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Hierarchical and Incremental Event Learning Approach based on Concept Formation
Models

Marcos D Zifige?, Frangois Bemond, Monique Thonndt

8Electronics Department - UTFSM, Av. Espafia 1680, ValgaraChile
PINRIA - Projet PULSAR, 2004 rte. des Lucioles, Sophia Anisp&tance

Abstract

We propose an event learning approach for video, based aepboformation models. This approach incrementally leaméine
a hierarchy of states and event by aggregating the attrilaltees of tracked objects in the scene. The model can aggrbgth
numerical and symbolic values.

The utilisation of symbolic attributes gives high flexibjlito the approach. The approach also proposes the integrafi
attributes as a doublet value-reliability, for considgrthe dfect in the event learning process of the uncertainty inderitom
previous phases of the video analysis process.

Simultaneously, the approach recognises the states antbefehe tracked objects, giving a multi-level descripttbe object
situation.

The approach has been evaluated for an elderly care appticatd a rat behaviour analysis application. The resuttg/ghat
the approach is capable of learning and recognising mefuhiagents occurring in the scene, and to build a rich modehef
objects behaviour. The results also show that the appraatigice a description of the activities of a person (e.g. aggring to a
table, crouching), and to detect abnormal events basedednaifiuency of occurrence.

Keywords: incremental event learning, hierarchical event model, dnuftvehaviour, reliability measures, symbolic attribute

1. Introduction tracked in order to be able of recognising the events eacleiobje
is participating.
Video event learning presents relevant applications re:fiate We propose anew event learning approach which ag-
abnormal behaviour detection, as elderly health care [12],  gregates on-line thattributes andreliability information of
and trafic monitoring [8]. In this sense, the utilisation of in- tracked objects (e.g. people) learn a hierarchy of concepts
cremental models for event learning should be the natugal st corresponding tstatesand events Reliability measures are
further real-time applications for handling unexpectedres.  used to focus the learning process on the most valuable- infor
Apart from being well-suited for real-time applicationscheise  mation. Simultaneously, the approaeitognisesnew occur-
of the inexpensive learning process, this incrementaladiar-  rences ofstatesand events previously learnt. The only hy-
istic learning allows the systems to easily adapt theiroesp  pothesis of the approach is the availability of tracked obje
to different situations. Also, the dependence on enormous datattributes, which are the needed input for the approachs Thi
sets for each particular application is reduced. approach is able to leastates and events in generalsono
The focus of this work is in applications for incremental limitation is imposed on theature or number of attributes to
event learning, where several objects of diverse type can irbe utilised in the learning process.
teract in the scene (e.g. persons, vehicles). The event$ewf i As previously described, the hierarchical model of the pro-
est are also diverse (e.g. events related to trajectori@sah  posed approach can be incrementally updated. This feature i
posture) as the focus of interest is learning events in generébased orincremental concept formation models[4]. These
The objects simultaneously evolving in the scene can be mangoncept formation models evaluate the goodness of the con-
but the interest is centred in objects which can be indiMigiua cepts represented by the formed clusters in a hierarchical
model, with the added constraint that learning must be incre
mental. The main contributions of the proposed learning ap-
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contribution of data according to their quality, as a way tolearning for two hierarchical representations, one for dpsc
focus learning on meaningful information (for details, seetion of the observation and the other for temporal desanipti
Section 4.3). In [15], the authors proposed a fall detection algorithmt tha
uses HHMM, hand designed and operating on an observation
sequence of rectified angles.

Few approaches can learn events in an unsupervised way us-
g clustering techniques. For instance, [18] use the etadgif
attributes obtained with a Gaussian Mixture Model to repnés

e The incorporation of thacuity to thenumerical category ~ the states of an HMM, [14] learn events using spatial refatio
utility , in order to balance the contribution of numerical Ships between objects in an unsupervised way, but performed

and symbolic attributes to the category utility. (see Secti Off-line, and [16] apply unsupervised learning of composite
4.2). events using the APRIORI clustering algorithm. However,

) ) these unsupervised clustering techniques request togeeEgs

In a step further to bridge the gap between image-level datggjine (not real-time) the whole cluster distribution.
and high-level semantic information, this work extends/pre  gome other techniques can learn on-line the event model by
ous work presented in [21] and [22] by integrating symboalic & taking advantage of specific event distributions. For eXamp
tribute information to the hierarchical model in a way thatib [12] propose a method for incremental trajectory clusteby
numerical andsymbolic attribute values can be in'a common mapping the trajectories into the ground plane decomposad i
state model. The utilisation of symbolic attributes givéshh  z0ne partition. Their approach performs learning only oasp
flexibility to the approach, allowing the user to add sigmifidy  tia] information, it cannot take into account time infornoat,
semantic attributes for assisting on scene interpretation and do not handle noisy data.

Also, the approach can simultaneously learfiedent hier- In conclusion, few work has been found on hierarchical and
archies representing féierent learning contexts (i.e. ftrent  jncremental approaches for abnormal behaviour detectfon.
states and events of interest). We propose a general represgyitical aspect not considered in the current approachéseis
tation for the context of each learning process and exteed thncertainty of mobile object attributes present in realliapp
analysis of each involved process for an easier implementat tions and how this uncertainty caffect the model construc-
The source code of the algorithm is publicly availahle tion.

The approach has been extensively verified over both sim- 4| 6wing these directions, the current work is basedren

ulated and real data-sets. The real data-sets has beaeditili remental concept formation mod@g. The knowledge is rep-
for specific events for home-care (e.g. approaching to &fabl \esented by a hierarchy of concepts partially ordered bggen
crouching) and rat behaviour learning (position and véjoci ity A category utilityfunction is used to evaluate the quality
evenFs). . _ ) of the obtained concept hierarchies [9].

This paper is organised as follows. In Section 2 the state-of g proposed approach takes profit of this hierarchicatstru
the-art on incremental event learning approaches is prSen e extending it to represent events, incorporate treeof

Section 3 describes the proposed event learning approach ifcertainty in data, and to manage symbolic attributes hvhic
general, and Section 4 focuses on describing the learning pre.ijitate semantic interpretation.

cess in detail. Finally, Section 5 presents the experimesits
formed on simulated and real data-sets.

e The extended utilisation of the conceptasfuity to repre-
sent diterentnormalisation scales and units associated to
different attributes, and also represent the interest of usefgs
for different applications (see Section 3.2, for details).

3. Incremental state and event learning approach

2. State-of-the-Art As previously stated, the proposed approach is an extension

Most of video event learning approaches for abnormal be®f incremental concept formation models{4, 1] for learning
haviour recognition are supervised, requesting annotadens video events. The approach uses as input a set of attrlbotesf
representative of the events to be learnt in a training pfigse the tracked objects in the scene. Hence, the only hypotbésis
[6], [2]. As well described in [17], these approaches norgnall the _a'pproach is the availability of tracked object attrétsue.g.
use general techniques as Hidden Markov Models (HMM) [13] POSition, posture, class, speed).

Some authors use hierarchical models, as they facilitarade ~ 1h€ proposed approach has been caN8lES acronym

ing and generalisation. HMMs are robust, but require hierarStanding forMethod forincremental earning ofEvents and
chical (HHMM) and time-duration modelling for represefin States. The apprpach has received its name since its flrst.ver-
events with varying temporal and spatial scales, incregsie ~ Sion, presented in [21]. MILES state hierarchy constructio
complexity of these approaches. is _mo_stly based on COB\_NI_EB [_3] algorithm, but also (_:onS|d-

Generalisation is one of the keys to simplify the process of'Ng ideas from other existing incremental concept foromat
semantic interpretation. In [10], the authors propose an agPProaches, as CLASSIT [4] algorithm.

proach for abnormal behaviour detection, using unsupeavis
3.1. The hierarchy of states and events

1The algorithm has been developed with-€ using QT libraries, and is MILES builds ahierarchy pf state and event Cohcefjﬂi
available ahttp://profesores.elo.utfsm.cl/~mzuniga/MILES.zip based on thetate and event instancegxtracted on-line from




the tracked object attributes. It is desirable (but not ssaey) attributes from involved objects, as these attributes can

that the input data contains an estimate of the reliability o be derived from other object attributes (e.g. symbolic at-
information. This hierarchy is formed by two building black tribute defining a zone in the scene, derived from object
position).

State concept: It is the modelling of a state, as previously
defined. Astate conceptS(©@, in a hierarchyH, is modelled as: e Particularly, for eacmumerical attribute of interestn;, a
normalisation value\, must be also definedA, repre-
sents the lower bound for the numerical attribute change
to be considered as meaningful. In other words, the dif-
ference between the mean value for a numerical attribute

e its number of occurrencesN(S®) and itsprobability of
occurrence P(S©@) = N(S©)/N(SP). (S is the root
state concept dfl),

o the number of event occurrencesNg(S©), correspond- n and the value of the attribute for a new instance will be
ing to the number of times that the st&8&) passed to considered as significant and noticeable when tHigdi
another state, generating an event. ence is higher tha,.

This normalisation value corresponds to the concept of
acuity, utilised by [4] and described as a system param-
eter that specifies the minimum value for attributegn

the CLASSIT algorithm for incremental concept forma-

e a set of numerical attribute models {nj}, with i €
{1,.., T}, wheren; is modelled as a random variabié
which follows a Gaussian distributidd ~ N (un,; o),

« aset of symbolic attribute models{s;}, with j € {1, .., S}, tion. In psycho-physics, thecuity corresponds to the no-
where s; is represented by every possible value for the tion of ajust not_iceablgldifference the lower limit on the
attribute, and conditional probabilitiea(V{|S©) repre- human perception ability.
senting the frequency of occurrence of akié valuevg.() This concept is used for the same purpose in MILES, but
for s;, givenS©. the main diference with its utilisation in CLASSIT is that

) _ - theacuity was used as a single parameter, whileacuity
Event concept: It is the modelling of the transition between values are defined for each numerical attribute to be learnt
two state concepts. Aavent conceptE is defined as the for a given context. This improvement allows to represent
change from a starting state conc&f to the arriving state the diferent normalisation scales and units associated to
conceplsf)c) in a hierarchyH. An event conceptE®, in a hier- different attributes, and can also represent the interest of
archyH, is modelled as: users for diferent applications. For instance, a trajectory

position attributex could have an acuity of 5€entimetres
for an application with a camera in affice environment,
while for the same attribute, the acuity couldtbh® metres
for a parking lot application with a camera far from the
The state concepts are hierarchically organised by getyerali objects, where the user is not interested in little details o
with the children of each state representing specificatimns position change.

their parent. In the hierarchy, an event concept is repteden

as a unidirectional link between two state concepts. An exam e In particular, for eactsymbolic attribute s;, it is neces-
ple of a hierarchy of states and events is presented in Figure sary to list the associated values of interest.

1. In the example, the staf is a more general state concept

than state$; ; andS; ,, and so on. Each pair of state concepts As an example, for #osition-Posturdearning context, as
(S11; S12) and B35 ; Ss3), is linked by two events concepts, shown in Figure 2, the user can be interested in learning the

e its number of occurrencesN(E©) and itsprobability of
occurrenceP(E@) = N(E©@)/Ng(SP) (with SP its start-
ing state concept).

representing the occurrence of events in both directions. events associated to a Person positialy), together with the
human posture in anflice environment. As anflice is a small
3.2. The Learning Contexts closed area, appropriate normalisation values for posiit

tributes can bé&0 centimetres Then, this context mixes nu-
merical position attribute information, with symbolic pose
attribute information.

The learning process associated to a particular hieradrchy
is guided by dearning context Z. A learning context corre-
sponds to the description of a particular scope of the ewants

interest for the user. Multiple learning contexts can bengefi Learning Context Position Posture{

and simultaneously processed, according to user inteiests Involved Objects: Person
learning context requires the definition of: Attributes:
Numerical x: 50 [cm]
e the moving object classes involved in the particular learn- Numerical y : 50 [cm]

ing process, defining a list of the object classes of interest Symbolic Posture { Standing, Crouching, Sitting, Lying

or stating thatiny class is of interest. }

e the attribUteS. of int_ereSt (nL_JmericaI or Symbqlif:)- NOT- Figure 2: Definition of a Position-Posture learning confextPerson class in
mally, there is an intermediate step for obtaining thesen dfice environment.
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Figure 1: Example of a hierarchical event structure resuftiogn the proposed event learning approach. Rectanglesgenpt states, while circles represent events.

It is worthy to notice that the purpose of learning contegts i — Currently detectedtate conceptSEf). Corresponds
to increase the possibilities of the users to customiseciiue} to a matching betweestate conceptSff) and the
ing process according to the information of interest to guliap state instanceS®© currently extracted from object
cation. In other words, nothing limits a user to define a learn o.
ing context with all the available attributes. All these gios
bilities of customisation by the user, give a high flexililto Now, with all these elements and their interactions prgperl

the proposed approach for adapting to a wide Variety of appndescribed, details on the event Iearning process can be pre-

cations and typical issues present in the video understgndi sented in next Section 4.

domain. Also, symbolic attributes allow the user to define at

tributes which_ help in the semantic ir_lterpretat.ion, brrini_gihe 4. MILES Learning Process

gap between image-level data and high-level information.

MILES needs that the objects are tracked in order to detect

3.3. Contextualised Objects and State Instances the occurrence oévents There is no constraint on the num-

ber and nature of attributes, as MILES has been conceived for

learning state and event concepts in general, as discussed i

section 3.2.

Initially, before the first execution of MILES, and for each
defined learning contexd, a hierarchyH is initialised as an
gmpty tree. If MILES has been previously executed, the incre
mental nature of MILES learning process allows that the-hier
archyH resulting from this previous execution can be utilised
as the initial hierarchy of a new one.

e astate instance which is an instantiation of a state con-  The input of MILES corresponds to a list of contextualised
cept, associated to the objext The state instancg© mobile objectsO, according to the defined learning contexts.
is represented as the set attribute-value-measure triplefy each video frame, MILES utilise® for updating each hi-

To = {(vi;Vi;R)}, with i € {1,...,T” + S’}, whereR; is erarchyH. Considering a particular learning contekiand its

the reliability measure associated to the obtained vejue corresponding hierarchid, MILES first gets the set of triplets

for the attributev;. T’ andS’ are the number of pertinent To, €quivalent to atate instancgsee section 3.3), for each ob-

numerical and symbolic attributes, respectively, accaydin jecto in O, pertinent toZ. These triplets will be the input for

to learning contexZ. The measur® € [0,1]is 1 if asso-  the state concept updating processiofThis updating process

ciated data is totally reliable, and 0 if totally unreliatd  is described in Section 4.1. The updating process returiss a |

lowing to control the learning process according to qualityLo Of the current state concepts recognised for the olgjet

of information. Attributev; can be numerical or symbolic. €ach level oH.
Then, the event concepE® of the hierarchyH are updated

e For each level in the hierarchy, associated t&: comparing the new state concept lisf with the list of state
concepts recognised for the objecit the previous frame.
Finally, MILES gives as output for each video frame, the up-
— Previously detectestate conceplsgc). Corresponds dated hierarchyd and the list of the currently recognised state
to a matching betweestate conceplsgc) and astate  and event concepts for each learning context for which an ob-
instanceS© previously extracted from objeot jectoin O is pertinent.

According to the learning context, pertinent attributesaof
tracked object have to be extracted (or generated). In the co
text of MILES, each mobile object must also store informatio
related to their position in the hierarchy tree, for eachrizay
context in which it participates. Then, a contextualisegeoto
o will be an extended representation of a tracked object. Thi
objecto, for each learning contex it participates, must then
contain:

— Last detecte@vent conceptE(© for objecto.



(H, T) updateStates(hierarchy H, object triplets T)

EmsEEEBg
L]
.

YES insert )
C=insertRoot (H, T) = recognised .
state C to list L P — :
NO P triplets T
to state C
C=rootOf (H) p— ‘
D = insert mael
: = recognised .
* Terminal (H, T) state D to list L :
E

insert
recognised terminal — —
state C to list L state . . > insert recognise return
NO new state Q TiserGhid (R, B} state Qtolist L L
‘ ey P | =updateStates (subTree(H, P), T)
incorporate :
ttczlz!;i-g split states from best state P - L=tipeateSiales (H, T) ‘
P | =updateStates (subTree(H, O), T) :
A merged state O = best P + second R s
¥---------- ssEsssssas ssssasmwms ----------—----n-n---_u"‘
Figure 3: Scheme of the state concept updating algorithm.
4.1. States Updating Algorithm value afT and the mean value of the attribute foi(usingacu-

State concept updating is a recursive process, as depicted 'lt An criteria), or if every sy_mbohc attribute value This t_o-
Figure 3. tally represented i€ (probability equal to one for the attribute

The algorthm starts by accessing the analysed atom 2.5, (TL TR LB E TR TR o
hierarchyH (with rootOf returning the root state dfl). Notice

that, in the context of the algorithm, a hierarchy not neaess If the cutgff test is passed (noticeableffidrence found), the

ily corresponds to the complete tree, as the algorithm recu{.urll.cnc:jn |r}tshe_|[tTer(J|m:rr]1 algfhnerates two C?i'fld_lr_in fd_lr, one ini-
sively utilises sub-branches of the hierarchy. The ing&tlon alised wi and the other as a copy @l 1hen, 1 1S incor-
of H is performed by creating a state with the trip/&tgor the porated tdC (process described in Section 4.3). In this terminal

first processed object. Remember thiatepresents thetate stahfeé: art]se, tr;](?l(;lpdat;pgﬂ_proqess t?fn sltops. d16
instancefor objecto, given a learning context. as children, first is iImmediately incorporate '

Then, for the case th& corresponds to a terminal state (stateIn otrQer to det(irr(r;ln'e 'nt;/]Vh'Cth ts tate con(igpt the tnpletsﬂil:;
with no children), acutgf test is performed. Theutoff is a next incorporated (i.e. the state concept is recognisegi)

criteria utilised for stopping the creation (i.e. speation) of |t§[/_|_me§surhe_ fr?r_ s':ja_lte concdeptsdcillk_ilniegé)rytynlltZ Z(C%)“;S
children states. It is defined in utilised, which is discussed in detail on Section 4.2. a,

different alternatives for the incorporationDfare:
true if O =V, < AV € {1, T'Y)
cutaf =

A P(Vs|si©) = WV e (1.5}, (1) 1. IncorporatipgT to an existing .stat@ gi\_/es the bes€CU
! score. In this caseipdateStates recursively called, con-

false else o
sideringP as root.

whereV,, is the value of a numerical attributg, andVs; is the 2. The generation of a new state conc@drom T gives the
value of the symbolic attributs;. u{ is the mean value df; bestCU score. In this caseQ is inserted as child o€,
for C. P(Vs|s;(©) is the conditional probability of the valug, and the updating process stops.
givens; of C. T andS’ are the number of pertinent numerical 3. ConsiderM as the resulting state from merging the best
and symbolic attributes fdZ, respectively. stateP and the second best std®e Also, considely as

This equation means that the learning process will stap at the CU score of replacind® and R with M. If y is the

if no meaningful diference exists between a numerical attribute best scoreH is modified by themerge operator. Then,
5



updateStatets recursively called, using the sub-tree from Also, the acuity is useful to normalise the contributionsof
stateM as the tree to be analysed. Tinerge operatoris  merical attributes representingfigirent metric units (e.g. po-

described in detail in Section 4.5. sition and velocity) and scales (e.g. a position in metrekan
4. Considerz as theCU score of replacing state with its  distance in centimetres).

children. Ifz is the best scored is modified by thesplit ~ For the set of sympolic attributes, the symbolic categoily ut

operator. This process implies to suppress the state conl®y CUk(sym), for S, is defined as:

cept P together with all the events in which the state is s 3

involved, as depicted in Figure 4. ThempdateStatess PS) Y| D (P(s = VISP - P(s = VIIS,)?)

called, using the sub-tree from the current s@iagain. CU(syn) = i=1 j=1 < @)

whereP(s = V§1)|Sk) is the conditional probability that the
symbolic attributes has a vaIueVéJ) in Sk, while P(s =
Vis,) is the conditional probability thag has a valua/{”,
in the parent or root nod®,.

Then, for a set of mixed symbolic and numerical attributes,
the overall category utilitC Uy, given a state conceff, is the
sum of the contributions of both sets of features:

CUk = CUx(sym + CUy(num). 4)
Figure 4: Split operator in MILES algorithm. The blue box regents the state . . .

to be split. Red dashed lines represent events. Notice hiasplit operator ~ Finally, the category utilityCU for a class partition oK state
suppresses the sta8 and its arriving and leaving events, and ascends theconcepts is defined as:

children ofS3 in the hierarchy.

K
CU= CY (5)
At the end of functiorupdateStateseach current stat€ for = K
the diferent levels of the hierarchy is stored in the listof
current state concepts for objeztby the functioninsertCur- ~ 4-3. Incorporation of New Object Attribute Values
rentState Upon the arrival of a nevstate instance the attribute in-
formation of the instance must be used to update the state and
4.2. The Category Utility event concept information. According to the type of atttébu

the information updating procesdidirs.

As previously discussed, tleategory utility measures how  For the case of a numerical attributgthe information about
well the state instancesare represented by a givetate con-  the mean valug, and the standard deviatian, must be up-
cept This function has been derived by Gluck and Corter [5].dated. The proposed updating functions are incremental in
Category utility attempts to maximise intra-class simtlasind  order to improve the processing time performance of the ap-
inter-class dierences, and it also provides a principled tradeproach. Fog,, the function is presented in Equation (6).
off between predictiveness and predictability [3]. A measure ) )
similar to the category utility function from COBWEB[9] al- un(i) = Vi Ra + pn(i — 1)'.8 um(i - 1), (6)
gorithm has been considered. Sum(i)

For the set of numerical attributes, the numerical categoryyith
utility CUgx(num), for a given state concef, is defined as:

Sum(i) = Ry + Sum(i - 1), (7
-
P(Si) Z ﬁ _ i] whereV, is the value in the new instance forand R, corre-
H\o® P sponds to its reliability. Hence, the reliabilif§, weights the
CUk(num = 2T Vr . (2)  contribution ofVj, to un. Sum is the accumulation of reliabil-

ity valuesR, for n.

Whereo-ﬂi‘) is the standard deviation for the numerical attribute The updating function for, is presented in Equation (8).

n; in Sy, andaﬁf’) is the standard deviation fax in the parent Sum( - 1)
or root nodeS,,. The valueA,, corresponds to thacuity forn;.  on(i) = \/Tm(l)
The incorporation of the acuity terd, to the equation 2 es-

tablishes a dference with the preceding versions of numerical In the case that a new state concept is generated from the
category utility in the state-of-the-art. This is done tdalpge  attribute information of the instance, the initial valuaken for

the contribution of numerical and symbolic attributes o tat-  Equations (6), (7), and (8) with= 0 correspond t@,(0) = Vp,
egory utility. The obtained attribute contribution valdevays  Sum(0) = R,, ando,(0) = A,, whereA,, is theacuityfor the
belongs to the interval [@], asA, is the lower bound fon-ﬁ,i). attributen, as defined in Section 3.2.

(8)

(O'n(i _1p 4 Rn: (Vo — (i = 1))2) )

Sum(i)



In case that, after updating,(i), its value is lower than the
acuity Ay, o(i) becomes equal t8,. This way, the acuity value
establishes a lower bound for the standard deviation, aid
the possibility of zero division.

For a symbolic attrlbutes |t is necessary to update the con-
ditional probabilityP(s = V{|S) of each possible valug!? of
s, givenS. For this purpose, reliability measur@sare utilised
in order to weight the quality of new incoming informatiors, a
presented in Equations (9), (10), and (11).

S urﬁi)(i) ) Figure 5: Examples of list comparisons for determining the evemupdate.
—VS_ if Vo= ng) Blue elements represent the previously stored states facketd object. Green
(renrs S umy(i) elements represent the updated states obtained with thiéclunpdateStates
P(s= VS IS)i] = (9)  The red box represents the state concept which is common tdibtth The
S ur‘rﬁj)(i -1) dashed red lines represent the events to update for tiereit cases (a) and
- (b)
~—— else -
S umy(i)
with
0 ) 4.5. Merge Operator
iy — D . . .
Suny (i) = Rs+ Suny (i — 1), (10) The merge operator consists in merging two state concepts

and Sp andSg into one stat&Sy, while S, andSq become the chil-
Sumgi) = R+ Sumgi — 1), (11) dren of Sy, and the parent 0§, and Sy becomes the parent

Sw, as depicted in Figure 6.
whereVs is the value in the new instance ferandRs corre-
sponds to its rellab|lltyV O s the j-th possible values. The
functlonsSurﬁ' (|) correspond to the accumulated reliability
for eachs vaIueVS, while the functionS umy(i) is the overall
accumulated reliability fos.

Merge

4.4. Events Updating Algorithm

After the states updating phase (see Section 4.1). the ebang
of state concepbccurred for an objed must update the events
information according to the change of state. The occugefic
a state transition updates all the events representingotinbie

nations between the analysed state concept from the steted IiF_ 6 Meraing stat g s in MILES aldorithim. Blogds t
Where the pOSSible Combinations are: lgure 6. Merging states ana events Iin algorithm. bla: represen

the states to be merged, and the green box represents thengemérged state.
e All the states of a lower level in the new list, if the state at Red dashed lines represent events, while the green dastesddie the new
events appearing from the merging process.
its same level in the new list isfiierent than the analysed ppearing angp
state.

In order to generate the stébg several considerations must
e The state at its same level in the new list if it isfdrent  be made:

than the analysed state.
y o N(Sum) = N(Sp) + N(Sy).
e All the states at a higher level in the new list which do not

have akinship relation(defined below) with the analysed ~ ® £(Sm) = N(Swm)/N(Sy), with Sy the root node of the hier-

state. archy.
Akinship relation between two states,Sand S, in the hier- * Ne(Sw) corresponds to the number of eveiidiaving a
archy exists if $ is (directly or indirectly) the ascendant or one starting stateS,(E) = Sp or Sq, and as an ending state
of the descendants of the statgis the hierarchy. This means Su(E) a state not having kinship relationwith Sy.

that the one state is related to the other as parent, or son, or
grand-parent, or grand-son, and so on.

Examples of these state combinations can be found in Figure
5.

If an eventE corresponds to a first detected event, a new

e Each numerical attributey for Sy, can be updated using
the Equations (12), and (13) for mean and standard devia-
tion of ny, respectively.

Sump-ynp +S UM, * i,

event representation is created and associated to theagjeger Hny = , (12)
stateS, and the arriving stat8,. SUum, + S um,

Then, the updated list of current states dfatent levels in
the hierarchy is utilised to update the current states inéion ,  Sum (A, +0h) + Sum- (A, +oh) 13
of the objecb. T = Sum, + Sum, - (19)



whereSum, and Sum, correspond to the accumulated
reliability values for numerical attributes, and ng, re-
spectively.Amp = (iny, = tn,) @NdApg = (iny, — pn,) WEre
added to adjust the value of,,, considering the drift be-
tween the new meau,,,, and the mean valugg, anduy, .

1000

800 -

e Each symbolic attributey for Sy can be updated using
the Equation (14), for the conditional probabili{sy)?, 600

for the j-th value of the symbolic attributgy. z f If//
D D B
P(sy = VO ISyl = M’ (14) “oor
Sum, +Sum, B
whereS unﬁ,j) andS urr&,“s)q correspond to the accumulated 20011 A1
Sp
reliability values of thej-th value for symbolic attributs,
ands;, respectively. In the same wa$,um, andSum, A
are the overall reliability values accumulation fgy and o5 p— — p p— 00
Sy, respectively. X [om]

The last task for the merging operator is to represent thetsve
incoming and leaving states, andS, (green dashed lines in  Figure 7: Top view of the metro scene illustration example. Trehand-
Figure 6) by generating new events which generalise the trargrafted trajectories (T0-T9) are displayed.

sitions as the events incoming and leaving the s&je For
theincoming eventsto these states the event merge process is

. ) The scene consists of three Acg@sst zones (referenced in
described as follows:

the Figure 7 a&\, C andD), and a ticket vending machine zone
o If a stateS,, is the starting state for an evelt_, arriving B, represented as a red box in Figure 7. The ten persons evolve
to only one stateSy of the merging stateS, andSy (as  in the scene over 13 time instants.
eventEs,,s, between stateS; andS; in Figure 6), a new The idea is to utilise a simple learning context consistimg i
eventE,_,y must be generated with the same informationthe (x,y) person positions, with an acuity of 200{ . Then,
as eventE,_,y, except for the arriving state that becomesthe evolution of the hierarchy of states and events in tinre ca
the stateSy. be analysed to understand the event learning process. Also,
the relations between the obtained states and events and the
» If a stateS, is the starting state for the everiia., and  trajectories of the persons can be studied to understandHeow
Enq arriving to both state$, andS, (as eventss,.s,  hjerarchy represents the situations occurring in thisscen
andEs,_s, in Figure 6), a new ever,_,y must be gen-

erated with: Learning up to Time instant 1:

— N(Ensm) = N(Ensp) + N(Ens . _
(En-m) (En-p) (En-a) At this instant two persons (represented by TO and T1) arrive

= P(En-m) = N(Enm)/Ne(Sn)- from the zoneD and two other persons (represented by T2 and
Finally, events leavinghe state$, andS, must be merged, T_3) arrive from the zoné\_. This situation is represented by tvyc_)
with: different states of the hierarchy, because the person positions
entering at the two dierent zones were similar enough to be
e N(Em-n) = N(Ep-n) + N(Eg=n) represented in the same state concept. The positions ofd’0 an
T1 are then represented by the State 1, while the positions of
* P(Em-n) = N(Ev-n)/Ne(Sm) T2 and T3 by the State 2.
Figure 8(a) shows a top view of the scene where these
5. Experiments and Results the two new states are represented. Figure 8(b) depicts the

maximal marginal probability for each point in the scengegi

5.1. lllustration of MILES State and Event Representation  the current two states of the hierarchy.
In order to better understand the learning process, anrdlus

tion example is presented in this section. The example stnsi  Learning up to Time instant 3:
in ten persons evolving in a metro scene, starting fieint
positions and time instants. A top view of the scene is dedict ~ The evolution of the hierarchy until this instant is depitte
in Figure 7. The evolution of the persons in the scene is repran Figure 9. T4 starts walking in the direction of the zdde
sented by ten hand-crafted trajectories (TO - T9) of eigbtrco while T5 goes in the direction of the zo® The position of
dinate points (x,y) in the ground plane of the scene. T4 and T5 is not dierent enough yet to generate a new state.
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Figure 8: Hierarchy at instant 1. (a) Terminal states positioa top view of the scene. The oval surrounding the mean pagiti a state represents the standard
deviation of this position. A state in the first level of thetarchy is represented in blue. (b) Maximal marginal prolitgitof a state. A darker colour represents a
higher probability.

Then the probability of the State 2 is still reinforced. T@ari State 0

walk in the direction of the zon&, but their position is similar E 123

enough to the position represented in the State 1, reimgits Ne 0

probability. Also, T7 arrives from the zori®, reinforcing the el il B

probability of the State 1 even more. y a0 32
T2 and T3 walk to the ticket vending machiBe Now, their

position is diferent enough to the one represented by the State

2, to induce the creation of two children states. One stdtdgS e )

3) represents the position near the zéneand the other repre- P 41 P 059

sents the new created State 4 near the Boffdne new positions = ! = =

of T2 and T3 have also induced a change of state, represented | [mem |55 er Numerizel [Mesn |Est Der

by the first event in the hierarchy between States 3 and 4. This | us3| 00 : 485|000

event is depicted in Figure 9, and graphically represenyeahb . s . <

arrow between States 3 and 4, in Figure10(a). /\
Notice in Figure 10(b) that the new created state does not

have a strong probability, compared with the other stateiseof o omed g Smed

hierarchy. N : 8 N 2
Learning up to Time instant 5: T = —2 e = 2

e L

The new position of T4 produces an adjustment of the posi- ! ol L A5 200

tion of State 8, while the new position of T5 induces the cre-
ation of a new event between States 8 and 9, as depicted in
Figure 11(a). T5 walks in the direction of zo@ Then, the

transition between State_s 8_and 9 seems imprecise, but t_hIS ISFigure 9: Hierarchy obtained up to instant 3. Events arewelbin red.

one of the costs of considering a coarse value for the actiity o

position attributes x and y. Also, T9 arrives to the scenenfro

the zoneC, reinforcing the probability of State 10. induces a new event between States 9 and 12 (in that order),
Notice in Figure 11(b) that the permanence of T2 and T3 aas depicted in Figure 12(a). Figure 12(b) shows that even the

the zoneB has reinforced the probability of the State S9 nearprobability map has arrived to a quite stable state, whehg on

this zone. Also notice that the reposition of State 8, indumg  slight differences can be observed.

person T4, has also reinforced the probability of occureesfc From this time instant and until the end of the illustration
the State 8. example, the hierarchy is very stable, only showing some new
Learning up to Time instant 7: events and updates in the states probability.

At this time instant, the hierarchy has arrived to a stablanu
ber of states. The new position of T6 induces a new event be- Learning up to Final time instant 13:
tween States 12 and 9. At the same time, the position of T2

9
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Figure 13: Final hierarchy associated to the position le@rebntext, at instant 13. Figure (a) shows the position eténminal states and the events. Figure (b)
depicts the maximal marginal probability of a state of the hEma
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Figure 10: Graphl_cal representation up to instant 3'. F'@').ﬂow also ;hows Figure 11: Graphical representation up to instant 5. Figayeshows the posi-
the events occurring between the states (arrows with aiti@nprobability). . ) A
. - . ) tion of the terminal states and the events. Cyan colour actetiee third level.
States in blue and magenta represent the first and secondl¢helhierarchy, Figure (b) depicts the maximal marginal probability of a state
respectively. Figure (b) depicts the maximal marginal proiigtuf a state. 9 P g P Y ’
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Figure 12: Graphical representation up to instant 7. Figayehows the po- @
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only slight diferences can be observed, with some few new P =009 P=01

events and slight modifications in the probability map. Nl el
This illustration has served to show the incremental natéire

the proposed event learning approach. The hierarchy adsstat

and events has shown a consistent behaviour on representing

the frequency of states and events induced by the persohs of t

illustration example.

The final result for the hierarchy of this illustration exdmp
is depicted in Figure 14. This figure shows that the hierarchy
has arrived to a stable state since time instant 7. In Fig8re 1 S il Stte 12

Figure 14: Final hierarchy obtained up to instant 13. For §iitp, only events
5.2. Exploiting the Hierarchy and theffEct of Acuity between terminal states are displayed.

The hierarchy learnt by MILES concentrates rich informa-
tion, which can vary according to the attributes selectedHe
learning process. Figure 15 shows thref@edent types of infor-
mation extracted from the hierarchy, for an applicationttmlg
the behaviour of a rat, consisting in 4850 frames. The utllise
learning context considers three numerical attributes: p2b
sition attributesX andY, and also 2D velocity magnitude at-
tribute V2D. A video showing the evolution of the incremental
learning process is availaBle

2MILES information video available at:
http://profesores.elo.utfsm.cl/~mzuniga/milesX4.mp4
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(a) Tracking. (b) States probability.

(c) State recognition and events. (d) V2D attribute profile.

Figure 15: Diferent information extracted from MILES hierarchy. Image (aage represents the input from tracking. Image (b) shows thémahprobability
for each point, using likely states from the hierarchy (relue, for highest to lowest probability). Image (c) showes shme likely states from the hierarchy, only
showing their peak probability, and also the events commgthese states. The events are represented with a triapgfeéng from the starting state to the arriving
state (yellow to green, for highest to lowest probabilitiRecognised states are presented with a white ring. Finaipge (d) shows the behaviour of tR@D
attribute according to the position (yellow to green, fogh®st to lowest velocity magnitude). Note that it can be gasferred that the rat stops at corners and
accelerates the most through the widest part of the experaireote.

We have chosen position and velocity attributes becauge thgrobability weighted by their reliability. In the presedtease,
can be more easily represented in the input video, but ng@thinwe use a conditional probability considering the probtbsi
limits the number or nature of the attributes to be learnte Th of X andY attributes, so that likely states with low intra-class
input information is obtained from a multi-hypothesis kimg  similarity are not considered.

approach which is able to compute reliability measuresber o The extracted information can then serve, for instance: to
ject attributes, and is described in detail in [20]. Itis D getermine the more likely (or unlikely) zones accordingteit
tant to notice that the presence of one or many objects in thﬁrobability (figure 15, upper right), which is useful for ain
video sequence is not relevant for MILES learning process t@na| behaviour detection and fiie frequency analysis, among
properly work, as the attributes are learnt each frame froyn a many other applications; to determine the likely (or urlike
mobile ol_)ject which matches with any of the classes defined igehaviours through chains of events (figure 15, lower leé)-

the learning context. tainly useful for behaviour analysis; and understandiregré

There must be certainly many ways of extracting informationlations between attributes as, for example, estimatinglvare
from the hierarchy. In this particular case, the states deetgel  the zones where the rat is static or moves quicker (figure 15,
searching for the deepest state with a probability highenta  lower right).
threshold, to obtain relevant states according to the egiidin. Other element that has a notoriouteet on the results is the
There are also many ways to consider the state probability tacuity of each numerical attribute. As previously discussed, the
select the states. For example, we can just consider the probcuity allows the users to define their interest on an atiibu
ability of the state only, or the conditional probabilitynsad- ~ Then, there is no ideal value for this parameter, as it depend
ering attributes of interest, or even considering theséates  on the application. Figure 16 depicts theeet of diferent val-
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(a) Acuity: 50x 5.0. (b) Acuity: 100 x 10.0.

c) Acuity: 150 x 15.0. Acuity: x 20.0.
i 0 0 d ity: 200 x 20.0

Figure 16: Figures show the state probability map resultssidering diferent acuity values (5.0, 10.0, 15.0, and 20.0) for imagedinate attributeX andY.

ues of acuity on the probability map. A video showing the in-tasks of everyday life as cooking, resting, and having lunch
cremental evolution of the probability map, foffdirent acuity = The lengths of the sequences are 40000 frames (approxymatel
values, is also availabfe 67 minutes) and 28000 frames (approximately 46 minutes).

The figure shows how the state probabilities dfeaed with The input information is obtained from the same tracking

lower probability peaks and more plain probability disttions o104 previously described, and presented in [22]. A learn
when acuity increases. This is the expected behaviour amwhing context for the clas®erson combining both numerical

an user defines a higher acuity, is implicitly saying thatielg 5,4 symbolic attributes, was tested considering the fatigw
differences are not significant to the application so that the reyy inutes: 3D position (x,y); symbolic Posture, with val-
lated instances can be clustered inthe same state. ;65 forStanding or Crouching posture; and interaction sym-

If acuity is increased, also the number of mstar_wes sirtolar bolic attributesS ymDQape, S yMDofz andS ymQicnen between
a state._ Th_en, the number of states and events is decreased 3, person and three objects present in the scene (tabée, sof
shown in Figure 17. and kitchen table). The possible symbolic values &éR :

. . . distance> 100[cm], NEAR: 50[cm] < distance< 100[cnd,

5.3. Symbolic Attributes and Recognition Capabilities andVERYNEAR: distances 50[crr. The contextual objects

The capability of MILES for automatically learning and in the video scene (sofa, table, and kitchen) have been mod-
recognising real world situations has been evaluatedgusio  elled with 3D polygons. All the attributes are automatigall
videos for elderly care at home. The video scene correspondsmputed by a tracking method, which is able to calculate the
to an apartment with a table, a sofa, and a kitchen, as showliability measures of the attributes [22].
in Figure 18. The videos correspond to an elderly man (Figure

18(a)) and an elderly woman (Figure 18(b)), both performings The learning process applied over the 68000 frames have re-

ulted in a hierarchy of 670 state concepts and 28884 evant co
cepts. From the 670 states, 338 state concepts corresptand to
3MILES acuity video available at: minal states (5@%). From the 28884 events, 1554 event con-
http://profesores.elo.utfsm.cl/~mzuniga/acuityX4.mpd cepts correspond to events occurring between terminalsstate
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Figure 17: Figures (a) and (b) respectively show the numbetatés and events at each frame, for each acuity value, etithinprocessing the rat experiment

video.

Figure 18: Video sequences for elderly care at home apmitatrigures (a)
and (b) respectively show the observed elderly man and woman.

(5.4%). This evaluation consists in comparing the recognise
events with the ground-truth of a sequence, utilising the pr

(b)

[

0

50 100 150 200

Ground-truth: + u + +

50 100 150 200 300 350 400 450 550 600 650 700

250 500 750
Frame Number

Recognized
event concepts: *

350 400
20 Frame Number 500 %0

Standing up Start going to Changing position
- at table zone - kitchen zone -in the kitchen

Figure 19: Sequence of recognised events and ground-toutthé elderly
woman video. The coloured arrows represent the events, wiiteired zones
represent the duration of a state before the occurrence efet.

tion changes, and to the similarity between the colours ef th
elderly woman legs and the floor. The results are encouraging
considering the fact that the description of the sequennerge
ated by a human has found a very close representation in the
hierarchy.

5.3.1. Recognised Situations and Symbolic Attributes
It is also very interesting to check how real situations find

their representations in the obtained hierarchies. Heoeetw

posed symbolic-numeric learning contextfibrent 750 frames
from the elderly woman video are used for comparison, corre-
sponding to a duration of 1.33 minutes. The recognition@sec
has obtained as result the events summarised in Figure 19.
The evaluation has obtained 5 true positives (TP) and 2 false
positives (FP) on event recognition. This results in a [sieoi
( TP/(TP+FP) ) of 71%. MILES has been able to recognise all
the events from the ground-truth, but also has recognised tw
nonexistent events, and has made a mean error on the starting
state duration of 4 seconds. These errors are mostly dualto ba
segmentation near the kitchen zone, which had strong ilami

14

&mples with the previously defined learning context:

Going from the kitchen to the table: This situation con-
sists in the analysed person going from the zone near the
kitchen, to the table zone, as depicted with the images
shown in Figure 20.

In the obtained hierarchy the situation is described by the
states and events depicted in Figure 21.

Notice that three states representing each of the displayed
images in Figure 20. The probability of occurrence of the
first state 25 is 98880000 = 0.25, as the elderly man
spends a long time in the kitchen zone. Notice that this
state is well describing the fact that the man is all the time



Figure 20: Situation where the person goes from the kitchehe table. Fig-
ures (a), (b), and (c), in this order, describe the way thisagion occurs in the
scene.

State 25
P 0.25) P 008
N 9888| N 3360)
Ne 498] Ne 138]

Nomerical | Mean Est Der. MNomericel [Mesn |Est. Dev.

x 1100 1005| x 1206 1000

y 741 106} y 208 1000

Symbalic_| Velue P(s=V 15) Symbolic | Velue PG 15)

POSTURE CROUCHING 027 [POSTURE CROUCHING 008
STANDING 073 STANDING 02|

SKITCHEN FAR 001 SKITCHEN NEAR 100]
VERY_NEAR 099) STABLE  FAR 002)
STABLE FAR 100] (X

NEAR
ssoFa_Far 100 SS0PA_PAR 100

State 235

P=0.14
N=19

[POSTURE CROUCHING
STANDING

Figure 21: Representation of the situation where the pegems from the
kitchen to the table in the hierarchy obtained for the leagmiontextPosition—

Figure 22: Situation where the person passes to the cragiploisture and then
returns to the standing posture, near the table. Figureg¢h(a)and (c), in this
order, describe the way this situation occurs in the scene.
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Figure 23: Representation of the situation where the pepmmses to the
crouching posture and then returns to the standing posiuteihierarchy ob-
tained for the learning contefosition— Posture— S ymbolicDistance

Posture- S ymbolicDistance

very near of the kitchen, also showing that at this state
the man is not standing all the time, but also crouching
approximately a quarter of the total of time spent at this
state.

For the same reason that the elderly man spends a long
time in the kitchen zone, the events generated for this state
are concentrated between states occurring in the kitchen
and the conditional probability of the first event is very low
(0.02). The second state represents an intermediate pas-
sage zone near the kitchen and the table, where the person
passes most of the time standing. The third state repre-
sents the position very near the table. Here, the person has
a crouching posture approximately a third of the total time
spent in this state.

Crouching and then standing at the table: This situa-

tion consists in the analysed person passing to a crouching
posture and then returning to the standing posture, at the
zone near the table, as depicted with the images shown in
Figure 22.

representing each of the displayed images in Figure 22.
The probability of occurrence of the first state 131 is not
very high 004, as the elderly man does not spend a long
time in the table zone, compared with the time spent in the
kitchen zone. This state is describing that the man is all the
time very near of the table at a standing posture. The first
event has a high conditional probability.4). The second
state represents a person still very near of the table but now
in a crouching posture.

Notice also that the utilisation gfosture andproximity-
to-object symbolic attributes help the user to bridge the
semantic gap of the representation, when needed. Nev-
ertheless, the high number of event transitions between
these states, compared with the observed video, highlights
a problem inherent to the discretisation process to obtain
symbolic attributes: the error is amplified. Here the situa-
tion can be that the person, because of errors in the estima-
tion of the dimensions (due to a bad segmentation), gave
as result the wrong posture, forcing wrong transitions be-
tween both states.

In the hierarchy obtained from the previously definedS.4. Discussion of the Results
learning context, the situation is described by the states As shown in this evaluation, rich information can be obteine
and events depicted in Figure 23. Notice that three statewith MILES. The results show that the system is able to learn
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and recognise meaningful events occurring in the scenenadt [8] F. Jiang, Y. Wu, and A. Katsaggelos. Abnormal event déectrom
the hierarchical representation can be very rich in infdioma
Also, the utilisation of symbolic attributes allows an ease-
mantic interpretation of the states.

The

computer time performance of MILES s

1300[framegsecond for a video with one tracked ob-
ject and six attributes, and without considering prior stag

in the process (e.g. segmentation and tracking), showiag th

real-time capability of the learning approach.

6. Conclusion

MILES has shown interesting capabilities for state and even

recognition. Results have shown that its incremental Batur
useful for real-time applications, as it considers the ipoe
ration of new arriving information with a minimal procesgin
time cost. Incremental learning of events can be usefullier a

normal event recognition and for serving as input for highei14]

level event analysis.

The approach allows to learn a model of the states and events
occurring in the scene, when no a priori model is availabg® a [15]

giving to users a high flexibility and control through thel-uti
isation of symbolic attributes, the definition of acuity was
and the consideration of reliability measures for conitnglthe
uncertainty of information. It has been conceived for l&agn

state and event concepts in a general way, allowing the defin

tion of simultaneously processed learning contexts. Deépen
ing on the availability of tracked object features, the fluss

combinations are large. MILES has shown its capability forl1él

recognising events, processing noisy image-level datdn avit
minimal configuration fort.

However, more evaluation is still needed for other type of

scenes, for other attribute sets, and fdfetent type of tracked

objects. The anomaly detection capability of the approach o [20]

large application must also be evaluated. Future work vell b
also focused in the incorporation of attributes relatechtert

actions between tracked objects (e.g. meeting someorte}, au

matic verification of stability on state instances befoeghéng,
and a general state permanence time model.
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