) because when ex-
amined carefully it can be seen as a leave-one-out estima-
tor [14]. This means that points with cavity probability
close to one do not contribute to the decision rule thus
they can be discarded from the active set. With the two
ranking measures set, i.e. equations (2) and (3), we have
essentially two possibilities. The first is to set probability
thresholds on the distributions and let the model decide
the size of the active set or we can rather specify directly

the amount of inclusions/deletions. In PASS-GP, we in-
clude points in the active set with probability less than
pinc and remove them with probability greater than pdel.
The appealing aspect of these thresholds is that they can
be interpreted, for instance if we set pinc = 0.5 we will
include all misclassified observations in the current active
set whereas if pinc = 0.6 we will also include points near
the decision boundary. We require two thresholds because
we only want to remove points that as for the classifier
are very easy to classify, so unlike pinc, pdel must be close
enough to one. In fPASS-GP, we want to keep the compu-
tational complexity of the classifier under control thereby
we want the size of the active set to be fixed. For this
purpose we only have to be sure that each active set up-
date includes and removes the same amount of points. In
practice we define pexc as the exchange proportion w.r.t.
M , meaning that each update replaces the fixed propor-
tion of most hard to classify points in the inactive set with
those more surely classified in the current active set. This
update rule assumes that the active set is large enough
to contain points in the active set with cavity probability
close to one.
From a practical point of view, ranking every point in

the inactive set at each iteration for inclusion could be-
come prohibitive for large datasets. However we still want
to be able to cover the whole dataset rather than select-
ing a random subset for ranking. We then split the data
into Nsub non-overlapping subsets and process each one of
them in each iteration, such that each batch has something
between 100 and 1000 data points.
Hyperparameter selection is a very important feature

and needs to be done jointly with the active set update
procedure. Algorithm 1 starts from a fixed randomly se-
lected active set of size Ninit (that is M in fPASS-GP),
large enough to provide a good initial hyperparameter set
values. Next we alternate between active set and hyper-
parameter optimization updates. Having in mind that we
only expect small changes of the hyperparameters from
one iteration to another, we reuse current values of θ as
initial values for the next iteration to speed-up the learn-
ing process. The addition and deletion rules in Algorithm
1 have parameters {pinc, pdel} and pexc for PASS-GP and
fPASS-GP, respectively.

3.1. Differences between (f)PASS-GP and IVM

Since IVM is the closest relative of our active set selec-
tion method, we briefly discuss the main differences be-
tween the two: (i) The active set and thus the compu-
tational complexity is usually fixed beforehand in IVM.
PASS-GP works with inclusion and deletion thresholds in-
stead. (ii) IVM does not allow for deletions from the active
set which is a clear disadvantage as points often become
irrelevant at a later stage, when more points have been
included. In (f)PASS-GP we can make an (almost) unbi-
ased common ranking of all training points active as well
as inactive, using a quantity that is meaningful and di-
rectly related to the weight of the training point in predic-
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Algorithm 1: Predictive active set selection

Input : {X,y}, θ and {Ninit, Nsub, Npass}
Input : pinc and pdel (PASS-GP)
Input : pexc (fPASS-GP)
Output: q(fA|XA,yA), θnew and A
begin

A← {1, . . . , Ninit}
{X,y}(1)sub, . . . {X,y}(Nsub)

sub ← {X,y}
for i = 1 to Npass do

for j = 1 to Nsub do
θnew = argmaxθ logZEP(θ,XA,yA)
Get q(fA|XA,yA) and q(y∗|XA,yA,x

⋆)
forall the {xn, yn} ∈ {XA,yA} do

if RemoveRule(q\n(yn|XA,yA\n))
then A← A\{n}

end

forall the {xn, yn} ∈ {X,y}(j)sub do
if AdditionRule(q(y∗|XA,yA,x

⋆,υ))
then A← A ∪ {n}

end

end

end

end

tions. Using both inclusions/deletions and several passes
over the training set makes (f)PASS-GP quite insensitive
to the initial choice of active set. (iii) When the dataset
is considerably large, IVM randomly selects a subset of
points to be ranked from the inactive set, meaning that
is likely that some points of the dataset are never consid-
ered for inclusion in the active set. (iv) The hyperparame-
ter optimization is a part of the algorithm in (f)PASS-GP
working on subsets of data between updates and iterating
over the data set several times. IVM makes a single inclu-
sion per step and in principle stops when the limit for the
active set is reached. (iv) In terms of complexity time per
iteration IVM is faster than (f)PASS-GP, O(NM) against
O(M2(2 + N/Nsub)) where M is the size of A, however
storage requirements are considerable lower, O(M2) com-
pared to O(NM).

4. Representer for Mean Prediction

The ‘representer theorem’ for the posterior mean of f
[14], connects the predictive probability and the weight of
a data point. Using that p(f |X) = −K ∂

∂f
p(f |X), we get

the exact relation for the posterior mean 〈 f 〉 = Kα with
the weight of element n being

αn =
1

p(y|X)

∫
p(f |X)

∂

∂fn
p(y|f)df

=
〈 p′(yn|fn) 〉 \n
〈 p(yn|fn) 〉 \n

=
∂

∂h
log 〈 p(yn|fn + h) 〉 \n

∣∣∣∣
h=0

,

where 〈 · 〉 \n = m\n denotes an average over a pos-
terior without the n-th data point and p′(yn|fn) =
∂p(yn|fn)/∂fn. The final expression implies that the
weight is nothing but the log derivative of the cavity pre-
dictive probability 〈 p(yn|fn) 〉 \n = p(yn|X,y\n). For
regression, p(yn|fn) = N (yn|fn, σ2) and αn = (yn −
〈 fn 〉 \n)(σ2 + v\n)

−1 with v\n = 〈 f2
n 〉 \n − 〈 fn 〉 2\n. The

element αn will therefore be small when the cavity mean
has a small deviation from the target relative to the vari-
ance. For a new data point pair {x⋆, y⋆}, we can calcu-
late the weight of this point exactly, replacing the cav-
ity average with the full average in the expression above.
We can therefore predict without any EP rerunning, how
much weight this new point will have. For classification
we can calculate the weight using the current EP approx-
imation. When zn = yn 〈 fn 〉 \n/

√
1 + v\n is above ≈ 4,

the cavity probability equation (2) approaches one and
αn ≈ yn exp(−z2n/2)/

√
2π(1 + v\n). This fast decay in-

dicates that GPC in many cases will be effectively sparse
even though α strictly does not contain zeros.
In the inclusion/deletion steps we rank data points ac-

cording to their weights. For classification we can indeed
use the predictive probability directly, since it is a mono-
tonic function of the weight. Including a new data point
will of course affect the value of all other weights as well
leading to a rearrangement of their rank. Including mul-
tiple data points will also invalidate the predicted value
of the weights (e.g. think of the extreme of two new data
points being identical). We therefore have to recalculate
the weights by retraining with EP for classification or sim-
ply updating the posterior for regression before going to
the next step. If we have already an active set covering
the decision regions well enough, this rearrangement step
will amount to minor adjustments and the approximation
will work well.
In this work we have only used the representer theorem

for active set selection. It is also possible, but not tested
here, to use all training points for prediction while only
calculating the posterior on the active set. The inactive
set weights are then simply set to the predicted values
from the active set posterior. To get the full predictive
probability one also has to calculate the contribution to
the predictive variances which can be obtained by a similar
theorem but for the predictive variance, see [14].

5. Marginal Likelihood Approximations

In this section we decompose the marginal likelihood in
their active and inactive set contributions. We will argue
that the contribution from the active set will dominate,
justifying why we can limit ourselves to optimizing the
hyperparameters over this set. In the following section we
will investigate this assumption empirically. The marginal
likelihood can be decomposed via the chain rule as

p(y|X) = p(yI |yA,XA,XI)p(yA|XA) , (4)
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where we have used the marginalization property of GPs,

p(yA|X) =

∫
p(yA|fA)p(fA|XA)dfA = p(yA|XA) ,

that we approximate as q(yA|XA) = ZEP,A and we iden-
tify it as the marginal likelihood for the active set A. The
conditional marginal likelihood term can be written as

p(yI |yA,XA,XI) =∫
p(yI |fI)p(fI |XI ,XA, fA)p(fA|XA,yA) dfAdfI , (5)

where we used p(f |X) = p(fI |XI ,XA, fA)p(fA|XA,yA).
We can make an EP approximation here just like in equa-
tion (1) by replacing the posterior p(fA|XA,yA) by the
multivariate Gaussian q(fA|XA,yA) = N (fA|mA,CAA)
where active set specific means and variances are found
by EP. Marginalizing over fA in equation (5) makes it now
tractable

q(yI |yA,XA,XI) ≈
∫

p(yI |fI)N (fI |mI|A,CII|A)dfI ,

with parameters

mI|A = KIA(KAA + C̃AA)
−1m̃A ,

CII|A = KII −KIA(KAA + C̃AA)
−1KAI ,

where the tilted moments are as defined in Section 2.
When the inactive set consists of a single example, we
obtain the EP predictive distribution in equation (3), oth-
erwise we have to solve for a new marginal likelihood. De-
noting the marginal likelihood for a set {X,y} with a non-
zero mean GP prior by

Z(θ,X,y,m) =

∫
p(y|f)N (f |m,K) df ,

and its EP approximation by ZEP(θ,X,y,m), we can
write the approximation to the marginal likelihood in
equation (4) as

ZACC ≡ ZEP(θ,X,yI ,mI|A)ZEP(θ,X,yA,0) .

Using this approximate decomposition reduces the com-
plexity of EP from O(N3Npass) to O((|I|3 + M3)Npass),
where |I| is the size of the inactive set. Unfortunately
this is still too costly for large N . A final low complexity
approximation to the marginal likelihood, that we denote
by ZAPP, is to replace p(yI |yA,X) with the product of
marginals

∏
i∈I p(yi|yA,XA,xi). Empirically—see Figure

3, this approximation turns out to be lower than the actual
marginal likelihood, i.e. the joint distribution enforces the
labels relative to the product of the marginals.

6. Experiments

The results presented in this section consist of sev-
eral classification tasks performed on three well known

datasets, namely USPS, MNIST and IJCNN. The first
two correspond to handwritten digit databases while the
third is a physical system inspired dataset assembled for
the IJCNN 2001 neural network competition. We com-
pare the two approaches introduced in section 3 against
the IVM and Reduced complexity SVM (RSVM) [3]. We
consider as performance measures not only classification
errors, but the error-cost trade-off and prediction uncer-
tainty. We also present results for the approximation to
the marginal likelihood of the full GP presented in section
5. All experiments were performed on a 2.0GHz desktop
machine with 2GB RAM.

6.1. USPS

The USPS digits database contains 9289 grayscale im-
ages of size 16 × 16 pixels, scaled and translated to fall
within the range from −1 to 1. Here we adopt the tra-
ditional data splitting, i.e. 7291 observations for training
and the remaining 2007 for testing. For each binary one-
against-rest classifier we use the same model setup consist-
ing of a squared exponential covariance matrix plus addi-
tive jitter

k(xi,xj) = θ1 exp

(
−‖xi − xj‖2

2θ2

)
+ θ3δij (6)

where δij = 1 if i = j and zero otherwise. We have three
hyperparameters in θ, namely, signal variance, character-
istic length scale and jitter coefficient. Provided that the
four active set methods being considered may depend upon
random initialization we repeated all tasks 10 times. Indi-
vidual settings for each method are:

• PASS-GP: Ninit = 300, Nsub = 10, Npass = 2, pinc = 0.6
and pdel = 0.99.

• fPASS-GP: Ninit = 300, Nsub = 10, Npass = 4, pexc =
0.02. We allow fPASS-GP to perform more passes
through the data because fPASS-GP progresses slower
due to pexc being small.

• RVM: M = 500, θ = [1 1/16 0], C = 10 and κ = 10.
More precisely, θ and the regularization parameter, C,
were obtained by grid search cross-validation, while κ
was set to the value suggested by the authors of [3].

• IVM: M = 300 and Npass = 8. In the publicly avail-
able version of IVM, hyperparameter selection is done
by alternating between full active set selection and hy-
perparameter optimization. Since IVM starts from an
empty active set, it can be very sensitive to the initial
values of θ. We experienced however that by adding a
linear term, θ4x

⊤
i xj , in the covariance matrix in equa-

tion (6) makes IVM quite insensitive to initialization.
The results reported here include such a linear term be-
cause we found that using equation (6) alone makes the
IVM to perform very poorly.

Figure 1(a) shows mean test errors for every one-against-
rest task using PASS-GP, fPASS-GP, RSVM, IVM and
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Figure 1: Error rates and active set sizes for USPS data. (a) mean
classification errors for each digit using PASS-GP, fPASS-GP, RSVM,
IVM and the full GPC with hyperparameter optimization. (b) Active
set sizes for PASS-GP. Note that fPASS-GP and IVM use M = 300,
whereas RSVM uses M = 500 for the results in (a). Error bars are
standard deviations over 10 repetitions.

the full GPC with hyperparameter optimization. Besides,
Figure 1(b) shows the active set sizes for each digit using
PASS-GP. From the figure, it can be seen that Gaussian
process based active set methods perform similarly still
slightly better than the RVM. The full GPC was only
ran once due to its computational requirements, which
explains the lack of error bars in Figure 1(a). Further-
more, compared to fPASS-GP, IVM (M = 300) and RSVM
(M = 500), PASS-GP seems to require smaller active sets
to achieve similar classification performance. It is impor-
tant to mention that we also tried larger values of M for
the fixed active set algorithms but without any significant
improvement in performance.

Figure 2 show classification errors for digits 2 and 4
against the others in top and bottom panels, respec-
tively, as a function both of the active set size and run-
ning time. For fPASS-GP, RSVM and IVM we used
M = {200, . . . , 600} and for PASS-GP we used pinc =
{0.2.0.3, . . . , 0.9}. We included also the classification er-
ror obtained by the full GPC with hyperparameter opti-
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Figure 2: Results for selected individual digits of USPS data. (a)
and (c) show mean classification errors as a function of the active
set size for digits 2 and 4 vs the rest, respectively. (b) and (c)
show mean classification errors as a function of the running time,
matching panels (a) and (c). The horizontal dashed line in all plots
is the performance of the full GPC with hyperparameter selection.
In both cases, the full GPC took approximately 8.6e5 seconds [7].
Values represent averages over ten independent repetitions with error
bars omitted for clarity.

mization depicted as an horizontal dashed line. See [7] for
a more detailed comparison between PASS-GP and full
GPCs. Several features from Figure 2 worth to be high-
lighted. (i) Gaussian process based methods approach the
full GP for large values of M , as expected. (ii) Similar to
Figure 1(a), PASS-GP seems to consistently outperform
fPASS-GP for similar sizes of M . (iii) For small values
of M , RSVM and IVM perform better than our active
set methods, however further increasing M does not con-
siderably improves their performance. When M is small
enough, it is very likely that our approaches are not able to
obtain plausible estimates of the hyperparameters of the
covariance function, thus its poor performance compared
to RSVM that uses fixed values. Provided that the full
GPC takes 8.6e5 seconds to run, PASS-GP and fPASS-GP
are approximately three orders of magnitude faster than
the full GPC with hyperparameter optimization, see [7].
Form Figures 2(b) and 2(d), we see that for similar active
set sizes, PASS-GP and fPASS-GP have comparable com-
putational costs as one may expect. Similarly, RSVM and
IVM scale better than our active set selection methods. In
terms of error-cost trade-off, RVM has a clear edge while
the Gaussian process based methods can be regarded as
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Figure 3: Marginal log-likelihood approximations as a function of the active set size for digit 3 vs the rest. The plots show means and
standard deviations (error bars) over ten repetitions. Each marker indicates a different inclusion threshold pinc = {0.5, 0.6, . . . , 0.9, 0.99}. In
the left panel, ZEP is for the full GPC (pinc = 1), ZEP,A for the active set only and the remaining two, ZACC and ZAPP, are the proposed
approximations. The middle and right panels shows computation times required to compute {ZAPP, ZEP,A} and ZACC, respectively.

comparable. It is important to note that for RVM, the
difference in computational costs as seen in Figures 2(b)
and 2(d) should not be considered as significant since we
are not counting the time used to obtain the parameters
used by the RSVM, that unfortunately need to be selected
by expensive grid search with cross-validation. The IVM
turned out to be time-wise comparable to our active set
methods not because its selection procedure but due to
the hyperparameter optimization scheme used.
The results obtained on USPS suggest that (f)PASS-

GP is performing slightly better than the full GPC. This
could be due to numerical instability produced by the size
of the problem, by the iterative nature of the EP algo-
rithm and/or not enough iterations for the hyperparame-
ter selection procedure. However, it could also mean that
optimizing on the active set achieves a better “local” fit
around the decision boundary region. A priori, one cannot
expect that a single set of hyperparameters is able to de-
scribe all regions in input space, thus every possible active
set. The same kind of local improvement observed here
was also reported by [15] and [4] using GPC auxiliary set
methods.
Combining the ten binary tasks into a one-against-

rest multi-class classifier, PASS-GP obtained 4.51± 0.17%
which is comparable or better1 than 4.61 ± 0.11% by
fPASS-GP, 4.88 ± 0.12% by RSVM and 4.38 ± 0.11% by
IVM. Baselines are, 5.13% by GPC with hyperparameter
optimization, 4.78% by GPC with fixed θ and 9.75±0.40%
by GPC with random active set selection. Other relevant
results found in the literature include 5.15% by online GP
[16] and 4.98% by IVM with randomized greedy selection
[9]. All three Gaussian process based methods are com-
parable with state-of-the-art techniques such as SVM, see
[17]. It is worth pointing out that the best result we could
obtain from IVM using the covariance matrix in equation

1Assuming independent errors, the standard deviation on the per-
formance is

√

ǫ(1− ǫ)/Ntest giving approximately 0.4% for USPS
and 0.1% for MNIST.

(6) was 6.27± 0.21% for M = 1500 which is substantially
worse than the performance of the full GPC. As reference,
it has been shown that the human error rate is approxi-
mately 2.5%.

Next we want to evaluate the two approximations to
the marginal likelihood proposed in Section 5. We pro-
ceed by computing the accurate but expensive approx-
imation ZACC, the less accurate but affordable ZAPP

and the marginal likelihood of the full GPC and the
active set, simply denoted as ZEP and ZEP,A, respec-
tively. In order to show how the approximations de-
pend on the size of the active set, we compute them for
pinc = {0.5, 0.6, . . . , 0.9, 0.99, 1, }, with pinc = 1 being the
full GPC. Figure 3 shows that the three approximations
approach the marginal likelihood of the full GPC as the
inclusion threshold and so the active set size increases.
As expected, ZACC is the best approximation, however
the computational effort needed to compute it is roughly
two orders of magnitude larger compared to the cost of
computing ZAPP and ZEP,A. It is very interesting that
even with large values of pinc = 0.99 the size of the active
set remains below 10% of the training data and the con-
tribution to the log-marginal likelihood from the inactive
ZEP(θ,X,yI ,mI|A) set basically vanishes, since ZAPP and
ZEP,A are essentially the same.

Finally, we want to asses the uncertainty of the pre-
dictions made by the Gaussian process based methods by
means of comparing the predictive probabilities with the
true outcomes. Figure 4 shows estimated log predictive
densities for PASS-GP, fPASS-GP, IVM and the full GPC,
using all USPS predictions made on the test separated into
correct and incorrect predictions. Assuming no labeling
errors, the true density consists of two point mass densi-
ties at {0, 1} provided our one-against-rest setting. As one
might expect, the full GPC achieves the best approxima-
tion, followed by fPASS-GP and PASS-GP. IVM suggests
more predictive uncertainty because of the two “spurious”
modes in Figure 4(a). Another way to asses the predic-
tive uncertainty is to compute Brier scores, that measures

7



the average of square deviations between estimated and
true predictive probabilities. For the USPS dataset we ob-
tained: 0.53±0.03, 0.27±0.01, 0.71±0.02 and 0.14±0.00
for PASS-GP, fPASS-GP, IVM and full GPC, respectively.
Note that the Brier scores are in agreement to what we
observe in Figure 4.
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Figure 4: Predictive density estimation for USPS data. Densities for
correct and incorrect predictions are shown separately in (a) and (b),
respectively. The ground truth for (a) is a two point mass mixture
at {0, 1} and a flat distribution for (b).

6.2. MNIST

The MNIST digits database has 60000 and 10000 as
training and testing examples respectively. Each example
is a gray-scale image of 28 × 28 pixels. The estimated
human test error is around 0.2%. The settings used for
the algorithm are nearly the same as those for USPS with
only two differences. Nsub is set 100 since the training set
in MNIST is almost ten times larger than USPS and we
are not updating the hyperparameter in each iteration but
every 10-th, in order to make the training process faster.
We also ran our algorithm with hyperparameter updates
every single iteration without any noticeable improvement
in performance (results not shown). Figure 5 shows test
error rates, active set sizes, multi-class errors and running
times for each binary classifier based on PASS-GP, fPASS-
GP and RSVM using a 9-th degree polynomial covariance
function

K(xi,xj) = θ1(xi · xj + 1)9 .

We use this covariance matrix instead for the standard
squared exponential from equation (6), because a polyno-
mial covariance is well known for providing optimal results
for the MNIST dataset [18]. Results for the squared expo-
nential covariance function can be found in [7] and confirm
that the polynomial covariance behave slightly better for
this dataset. For IVM we could not make the polynomial
covariance to work properly, thus we decided to use the
equation (6) plus a linear term like in the USPS experi-
ment.
From Figure 5(b) it can be seen that in every case the

size of the active set is less than 4% of the training set.
The results for fPASS-GP and RSVM were obtained us-
ing M = 2000. We did try for larger values of M but the
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Figure 5: Error rates, active set sizes and run times for MNIST data.
(a) Mean classification errors for each digit task using PASS-GP,
fPASS-GP, RSVM and IVM. (b) Active set sizes for PASS-GP. Note
that fPASS-GP, RSVM and IVM use M = 2000. (c) Mean multi-
class classification errors and (d) average timings over one-against-
the-rest classifiers and repetitions. Error bars in (a), (c) and (d) are
standard deviations computed over 10 repetitions of the experiment.

reduction in error was not significant compared to the over-
head in computational cost. Figure 5(a) shows the classi-
fication error for each digit. The performance of the three
approaches considered is comparable but letting PASS-GP
with an edge over the other two, both in terms of error and
variances. Figure 5(c) shows the results of combining the
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Digit 0 1 2 3 4 5 6 7 8 9
USPS (%) 0.63 0.38 1.01 0.69 0.93 1.16 0.51 0.37 0.59 0.65
Active set 870 442 1251 1316 1654 1425 1242 987 1532 1281
MNIST (%) 0.14 0.14 0.24 0.24 0.29 0.22 0.17 0.35 0.29 0.35
Active set 6505 4372 11401 12988 9776 11960 7360 9872 15194 14790

Table 1: Results for USPS and MNIST using PASS-GP and active set invariances. Figures are averages over 10 and 5 repetitions, respectively.

ten binary classifiers. Again, PASS-GP behaves slightly
better than the others, however when looking at the run
times in Figure 5(d) we can see that RSVM is computa-
tionally more affordable than our approaches, even more
considering that it uses M = 2000. Comparing PASS-
GP to fPASS-GP, the former has a smaller mean run time
but with larger variance compared to the more expensive
fPASS-GP. fPASS-GP is more stable time-wise, but takes
more time because it uses a fixed M = 2000.

As far as the authors know these are the first GP based
results on MNIST using the whole database. IVM [8] with
sub-sampled images of size 13× 13 has been tried to pro-
duce a test error rate of 1.54 ± 0.04%. Seeger [9] made
additional tests on some digits (5, 8 and 9) on the full size
images without any further improvement. On the other
hand, PASS-GP is again comparable with state-of-the-
art techniques not including preprocessing stages and/or
data augmentation, for instance SVM is 1.4% and 1.22%
using RBF and a 9-th degree polynomial kernel, respec-
tively. The reported sizes of support vector sets are ap-
proximately two times larger than our active sets [18].

6.3. Incorporating Invariances

It has been shown that a good way to improve the over-
all performance of a classifier is to incorporate additional
prior knowledge in the training procedure particularly by
means of externally handling invariances of the data. In
[18], it is shown that instead of just dealing with the invari-
ances by augmenting the original dataset — which turns
out to be infeasible in many cases, it is better to augment
only the support vector set of a SVM. We therefore try
the same procedure as suggested in [18] consisting of four
1-pixel translations (left, up, right and down directions)
on each element of the active set for USPS and eight 1-
pixel translations (including diagonals as well) for MNIST,
resulting in new training sets of size 5 ×M and 9 ×M ,
accordingly. In this case we have used the same settings
as in the previous experiments with only two differences.
First, the hyperparameters have been set to those found
using the original dataset. Second, we made the important
observation that in order to get a performance improve-
ment a large active set was needed. For training on the
augmented dataset we increased pinc from 0.6 to 0.99 for
USPS and 0.9 for MNIST. We conjecture that we can get
even better performance — at the expense of a substantial
increase in complexity, by increasing pinc in the initial run
to get a larger initial active set to work with.

Results in Table 1 show that performance-wise, PASS-
GP reached 3.35 ± 0.03% for USPS and 0.86 ± 0.02% for
MINST on the multi-class task, what is comparable to
state-of-the-art techniques. For instance SVM obtained
3.2% on USPS and 0.68% on MNIST with an equivalent
procedure. The difference in performance is probably due
to our active set not being large enough, since support set
sizes reported for SVMs are typically twice as large [18].

6.4. IJCNN

As final experiment, we want to compare fPASS-GP,
RSVM and IVM on a common ground. For this purpose
we use the IJCNN dataset which is widely used by the
SVM research community. It consists of 49990 training ex-
amples, 91701 test examples and each observation counts
with 22 features. We consider M = {100, 200, . . . , 1000}
with squared covariance function and fixed hyperparame-
ters, the latter using the values suggested in [3], that is θ =
[1 1/8 1/16] for f-PASSGP and IVM, and θ = [1 1/8 0],
C = 16 for RSVM. For IVM we include a linear term as
in the previous experiments with θ4 = 1. Besides, each
setting was repeated 10 times to collect statistics. Figure
6 summarizes the results obtained. More specifically, Fig-
ure 6(a) shows the mean classification error as a function
of the active set. We can see that fPASS-GP is slightly
better than RSVM and IVM in the entire range of M , be-
sides the former seems to be particularly good for small
values of M . When we plot mean errors as a function of
running times — as a proxy for the computational cost, we
see that there exist two regimes, one for small values of M
where fPASS-GP outperforms RSVM and IVM, and the
other where the cubic complexity of the GPCs start hurt-
ing fPASS-GP, thus letting RVM and IVM with a better
error-cost trade-off.

7. Discussion

We have proposed a framework for active set selection
in GPC. The core of our active set update rule is that
the predictive distribution of a GPC can be used to quan-
tify the relative weight of points in the active set that can
be marked for deletion or new points from the active set
with low predictive probabilities, that make them ideal
for inclusion. The algorithmic skeleton of our framework
consists on two alternating steps, namely active set up-
dates and hyperparameter optimization. We designed two
active set update criteria that target two different prac-
tical scenarios. The first we called PASS-GP focuses on
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Figure 6: Error rates and run times for IJCNN data. (a) Mean
classification error as a function of the active set size using fPASS-GP,
RSVM and IVM. (b) Mean classification error as a function of the
run time. Error bars correspond to standard deviations computed
over 10 repetitions of the experiment.

interpretability of the parameters of the update rule by
thresholding the predictive distributions of GPC. The sec-
ond acknowledges that in some applications having a fixed
computational cost is key, thus fPASS-GP keeps the size
of the active set fixed so the overall cost and memory re-
quirements can be known beforehand.

We presented theoretical and practical support that our
active set selection strategy is efficient while still retain-
ing the most appealing benefits of GPC: prediction un-
certainty, model selection, prior knowledge leverage and
state-of-the-art performance. Compared to other approxi-
mative methods, although slower than IVM [8] and RSVM
[3], PASS-GP provides better results. We did not consider
any auxiliary set method like FITC [4] because for task
of the size like for example MNIST or IJCNN, it is pro-
hibitive. Additionally, we have noticed in practice that
our approximation is quite insensitive to the initial active
set selection and also that more than two or three passes
through the data do not yield improved performance nor
large active set sizes. The code used in this work is based
on the Matlab toolbox provided with [2] and is publicly
available at http://cogsys.imm.dtu.dk/passgp.

The not so satisfying feature of active set approxima-
tions, is that we are ignoring some of the training data.
Although some of our findings on the USPS data set ac-

tually suggest that this can be beneficial for performance,
it is of interest to make a modified version where the in-
active set is used approximately in a cost efficient way.
The representer theorem for the mean prediction and the
approximations for marginal likelihood discussed in this
paper might give inspiration for such methods. In con-
clusion, efficient methods for GPs are still much in need
when the data is abundant such as in ordinal regression
for collaborative filtering.
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