
HAL Id: hal-00906465
https://hal.science/hal-00906465

Submitted on 21 Nov 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SimBa: A novel similarity-based crossover for
neuro-evolution

Mauro Dragoni, Antonia Azzini, Andrea G. B. Tettamanzi

To cite this version:
Mauro Dragoni, Antonia Azzini, Andrea G. B. Tettamanzi. SimBa: A novel similarity-
based crossover for neuro-evolution. Neurocomputing, 2013, pp.NEUCOM-D-11-00217R3.
�10.1016/j.neucom.2012.03.042�. �hal-00906465�

https://hal.science/hal-00906465
https://hal.archives-ouvertes.fr

SimBa: A Novel Similarity-Based Crossover for Neuro-Evolution

Mauro Dragoni1, Antonia Azzini2, Andrea G. B. Tettamanzi2

1) Fondazione Bruno Kessler (FBK-IRST)
Via Sommarive 18, Povo (Trento), Italy

dragoni@fbk.eu
2) Università degli Studi di Milano, DTI

Via Bramante 65, 26013 Crema (CR), Italy
antonia.azzini@unimi.it, andrea.tettamanzi@unimi.it

Abstract

This work presents the SimBa (for Similarity-Based) crossover, a novel crossover operator specifically
designed for the evolutionary optimization of neural network topologies that aims at overcoming
one of the major problems generally related to the crossover operator, known as the permutation
problem.

The SimBa crossover starts by looking for a local similarity between two individuals selected from
the population. The contribution of each neuron of the layer selected for the crossover is computed,
and the neurons of each layer are reordered according to their contribution. Then, each neuron
of the layer in the first individual is associated with the most similar neuron of the layer in the
other individual, and the neurons of the layer of the second individual are re-ranked by considering
the associations with the neurons of the first one. Finally, the neurons above a randomly selected
cut-point are swapped to generate the offspring of the selected individuals.

An approach exploiting this operator has been implemented and applied to six well-known
benchmark classification problems. The experimental results, compared to those obtained by other
techniques, show how this new crossover operator can help produce compact neural networks with
satisfactory generalization capability and accuracy.

Keywords: Artificial Neural Networks, Evolutionary Algorithms, Crossover Operator.

1. Introduction

Artificial Neural Networks (ANNs) and Evolutionary Algorithms (EAs) are two important mem-
bers of the family of computational methods collectively known as computational intelligence. Their
advantages over conventional methods [1], like their conceptual and computational simplicity and
their applicability to broad classes of optimization tasks, make them very attractive to approach
those problems that pose difficulties to traditional techniques [2, 3, 4].

The success of an ANN application usually requires a high number of experiments and several
parameters affect, during the design, how easy a solution is to find. Among them, particular
attention has to be given to those related to the architectural design of the neural network. As a
matter of fact, one of the problems to which EAs have been successfully applied is ANN design.
Approaches using ANNs designed and/or optimized by means of an EA may be called Evolutionary
Artificial Neural Networks (EANNs) [5] or, according to a more recent proposal, Neuro-Evolutionary

Preprint submitted to Elsevier February 27, 2012

approaches [2, 6]. EAs are able to overcome an important limitation of traditional neural network
learning, namely that it may get trapped in local minima.

Among the genetic operators that can be applied during the evolutionary process, some authors
have regarded crossover as inefficient, due to the so-called permutation (or competing conventions)
problem [7, 8]. This problem occurs because the same network can be genetically represented by
many and different encodings. This problem is also indicated as a many-to-one mapping from the
representation of the solutions (the genotype) to the actual ANNs (the phenotype) [5].

Nevertheless, many successful applications of neuro-evolution using crossover have been re-
ported: Hancock, for example, conducted studies on structural optimization [7], Garcia-Pedrajas
and colleagues have recently investigated a combination of structure and weight evolution [9], and
it is worth emphasizing that none of them has found any significant detrimental effects attributable
to the permutation problem. Accordingly, there is a need to re-evaluate the traditional theoretical
claims with regard to this problem.

The aim of this article is to provide an organic description and discussion of a crossover op-
erator, called SimBa, recently proposed by the authors (see [10] for an initial formulation, which
has then been improved in [11]) to solve the permutation problem. The operator exploits the con-
cept of similarity among individuals, which is one of the first ideas developed in the literature for
solving such problem. The SimBa operator has been implemented within a previously published
neuro-evolutionary approach for feedforward neural network design [12], based on the simultaneous
optimization of the network topology and of the connection weights, and successfully tested on a
number of benchmark classification problems. As a matter of fact, even if they have found other
applications, e.g., in robotics, neuro-evolutionary approaches may still be counted among the most
useful approaches to classification according to the recent literature.

The rest of the paper is organized as follows: Section 2 describes the problem, introducing the
features and the main critical aspects of the crossover, while a brief description about the ANN
optimization is presented in Section 3. The neuro-evolutionary approach used in this work is then
summarized in Section 4, while a more detailed description of the implemented crossover is given in
Section 5. All the experiments are then presented, compared, and discussed in Section 6. Section 7
reports some final remarks.

2. Problem Description

Among the many applications presented in the literature in the area of neuro-evolution, dif-
ferent approaches show interesting combinations of network architecture and weight optimization,
carried out simultaneously. In fact, the choice of an ANN structure has a considerable impact on
the processing power and learning capability of the classifier. In ANN evolution, when the recom-
bination process is considered, the crossover operator exchanges the architectures of individuals in
the population, identified as parents, in order to search for better solutions. However, crossover can
be seriously disruptive when applied, for examples, to ANNs whose genotypes are incompatible,
even though their phenotypes might be indistinguishable: this is called the permutation problem or
the competing conventions problem. For this reason, some authors prefer to avoid using a crossover
operator and only apply mutation for neural network evolution. Several implementations have
been reported in the literature, mainly using Gaussian [13, 14] or Cauchy [5] mutation as the main
search operator. Froese and Spier proposed the so-called ‘convergence argument’ [15] to counter
some critiques in the literature claiming that the crossover is generally very difficult to apply, since
it tends to destroy feature detectors found by the global evolutionary process while searching for

2

the best individual in a population [16, 17]. The argument mantains that crossover is usually not
harmful in practice, because, for most generations of an evolutionary run, the population will have
converged into an area of the genotypic search space which it continues to explore.

As a countermeasure, some authors proposed to prevent competing conventions by matching
pairs of neurons of mated solutions according to their similarity prior to the crossover operation [18].
Alternatively, sub-populations (species) of neurons may be evolved, each of them corresponding to
a position in a pre-defined ANN structure [19]. Along these lines, some authors proposed new
crossover operators and representations [20], some others restricted the use of crossover for the
topology or weight evolution, for example, by applying graph-matching techniques to non-fixed
structures [15, 21]. Mandischer [22] used, for example, a simple crossover operator, similar to
the naive crossover that has been used in this work for benchmarking the SimBa crossover, while
Miikkulainen and colleagues implemented another interesting approach, the NeuroEvolution of
Augmenting Topologies (NEAT) method [2], which has become very popular in recent years. NEAT
includes a method of gene tracking, called historical marking, which avoids competing conventions
and prevents incompatible individuals from mating.

It should be noted that the ‘convergence argument’ cited above is not a good reason to give up
the quest for a suitable crossover operator for ANN evolution. After all, in general, recombination
in EAs is most useful before convergence, during the exploration phase, when it may help locat-
ing promising areas of the search space. This is exactly why the local-similarity based crossover
presented in this work turns out to be beneficial.

We have given particular attention to two empirical studies [23, 7], which focus on the evolution
of the single network unit involved in the crossover operator, the hidden node. Their aim was to
emphasize the equivalence between hidden nodes of ANNs, in order to identify similarly performing
units prior to crossover, avoiding all the disruptive effects stated above. Following such an idea, we
extend our neuro-genetic approach already presented in the literature [24, 12], which implements a
joint optimization of weights and network structure, by defining a novel crossover operator. This
operator allows recombination of individuals that have different topologies, but with hidden nodes
that are similarly performing in the cutting point of the hidden layer randomly chosen (indicated
in the approach as local similarity). The evolutionary process does not consider only a part, but
complete multilayer perceptrons (MLPs), achieving satisfactory performances and generalization
capabilities, as well as reduced computational costs and network sizes.

3. Neuro-Evolutionary Classifier Systems

Generally speaking, a supervised ANN is composed of simple computing units (the neurons)
which are connected to form a network [25, 26, 27]. Whether a neuron a influences another neuron
b or not depends on the ANN structure. The extent of such influence, when there is one, depends
on the weight assigned to each connection among the neurons. It is very difficult to find an optimal
network (structure and weights) for a given problem.

Even though some authors do not consider supervised classification as a good domain for neu-
roevolution, preferring alternatives as support vector machines, Bayesian methods, or analytic
optimization methods, neural networks are nevertheless one of the most popular tools for classi-
fication. The recent vast research activities in neural classification establish that neural networks
are a promising alternative to various conventional classification methods and a large number of
successful applications presented in the recent literature demonstrate that ANN design can be fur-
ther improved by synergetically combining it with evolutionary algorithms, being able to take into

3

account all aspects of ANN design at once [17].
The review by Zhang [28], which provides a summary of the most important advances in classi-

fication with ANNs, makes it clear that the advantages of neural networks lie in different aspects:
their capability to adapt themselves to the data without any explicit specification of functional
or distributional form for the underlying model; they are universal functional approximators; they
represent nonlinear and flexible solutions for modeling real world complex relationships; and, fi-
nally, they are able to provide a basis for establishing classification rules and performing statistical
analysis. On the other hand, different neuro-evolutionary approaches have been successfully applied
to a variety of benchmark problems and real-world classification tasks [29, 30, 31, 32, 33, 3]. Our
neuro-evolutionary algorithm, too, has been already tested and applied with success to several real-
world problems, showing how such an approach can be useful in different classification problems,
like financial time series modeling [34], automated trading strategy optimization [24, 35], incip-
ient fault diagnosis in electrical drives [36], automated diagnosis of skin diseases [37], brain-wave
analysis [38], etc. Further insights on the evolutionary optimization of ANNs can be found in some
broad surveys on the topic [6, 39, 4, 17].

4. The Neuro-Evolutionary Approach

The evolutionary process handles the design optimization of a population of ANNs with respect
to a particular problem, in which all the available information is given as input to the neural
networks. In this approach, no expert knowledge of the problem is required, since the evolutionary
algorithm is able to automatically find the best solution for that particular problem.

The overall algorithm is based on the joint optimization of structure and weights, here briefly
summarized, and the error backpropagation algorithm (BP) is used in the network learning phase;
a more complete and detailed description can be found in [12]. An indirect encoding of ANNs
is used and a genotype is ‘decoded’ into a phenotype ANN by the BP algorithm. Accordingly, it
is the genotype which undergoes the genetic operators and which reproduces itself, whereas the
phenotype is used only for calculating the genotype’s fitness. The rationale for this choice is that
the alternative of using BP, applied to the genotype, as a kind of ‘intelligent’ mutation operator,
would boost exploitation while impairing exploration, thus making the algorithm too prone to being
trapped in local optima. An example of an individual genotype is represented in Figure 1.

Thanks to this encoding, individual ANNs are not constrained to a pre-established topology.
Unlike NEAT [2], which starts with minimal network topologies and then applies evolutionary mech-
anisms to augment them, our approach randomly initializes the network’s population with different
hidden layer sizes and different numbers of neurons for each individual according to two exponential
distributions, in order not to constrain search and to provide a balanced mix of topologies. Network
size is not bounded in advance, even though the fitness function may penalize large networks. The
number of neurons in each hidden layer is constrained to be greater than or equal to the number
of network outputs, in order to avoid hourglass structures, whose performance tends to be poor.

The evolutionary process adopts the well known convention that a lower fitness means a better
ANN, mapping the objective function into an error minimization problem. Therefore, the fitness
used for evaluating each individual in the population is proportional to the mean square error and
to the cost of the considered network. The latter term induces a selective pressure favoring small
networks.

4

4.1. ANN Encoding

Each individual in the population represents a multilayer perceptron (MLP). MLPs are feedfor-
ward neural networks with a layer of input neurons, a layer of one or more output neurons and zero
or more ‘hidden’ (i.e., internal) layers of neurons in between; neurons in a layer can take inputs
from the previous layer only.

A MLP is encoded in a structure in which basic information is maintained as illustrated in
Table 1. The genotype encodes the number of hidden layers and the number of neurons for each
hidden layer. We call this the topology vector. The input and output layers are identical for all the
neural networks for a given task, but the size of the output layer depends on the number of the
output classes for each benchmark dataset. Indeed, if the benchmark has only two target classes
in the dataset, the network output will have only one neuron, defining what we call a monoclass

problem; otherwise, the size of the output layer will have the same number of the dataset target
classes, defining a multiclass problem.

The number of hidden nodes in the ith hidden layer corresponds to the number specified in
the ith element in the topology vector (see Figure 1, the vector above the graph); furthermore,
the chromosome of an individual encodes the connection weights of the corresponding MLP (see
Figure 1, the reported graph). All nodes in each layer are connected to all nodes in the next
layer as specified by the corresponding weight matrix, W, defined for each pair of layers. Also,
for each layer, the bias vector b is defined, which contains, in each element, the bias value of the
corresponding node in the neural network.

W

b

b

b

b

b

b

Input
 First Layer
 Second Layer
 Output

Topology Vector
 3
 2
 2

}
,
{
 j
i
W

}

23
22
21

13
12
11

w
w
w

w
w
w

W

1,1

1,2

1,3

2,1

2,2

3,1

1
,
1
a

2
,
1
a

3
,
1
a

1
,
2

a

2
,
2
a

b

}

3,2

1
y

2
y

Figure 1: Representation of the ANN. The Topology vector reports the number of hidden nodes for each hidden
layer and for the output layer. The graph explains all the connections among neural nodes and the node’s biases.
The matrix W shows the details of weights between two network’s layers.

Initial weights and biases are extracted from a normal distribution, where the weights are always
bounded in the interval [-5.0, 5.0]. Like in evolution strategies [40], for each connection weight
and bias encoded in the genotype, an associated variance is also encoded, which determines the
probability distribution of mutations and is used to self-adapt the mutation step.

The network topology is affected by the genetic operators during evolution, in order to per-
form both incremental (adding hidden neurons or hidden layers) and decremental (pruning hidden
neurons or hidden layers) learning.

4.2. Evolutionary Process

In the evolutionary process, the genetic operators are applied to each network until the termi-
nation condition is satisfied, i.e. until the maximum number of generations is reached or no further

5

Table 1: Individual Representation.

Element Description

topology String of integer values that represent the number of neurons in each layer.

W(0) Weights matrix of the input layer neurons of the network.

Var(0) Variances for every element of W(0).

W(i) Weights matrix for the ith layer, i = 1, . . . , l.

Var(i) Variances every element of W(i), i = 1, . . . , l.
bij Bias of the jth neuron in the ith layer.

Var(bij) Variance of the bias of the jth neuron in the ith layer.

improvement of the fitness function can be obtained. In each new generation, a new population of
size n has to be created, and the first half of such new population corresponds to the best parents
that have been selected by the truncation operator, while the second part of the new population is
filled with offspring of the previously selected parents. A child individual is generated by applying
the crossover operator to two individuals, selected from the best half of the population (parents), if
their local similarity condition is satisfied. Otherwise, the child corresponds to a randomly chosen
copy of either of the two selected parents.

The crossover is applied with a probability parameter pcross, defined by the user together with
all the other genetic parameters, and maintained unchanged during the entire evolutionary process.
A significant aspect related to the crossover probability considered in this work is that it refers
to a ‘desired’ probability, a genetic parameter set at the beginning of the evolutionary process
indicating the probability at which the crossover should be applied. However, the ‘actual’ crossover
probability during the execution of the algorithm is less than or equal to the desired one, because
the application of the crossover operator is conditional on a sort of ‘compatibility’ of the individuals
involved. More details about this aspect are given in Section 5.

Elitism allows the survival of the best individual unchanged into the next generation. Then,
the algorithm mutates the weights and the topology of the offspring, trains the resulting networks,
calculates the fitness on the test set, and finally saves the best individual and statistics about
the entire evolutionary process. Although the joint application of truncation selection and elitism
could seem to exert a strong selection pressure, which could produce too fast a convergence of the
solutions, all the experiments carried out with the SimBa crossover outperform the other approaches
without showing any premature convergence of the results.

The general framework of the evolutionary process can be described by the following pseudo-
code. Individuals in a population compete and communicate with other individuals through genetic
operators applied with independent probabilities, until the termination condition is met.

1. Initialize the population by generating new random individuals.

2. Create for each genotype the corresponding MLP, and calculate its cost and its fitness values.

3. Save the best individual as the best-so-far individual.

4. While not termination condition do:

(a) Apply the genetic operators to each network.
(b) Decode each new genotype into the corresponding network.
(c) Compute the fitness value for each network.
(d) Save statistics.

6

The application of the genetic operators to each network is described by the following pseudo-
code:

1. Select from the population (of size n) ⌊n/2⌋ individuals by truncation and create a new
population of size n with copies of the selected individuals.

2. For all individuals in the population:

(a) Randomly choose two individuals as possible parents.
(b) If their local similarity is satisfied

i. then generate the offspring by applying crossover according to the crossover proba-
bility.

ii. else generate the offspring by randomly choosing either of the two parents.

(c) Mutate the weights and the topology of the offspring according to the mutation proba-
bilities.

(d) Train the resulting network using the training set.
(e) Calculate the fitness f on the test set.
(f) Save the individual with lowest f as the best-so-far individual if the f of the previously

saved best-so-far individual is higher (worse).

3. Save statistics.

For each generation of the population, all the information of the best individual is saved.
Table 2 lists all the parameters of the algorithm; the values they take up, reported in the third

column, have been experimentally found as those that provide the most satisfactory results.

Table 2: Parameters of the Algorithm.

Symbol Meaning Default Value

n Population size 60

p+layer Probability of inserting a hidden layer [0.05,0.15,0.30,0.45]

p−layer Probability of deleting a hidden layer [0.05,0.15,0.30,0.45]

p+neuron Probability of inserting a neuron in a hidden layer [0.05,0.15,0.30,0.45]
pcross ‘Desired’ probability to apply crossover [0.2,0.4,0.6,0.8,1.0]
δ Crossover similarity cut-off value 0.1

Nin Number of network inputs ∗)
Nout Number of network outputs ∗)
α Cost of a neuron 2
β Cost of a synapse 4
λ Desired trade-off between network cost and accuracy 0.2
k Constant for scaling cost and MSE in the same range 10−6

∗) Benchmark dataset dependent.

4.2.1. Selection

Truncation selection, the selection method implemented in this work, is taken from the breeder
genetic algorithm [41], and differs from natural probabilistic selection in that evolution only consid-
ers the individuals that best adapt to the environment. Truncation selection is not a novel solution
and previous work considered such selection in order to prevent the population from remaining too

7

static and perhaps not evolving at all [42]. It is a very simple technique which produces satisfac-
tory solutions in conjunction with other strategies, like elitism, which allows the best individual to
survive unchanged into the next generation and solutions to monotonically get better over time.

4.2.2. Mutation

The main function of this operator is to introduce new genetic material and to maintain diversity
in the population. Generally, the purpose of mutation is to simulate the effects of transcription errors
that can occur with a very low probability, the mutation rate, when a chromosome is replicated.
The evolutionary process applies two kinds of neural network perturbations: weights mutation and
topology mutation.

Weights mutation perturbs the weights of the neurons before performing any structural mutation
and applying BP. This kind of mutation uses a Gaussian distribution with zero mean and variance
given by matrix Var(i) for each network weight W(i), as illustrated in Table 1. This solution is
similar to the approach implemented by evolution strategies [43], algorithms in which the strategy
parameters are proposed for self-adapting the mutation concurrently with the evolutionary search.
The main idea behind these strategies is to allow a control parameter, like mutation variance, to self-
adapt rather than changing its value according to some deterministic algorithm. Evolution strategies
perform very well in numerical domains, and are well-suited to (real) function optimization. This
kind of mutation offers a simplified method for self-adapting each single value of the Variance matrix

Var
(i)
j , whose values are defined as log-normal perturbations of their parent parameter values.
Topology mutation is defined with four types of mutation by considering neurons and layer ad-

dition and elimination. It is implemented after weight mutation because a perturbation of weight
values changes the behavior of the network with respect to the activation functions. The addition
and the elimination of a layer and the insertion of a neuron are applied with independent probabil-
ities, corresponding respectively to the three algorithm parameters p+layer, p

−

layer, and p+neuron, while
a neuron is eliminated only when its contribution becomes negligible with respect to the overall
behavior of the network [24]. The parameters used in such kind of mutation are set at the beginning
and maintained unchanged during the entire evolutionary process.

All the topology mutation operators are aimed at minimizing their impact on the behavior of
the network; in other words, they are designed to be as little disruptive, and as much neutral, as
possible, preserving the behavioral link between the parent and the offspring better than by adding
random nodes or layers.

4.2.3. Fitness Function

Although it is customary in EAs to assume that better individuals have higher fitness, the
convention that a lower fitness means a better ANN is adopted in this work. This maps directly to
the objective function of an error- and cost- minimization problem, which is the natural formulation
of most problems ANNs can solve.

In this work, the fitness function used depends on the number of the output classes of the
considered benchmark problem. In particular, if the outputs are divided in more than two classes,
we need to consider the benchmark as a multi-class problem. In such case, the fitness of an individual
is defined as a function of the confusion matrix M obtained by that individual,

fmulticlass(M) = Noutputs − Trace(M), (1)

where Noutputs is the number of output neurons (i.e., the number of senses) and Trace(M) is the
sum of the diagonal elements of the row-wise normalized confusion matrix, which represent the

8

conditional probabilities of the predicted outputs given the actual ones.
Generally, a confusion matrix is defined as a visualization tool typically used in supervised learn-

ing, and contains information about actual and predicted classifications performed by a classifier.

M =







Pr[c1|c1] · · · Pr[cN |c1]
...

. . .
...

Pr[c1|cN] · · · Pr[cN |cN]






, (2)

where c1, . . . , cN are the classes, and Pr[ci|cj] is the probability that an instance is predicted to be
in class ci given that its actual class is cj .

Each column of the matrix represents the instances in a predicted class, while each row represents
the instances in an actual class. The performance of a classifier is commonly evaluated using the
data in the matrix, and the ideal results are obtained when all the elements of the confusion matrix
belong to the diagonal of that matrix. Normalizing the rows of the confusion matrix enables us
to solve many of the problems related to training a classifier with an unbalanced dataset, like in
this application. In the other case, if the benchmark has only two outputs, like for example in the
Credit Card or Heart Disease problems, we can consider it as a mono-class output problem.

Then, the fitness of an individual depends both on its accuracy (i.e., its mean square error mse)
and on its cost, becoming therefore proportional to the value of the mse and to the cost of the
considered network. It is defined by Equation 3:

fmonoclass = λkc+ (1− λ)mse, (3)

where λ ∈ [0, 1] is a parameter which specifies the desired trade-off between network cost and
accuracy, k is a constant for scaling the cost and the mse of the network to a comparable scale, and
c is the overall cost of the considered network, that is proportional to the number of hidden neurons
and synapses of the network topology. An interesting aspect could regard the study of multi-
objective criteria in the fitness function definition, in order to more deeply study the behaviors
changes when the objective function includes orthogonal issues like complexity. However, at this
stage, we only consider parameter values that are the best experimentally found, as indicated in
Table 2.

The mse depends on the Activation Function, that calculates all the output values for each
single layer of the neural network. In this work we use the Sigmoid Transfer Function. The
rationale behind introducing a cost term in the objective function is that we seek networks that use
a reasonable amount of resources (neurons and synapses), which makes sense in particular when a
hardware implementation is envisaged or the obtained ANNs have to be fast to compute.

5. The SimBa Crossover Operator

We have already discussed some of the most relevant critical issues related to the use of a
crossover operator in a neuro-evolutionary context. In particular, two main drawbacks arise from
the permutation problem, and correspond, respectively, to the structural incompatibility between
two individuals, due to the different network topologies (genotypes with different lengths), and to
the parametric incompatibility, which is related to the difference of the weight values associated to
the network synapses [20]. The SimBa crossover operator proposed in this work aims at overcoming
such drawbacks. The recombination is carried out in four phases, as follows:

9

Phase 1 (Figure 2): two individuals are selected from the population and the algorithm looks
for a ‘local similarity’ between them, in order to define the two parents of the crossover operator. We
refer to ‘local similarity’ as a situation in which, in both individuals, there are two consecutive layers
(i and i+1) with the same number of neurons. This is a necessary condition for the application of
our crossover operator because, this way, we want to overcome the problem related to the structure
incompatibility between the individuals. If this condition is satisfied, layer i + 1 is selected for
the application of the crossover operator, otherwise no crossover is applied and the offspring will
correspond to a randomly chosen copy of either of the two parents. The condition for the application
of the operator is checked for all hidden layers. Therefore, two compatible individuals may have
more than one crossover point.

Phase 2 (Figure 3): for each neuron of the selected layer i + 1 of the two parents, the algo-
rithm computes the corresponding contribution (i.e., the output obtained by evaluating the neural
network, up to that neuron, over the training dataset), which strongly depends on its input connec-
tions. Then, the neurons of layer i + 1 in each parent are ranked according to their contribution.
Figure 3 shows an example of the contributions of the neurons, together with the calculated rank.

Phase 3 (Figure 4): we exploit the rank computed in the previous step to create the associations
between the neurons of the two individuals. For each instance of the training set we compare the
output of each neuron of layer i + 1 in Individual 1 with the output of the each neuron of layer
i + 1 of Individual 2 and we compute the overall difference between the neurons (Figure 4a). The
difference between two neurons is computed by Equation 4:

Diff =

∑T

1 |OI1 −OI2 |

T
(4)

where T is the number of training instances, and OI1 , OI2 are the outputs of the neurons respec-
tively of Individual 1 and Individual 2. Such difference ranges in the [0, 1] interval. Then, we
choose a cut-off threshold δ that will be used in the next phase for the swap. Starting from the
neuron of Individual 1 that has the highest contribution, we associate each neuron of Individual 1
with the neuron of Individual 2 that has the most similar behavior, i.e. the lowest output difference
(Figure 4b). When an association is created, the associated neuron of Individual 2 becomes unavail-
able for subsequent associations (in the proposed example, neuron 15 is associated with neuron 26;
therefore, neuron 26 could not be associated to any other neuron of Individual 1). Finally, the
neurons of layer i+1 in Individual 2 are reordered according to the similarity associations with the
neurons of layer i+ 1 in Individual 1 (Figure 4c).

Phase 4 : the last phase of the algorithm generates the offspring. All the neuron associations
linked with an output difference higher than the cut-off value δ are discarded. Such cut-off value δ
can be seen as the ‘local-similarity’ threshold. In this work it has been experimentally defined at
the beginning equal to 0.1 and maintained unchanged during the entire evolutionary process. The
dashed line in Figure 5 separates the associations with an output difference higher than the δ value
from the other ones. Only the neurons above such similarity threshold are eligible for the swap,
while the others will remain unchanged. A cut-point is then randomly selected among such eligible
neurons in the layer (Figure 5), then the algorithm swaps the weights of the neurons that are above
the cut-point, maintaining unchanged all the others (Figure 6).

10

11

10

12

14

13

16

15

Layer i Layer (i+1)

Individual 1

21

20

22

24

23

26

25

Layer i Layer (i+1)

Individual 2

Figure 2: Phase 1: two individuals, Individual 1 and Individual 2, are chosen since they have two hidden layers, i
and i+ 1, with the same number of neurons.

11

10

12

13

15

14

16

Layer i Layer (i+1)

Individual 1

21

20

22

26

23

25

24

Layer i Layer (i+1)

Individual 2Neuron Contr.

25 0.40

24 0.55

26 0.69

23 0.87

14 0.37

16 0.52

13 0.84

15 0.95

Figure 3: Phase 2: the contribution of each neuron of layer i + 1 of the two parents is computed, then the neurons
of the (i + 1)th layer of the two parents are reordered according to their contribution. An example of the neuron
contributions is shown in the table.

11

13

15

14

16

Individual 1

Layer (i+1)

26

23

25

24

Individual 2

Layer (i+1)

21

20

22

24

26

25

23

Layer i Layer (i+1)

Individual 2

15
26

23

25

24

0.4

0.8

0.5

0.1

13

23

25

24
0.6

0.9

0.1

16

23

25

0.2

0.4

14 250.5

a) b) c)

Figure 4: Phase 3: (a): the difference between the neuron outputs is obtained according to the Equation 4. (b): the
output of each neuron of layer i + 1 on Individual 1 is compared to the output of the each neuron of layer i + 1 of
Individual 2. (c): the neurons of layer i + 1 in Individual 2 are reordered according to the similarity associations
with the neurons of layer i+ 1 in Individual 1.

13

15

14

16

Individual 1

Layer (i+1)

24

26

25

23

Individual 2

Layer (i+1)

Figure 5: Phase 4a: a cut-point (the double continuous
line) is randomly selected among all the neurons that
have an output difference lower than the cut-off value δ

(the dashed line), then the neurons above the cut-point
are swapped.

24

26

14

16

Individual 1

Layer (i+1)

13

15

25

23

Individual 2

Layer (i+1)

Figure 6: Phase 4b: the offspring generated by the
crossover operator.

12

This use of similarity may raise the suspicion that, in fact, the proposed crossover operator does
not perform any significant changes on the networks, due to the hypothesis that the recombination
of similar neurons brings about a scenario where the results of recombination are very similar to
their parents. To clear this suspicion, we now present an example that could be considered a limit
case, in which we show what happens if we assume to recombine two neurons that are 100% similar,
i.e. with an output difference equal to zero, on a given instance of the considered dataset.

We assume having two individuals I1 and I2, a selected layer i + 1 on which we perform the
crossover, and two neurons N1 and N2 coming respectively from I1 and I2, that are associated and,
therefore, that will be recombined. We also assume that, for both I1 and I2, the previous layer i
has three neurons in order to satisfy the ‘local similarity’ constraint. By starting from the following
scenario, the weight vectors of the two neurons are defined as follows:

WI1 = [0.4, 0.5, 0.7] (5)

WI2 = [0.7, 0.4, 0.5] (6)

and the outputs of the neurons of layer i correspond to:

OLi

I1
= [0.6, 0.8, 0.2] (7)

OLi

I2
= [0.2, 0.6, 0.8]. (8)

When the output of each neuron of layer i+1 is computed, we will notice that, on the considered
instance, the neurons are 100% similar (i.e. with an output difference equal to zero):

C(N1) = (0.4 · 0.6) + (0.5 · 0.8) + (0.7 · 0.2) = 0.78 (9)

C(N2) = (0.7 · 0.2) + (0.4 · 0.6) + (0.5 · 0.8) = 0.78. (10)

Then, the two neurons are recombined, by swapping the corresponding weight vectors:

WI1 = [0.7, 0.4, 0.5] (11)

WI2 = [0.4, 0.5, 0.7]. (12)

After such recombination, we can observe how the new outputs of the two neurons differ from
the initial values:

C(N1) = (0.7 · 0.6) + (0.4 · 0.8) + (0.5 · 0.2) = 0.84 (13)

C(N2) = (0.4 · 0.2) + (0.5 · 0.6) + (0.7 · 0.8) = 0.94. (14)

Even if in this particular example only one scenario of the recombination process is presented,
generally the use of ‘local similarity’ does not lead to similar neurons both before and after the
application of the crossover operator, avoiding a premature convergence of the solutions.

6. Experiments and Results

The approach described above has been applied to six well-known benchmark classification
problems, namely Credit Card, Glass, Heart, Ionosphere, Iris, and, finally, the Pima Indian Diabetes
problem. The corresponding datasets, obtained from the UCI Machine Learning Repository are
partitioned into three non-overlapping sets, respectively, a training set (50% of the data), used to

13

train the network; a validation set (25% of the data), used to stop the training and avoid overfitting,
and a test set (25% of the data), used to test the generalization capabilities of a network. Such a
dataset partition has been performed according to the guidelines presented in [44].

The input attributes of all datasets have been rescaled, before being fed as inputs to the popu-
lation of ANNs, through a Gaussian distribution with zero mean and standard deviation equal to
one.

All the experiments have been carried out by considering different settings for both the topology
mutation parameters p+layer,p

−

layer and p+neuron and for the crossover pcross, the ‘desired’ probability,
(see Section 4.2). The values these parameters take up are chosen in the corresponding sets defined
in Table 2 in order to determine the setting that yields the best performance. For each different
configuration, we performed 20 runs, with 40 generations and 60 individuals set for each run. The
number of epochs used to train the neural network implemented in each individual has been set
to 250 when the evolutionary algorithm has been applied, while in the other, traditional cases, the
number of epochs has been set to 1,000,000. Such a high number of epochs has been used in these
cases in order to better test and compare non-evolutionary approaches, i.e. Backpropagation (BP)
and Conjugate Gradient algorithms, but also to demonstrate the capabilities and the performance
of the evolutionary approach implemented in this work, even though its training phase is carried
out with a reduced number of epochs.

The synthesis of the results is shown in Tables 3 to 8.
In order to show the performance and the advantages of applying such novel evolutionary

method, for all the benchmark problems above reported, we compared it with five different baseline
approaches, by considering the same number of runs and individuals used to define a population in
our evolutionary approach:

• Simple ANN with BP: the classifiers are encoded with a population of ANNs, trained with
1,000,000 epochs. The networks are then evaluated over, respectively, the validation and the
test sets, through the application of the mean square error.

• Simple ANN with Conjugate Gradient: the classifiers are encoded with a population of ANNs,
trained with the Conjugate Gradient method [45] over 1,000,000 epochs. Also in this case,
the networks are then evaluated over, respectively, the validation and the test sets, through
the application of the mean square error.

• NeuroEvolution of Augmenting Topologies (NEAT) approach [2]: an evolutionary approach
applied to neural network design that: (1) uses a crossover on different topologies, (2) protects
structural innovation by using speciation, and (3) applies an incrementally growing from
minimal network structures.

• Evolved ANN without crossover: the population of ANNs are evolved through the joint
optimization of architecture and connection weights reported in this work, but in this case no
crossover is implemented. The number of epochs corresponds to 250.

• Evolved ANN with naive crossover: the population of ANNs are evolved through the joint op-
timization of architecture and connection weights, reported in this work, and a naive crossover
operator. Such a crossover randomly defines a cut-point and swaps the neurons in the corre-
sponding hidden layers. The number of epochs corresponds to 250.

The choice of all such baseline approaches enables us to better evaluate our approach by ex-
tending the comparison both to:

14

• traditional approaches: simple ANN with BP, which is one of the most used examples of
supervised learning algorithms, and also applied as classifiers, and simple ANN with CG, a
higher-order optimization method regarded as more powerful than BP.

• evolutionary approaches: NEAT, which is one of the most popular state-of-the-art methods
for ANN evolution, implementing an approach based on the augmenting topology, an evolu-
tionary approach without crossover, and, finally, a naive crossover approach that recombines
individuals by randomly swapping the hidden layers. The latter two algorithms aim to study,
respectively, the influence of the application of the mutation operator in an evolutionary pro-
cess, and the influence of the addition of a naive crossover that does not try to overcome the
above-mentioned permutation problem.

After a brief analysis of the results, we can observe that the application of the SimBa crossover
leads to an improvement of the results. In the following section we will discuss the impact of the
proposed operator and the significance of the obtained results.

0.5 1 1.5 2 2.5

0.5

1

1.5

2

2.5 0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 2 3 4 5 6

1

2

3

4

5

6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.5 1 1.5 2 2.5

0.5

1

1.5

2

2.5
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Credit Card Glass Heart Disease

0.5 1 1.5 2 2.5

0.5

1

1.5

2

2.5
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.5 1 1.5 2 2.5 3 3.5

0.5

1

1.5

2

2.5

3

3.5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.5 1 1.5 2 2.5

0.5

1

1.5

2

2.5

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ionosphere Iris Pima Indian Diabetes

Figure 7: Confusion matrices of the benchmark problems analyzed by the SimBa evolutionary approach.

Moreover, in order to provide a more detailed, critical discussion of the results, it will be con-
venient to also consider the graphical representation of the corresponding (row-wise normalized)
confusion matrices, defined as in Equation 2. All the confusion matrices for the considered bench-
marks are shown in Figure 7. A visual analysis confirms the satisfactory performances obtained by
the SimBa crossover approach, both for mono and multi-classes problems, as shown in Tables 3 to
8.

6.1. Discussion

As previously indicated, the application of the SimBa crossover has a significant impact over the
network performances and basic statistical information such as the best and average accuracy and
the standard deviation may be helpful in studying the effectiveness of such operator with respect
to the baselines. Moreover, all the experimental results have been statistically verified by applying
Student’s t test in order to check their significance. Tables 3 to 8 show the results obtained from
the experiments for all the considered benchmark problems.

From a first analysis, it is possible to see that the Simple ANN with BP always obtains the worst
performance compared to the other approaches, and that the application of the naive crossover

15

always leads to worse results than both NEAT and the evolved ANN without crossover. The
reasons of these poor performances may be found in the structure of the naive crossover. Indeed, in
such operator, the recombination is carried out in a random way without considering the topology
of the parent networks, thus producing detrimental effects on the quality of the generated offspring.
Moreover, from a preliminary analysis carried out among the evolutionary approaches that make
the application of the crossover operator an important and useful aspect, NEAT allows to obtain,
after the SimBa crossover, the best classification results, albeit at the cost of a slight increase in the
network size.

A different behavior is exhibited by the SimBa crossover, and the obtained results prove that the
local similarity is an effective strategy, which is able to generate offspring by identifying regions over
the network topologies that may be recombined without loss of information or disruption, while at
the same time preventing the premature convergence of the overall algorithm. Moreover, as stated
in Section 5, the recombination by selecting ‘similar’ neurons cannot be compared to a mutation
operator, since the differences between the parents and the offspring cannot be reproduced only by
mutating the topologies and the weights, even if applied in conjunction.

Another interesting aspect is that the application of different crossover probabilities does not
lead to significantly different results. Indeed, by observing the average accuracies in Tables 3 to 8,
we can notice that different crossover probabilities usually lead to quite close accuracy values, and
the differences are not statistically significant. On four datasets (Credit Card, Heart, Ionosphere,
and Pima) the accuracies are obtained with high probability values (0.8 and 1.0), while on the other
two datasets (Glass and Iris) the best accuracies are obtained with lower probability values (0.2 and
0.4), even if very similar results have also been obtained with the higher probability values. Such
aspect also shows the effectiveness and the robustness of the presented neuroevolutionary approach
with the SimBa crossover with respect to changing parameters.

By observing these results, we cannot infer which is the ideal usage probability of the operator;
however, we have verified its effectiveness with high probability values. This fact coincides with the
notion that, as stated in [46], evolutionary processes generally apply crossover operators with high
probability values. Therefore, the operator is suitable for evolutionary processes that use standard
parameter settings.

This fact demonstrates that, despite applying the crossover few times during the evolutionary
process, the approach based on the SimBa crossover is able to perform effective recombinations of
individuals in order to increase the exploration range of the solution space.

It should be noticed that this novel crossover operator does not negatively impact the overall
computational cost of the evolutionary process, because it exploits information previously calcu-
lated and saved during the learning phase, and it only implements comparison of such network
information in order to define the right associations among neurons and then swap the correspond-
ing connections. Nor the size of the evolved networks is affected by the application of SimBa.

All such considerations are validated by the network sizes reported in Tables 3 to 8. The
first important comparison regards the differences that arise from the application of traditional or
evolutionary approaches. Indeed, it is possible to observe that, for all the benchmark datasets, the
use of an evolutionary process allows to obtain networks that are dramatically smaller than those
obtained without the use of evolution, at the same time providing more satisfactory accuracies.

Another interesting observation regards the application of the crossover operator in the neuro-
evolutionary approaches: as a natural consequence of the application of the augmenting topologies
algorithm, the network sizes obtained by NEAT are the largest ones among the crossover-based
approaches, while comparisons between SimBa and a naive crossover demonstrate that the SimBa

16

crossover has a negligible impact on the network sizes, with consequences over the computational
cost as stated above.

Finally, a general observation is that, for all the datasets, the evolutionary process finds more
compact networks, which also means lower computational cost and more robust solutions. We
highlight that, when the number of classes increases, the average size of the networks increases as
well and, even if this leads to a small increase of the computing time, this fact is justified by the
necessity of preventing bottlenecks in the networks in order to maintain high accuracies.

Table 3: Summary of the results obtained with different crossover probabilities on the CREDIT CARD dataset.
pcross Best Average Std Dev Avg Size of Best Global Avg Size

Simple ANN with CG

- 0.8242 0.7967 0.0287 6.4984 5.2874
Simple ANN with BP

- 0.8089 0.7818 0.0212 6.5355 5.1654
Evolved ANN without Crossover

0.0 0.8912 0.8608 0.0209 2.7049 2.3314
NEAT

0.2 0.8859 0.8618 0.0201 5.0783 3.8702
0.4 0.8837 0.8571 0.0212 5.1819 3.9479
0.6 0.8814 0.855 0.0197 5.1329 3.9111
0.8 0.8951 0.8658 0.0191 4.449 3.746
1.0 0.8916 0.8624 0.0193 4.7581 3.7605

Evolved ANN with Naive Crossover

0.2 0.8701 0.8407 0.0212 4.2779 3.0426
0.4 0.8706 0.8426 0.0201 4.1732 2.9657
0.6 0.8721 0.8429 0.0197 4.2274 3.006
0.8 0.8703 0.8453 0.0193 3.8525 2.8561
1.0 0.8688 0.8425 0.0191 3.5439 2.8408

Evolved ANN with SimBa Crossover

0.2 0.9127 0.884 0.0214 4.3092 3.0473
0.4 0.9135 0.8856 0.0202 4.139 2.9803
0.6 0.9132 0.8851 0.0197 4.216 3.0136
0.8 0.9131 0.8874 0.0192 3.8503 2.8655
1.0 0.911 0.885 0.019 3.5946 2.8401

Table 9 shows the results of the statistical significance test performed by using Student’s t
distribution. We can observe that, by comparing our results with the the ANN without evolution
(trained with Backpropagation or Conjugate Gradient) and the naive crossover, the significance is
always greater than 95%. Also by considering the evolved ANN without the crossover operator
the significance reaches satisfactory values, since it is greater than 90%. Only two exceptions are
recorded for the Ionosphere and Glass datasets, but they refer to a minority in both cases. Moreover,
by observing the result of the significance test performed with respect to NEAT, we can notice that,
in most cases, the significance of the improvements is greater than 95%.

We have also compared the best results obtained by the proposed approach with the ones
obtained by the most recent state-of-the-art algorithms based on the evolution of artificial neural
networks. In Table 10 we show the results of the comparisons. In some cases, in the relevant
literature, the approach we compare to was not tested on the same datasets as those we used: when
that is the case, no results are reported. By looking at the results, we can observe that, in 6 cases
out of 10, the proposed approach outperforms the others, and in one case (i.e., the GLASS average
performance) the proposed approach is very close to the best (0.6588 vs. 0.6623).

17

Table 4: Summary of the results obtained with different crossover probabilities on the GLASS dataset.
pcross Best Average Std Dev Avg Size of Best Global Avg Size

Simple ANN with CG

- 0.7204 0.5610 0.0208 15.1843 12.8976
Simple ANN with BP

- 0.7064 0.5454 0.0186 15.8363 13.2843
Evolved ANN without Crossover

0.0 0.7864 0.6274 0.0849 6.6996 6.4402
NEAT

0.2 0.7788 0.6297 0.0819 12.061 9.1694
0.4 0.7761 0.6297 0.0809 11.8702 9.3806
0.6 0.7775 0.6306 0.0855 12.0256 9.0669
0.8 0.771 0.622 0.086 11.6459 8.7706
1.0 0.7816 0.6283 0.0856 12.1678 9.1268

Evolved ANN with Naive Crossover

0.2 0.7561 0.6084 0.0809 10.9658 8.4763
0.4 0.758 0.6103 0.0819 11.1558 8.2645
0.6 0.7582 0.6103 0.0855 11.1205 8.1612
0.8 0.7616 0.6078 0.0856 11.2633 8.2219
1.0 0.7515 0.6017 0.086 10.7401 7.8657

Evolved ANN with SimBa Crossover

0.2 0.8073 0.6572 0.0817 11.0571 8.493
0.4 0.8075 0.6588 0.0824 11.0607 8.3092
0.6 0.8058 0.6572 0.0856 11.0844 8.1803
0.8 0.8108 0.6571 0.0852 11.2669 8.2482
1.0 0.8007 0.6503 0.0858 10.8769 7.8578

Table 5: Summary of the results obtained with different crossover probabilities on the HEART dataset.
pcross Best Average Std Dev Avg Size of Best Global Avg Size

Simple ANN with CG

- 0.8271 0.7847 0.0187 6.9842 4.9981
Simple ANN with BP

- 0.8177 0.7765 0.0211 6.6837 5.2964
Evolved ANN without Crossover

0.0 0.8787 0.8333 0.026 2.8692 2.4154
NEAT

0.2 0.8708 0.8326 0.0235 4.9729 3.8217
0.4 0.8751 0.8317 0.025 4.9085 3.9237
0.6 0.8718 0.8338 0.0225 4.8029 3.7528
0.8 0.8748 0.8373 0.0216 4.5183 3.6481
1.0 0.8691 0.8347 0.0219 4.7188 3.7961

Evolved ANN with Naive Crossover

0.2 0.8548 0.8115 0.025 4.0035 3.0185
0.4 0.8507 0.8122 0.0235 4.0683 2.9158
0.6 0.8519 0.8136 0.0225 3.8982 2.8469
0.8 0.8493 0.8146 0.0219 3.8143 2.8902
1.0 0.855 0.8175 0.0216 3.6141 2.7424

Evolved ANN with SimBa Crossover

0.2 0.9031 0.8602 0.0253 4.0381 3.0246
0.4 0.8989 0.8603 0.0237 4.0335 2.9286
0.6 0.9003 0.8619 0.0226 3.8836 2.8525
0.8 0.8979 0.862 0.0219 3.8161 2.9
1.0 0.9028 0.8644 0.0216 3.66 2.7422

18

Table 6: Summary of the results obtained with different crossover probabilities on the IONOSPHERE dataset.
pcross Best Average Std Dev Avg Size of Best Global Avg Size

Simple ANN with CG

- 0.8908 0.8463 0.0388 4.7254 4.1846
Simple ANN with BP

- 0.8821 0.8318 0.0345 4.4862 4.7209
Evolved ANN without Crossover

0.0 0.9179 0.8669 0.0314 3.0428 2.5065
NEAT

0.2 0.9112 0.8644 0.0302 5.1036 4.0226
0.4 0.915 0.8594 0.032 4.8975 4.0888
0.6 0.9151 0.8681 0.0283 5.0717 3.9413
0.8 0.9124 0.872 0.0219 4.4838 3.8573
1.0 0.9156 0.8665 0.027 4.6099 3.9022

Evolved ANN with Naive Crossover

0.2 0.8948 0.8407 0.032 3.9926 3.1832
0.4 0.8917 0.8444 0.0302 4.1983 3.1171
0.6 0.8948 0.8479 0.0283 4.1668 3.037
0.8 0.8951 0.8469 0.027 3.7061 2.9968
1.0 0.8919 0.8518 0.0219 3.5784 2.9526

Evolved ANN with SimBa Crossover

0.2 0.9409 0.8864 0.0323 4.0267 3.1841
0.4 0.9351 0.8908 0.0305 4.1656 3.1317
0.6 0.9395 0.8937 0.0283 4.144 3.0487
0.8 0.9396 0.8944 0.027 3.7008 3.0084
1.0 0.9374 0.8992 0.0219 3.626 2.9544

Table 7: Summary of the results obtained with different crossover probabilities on the IRIS dataset.
pcross Best Average Std Dev Avg Size of Best Global Avg Size

Simple ANN with CG

- 0.9075 0.9052 0.0008 7.2669 5.8792
Simple ANN with BP

- 0.9021 0.9005 0.0014 7.9836 5.3337
Evolved ANN without Crossover

0.0 0.9177 0.9164 0.001 4.0142 3.2817
NEAT

0.2 0.9258 0.9092 0.0106 5.3528 6.6805
0.4 0.9277 0.9103 0.008 5.1939 6.6165
0.6 0.929 0.9084 0.0124 5.5431 6.5744
0.8 0.9413 0.9047 0.0175 6.1058 6.5019
1.0 0.9427 0.9071 0.0159 5.8038 6.5817

Evolved ANN with Naive Crossover

0.2 0.9082 0.8906 0.008 4.2893 5.7118
0.4 0.9069 0.89 0.0106 4.4474 5.7752
0.6 0.9083 0.8886 0.0124 4.6383 5.6695
0.8 0.9229 0.8873 0.0159 4.8983 5.6771
1.0 0.9211 0.8849 0.0175 5.2001 5.5974

Evolved ANN with SimBa Crossover

0.2 0.962 0.9445 0.0081 4.3279 5.7097
0.4 0.9593 0.9429 0.0107 4.4101 5.8027
0.6 0.9631 0.9424 0.0124 4.6317 5.6875
0.8 0.9761 0.9414 0.0158 4.8908 5.6971
1.0 0.9745 0.9391 0.0174 5.2641 5.5967

19

Table 8: Summary of the results obtained with different crossover probabilities on the PIMA Indian Diabetes dataset.
pcross Best Average Std Dev Avg Size of Best Global Avg Size

Simple ANN with CG

- 0.7690 0.7400 0.0164 6.2762 5.3853
Simple ANN with BP

- 0.7526 0.7308 0.0197 6.8673 5.1724
Evolved ANN without Crossover

0.0 0.8233 0.8021 0.013 3.019 2.4476
NEAT

0.2 0.83 0.7939 0.0218 4.9143 3.9062
0.4 0.8254 0.7955 0.0215 4.9287 3.9562
0.6 0.8256 0.7938 0.0224 4.7825 3.8055
0.8 0.8285 0.7919 0.019 3.6866 3.757
1.0 0.8291 0.7955 0.0221 4.4773 3.6988

Evolved ANN with Naive Crossover

0.2 0.7909 0.7606 0.0215 4.0241 3.0515
0.4 0.7953 0.7586 0.0218 4.0105 3.0020
0.6 0.7917 0.7595 0.0224 3.8769 2.9007
0.8 0.7936 0.7605 0.0221 3.5726 2.7939
1.0 0.7924 0.7561 0.0190 2.7814 2.8521

Evolved ANN with SimBa Crossover

0.2 0.8693 0.8381 0.0215 4.0107 3.0456
0.4 0.8708 0.8361 0.0216 3.9661 2.9740
0.6 0.8711 0.8363 0.0220 3.8357 2.8823
0.8 0.8713 0.8383 0.0219 3.5411 2.7588
1.0 0.8696 0.8343 0.0191 2.7786 2.8482

Table 9: Summary of the statistical significance test computed on the average results obtained on the Benchmark
datasets.

Benchmark pcross Simple ANN Simple ANN Evolved ANN Naive NEAT
Problem with CG with BP without Crossover Crossover

0.2 100% 100% 94.32% 99.92% 93.53%
0.4 100% 100% 96.03% 99.94% 98.04%

Credit Card 0.6 100% 100% 95.74% 99.93% 98.79%
0.8 100% 100% 97.40% 99.94% 93.86%
1.0 100% 100% 95.87% 99.95% 94.90%
0.2 100% 100% 81.09% 96.73% 77.96%
0.4 100% 100% 83.19% 96.55% 80.41%

Glass 0.6 100% 100% 80.56% 95.51% 75.36%
0.8 100% 100% 80.42% 96.46% 87.07%
1.0 100% 100% 88.23% 96.14% 66.25%
0.2 100% 100% 92.17% 99.80% 93.60%
0.4 100% 100% 92.70% 99.83% 94.44%

Heart 0.6 100% 100% 94.50% 99.87% 94.94%
0.8 100% 100% 94.74% 99.86% 92.18%
1.0 100% 100% 96.42% 99.86% 96.42%
0.2 98.75% 99.94% 81.48% 99.67% 86.56%
0.4 99.45% 99.98% 89.80% 99.78% 96.52%

Ionosphere 0.6 99.71% 99.99% 93.67% 99.82% 93.14%
0.8 99.77% 99.99% 94.56% 99.90% 91.47%
1.0 99.94% 100% 98.07% 99.97% 98.60%
0.2 99.99% 100% 99.74% 100% 99.23%
0.4 99.95% 99.99% 98.87% 99.97% 98.67%

Iris 0.6 99.89% 99.97% 98.11% 99.94% 97.62%
0.8 99.59% 99.86% 95.73% 99.80% 96.51%
1.0 99.08% 99.64% 92.45% 99.70% 93.65%
0.2 100% 100% 95.82% 99.98% 97.38%
0.4 100% 100% 94.63% 99.98% 96.06%

Pima 0.6 100% 100% 94.61% 99.97% 96.59%
0.8 100% 100% 95.83% 99.98% 98.31%
1.0 100% 100% 94.21% 99.99% 95.61%

20

Table 10: Comparison between the proposed approach and the most recent state of the approaches based on the
evolution of artificial neural networks.

Approach CREDIT GLASS HEART IONOSPHERE PIMA
CARD

Our Approach (Best) 0.9135 0.8108 0.9031 0.9409 0.8713

Our Approach (Avg) 0.8874 0.6588 0.8644 0.8992 0.8383

PSU [47] (Best) 0.8855 0.7014 0.8820 0.9399 0.8076
PSU [47] (Avg) 0.8738 0.6623 0.8593 0.9211 0.7889

q-Gaussian [48] (Best) 0.8824 0.7526 0.9099 N/A N/A
q-Gaussian [48] (Avg) 0.8787 0.6532 0.8579 N/A N/A

CMAC [49] (Best) N/A 0.6242 N/A N/A 0.7538
CMAC [49] (Avg) N/A 0.6113 N/A N/A 0.7452

ProductUnit [50] (Best) N/A N/A 0.9630 1.0000 0.8421
ProductUnit [50] (Avg) N/A N/A 0.8189 0.8963 0.7740

6.2. ‘Desired’ and ‘Actual’ crossover probability

In Section 4.2 we introduced the difference between the ‘desired’ probability and the ‘actual’
probability by saying that the ‘actual’ (i.e. the real) probability is always less than or equal to
the desired one. This happens because the application of the crossover operator is conditional on
the local-similarity between the individuals. In this section, we want to analyze in more detail
this aspect of the proposed operator by observing which is the behavior of the ‘actual’ probability
during the entire evolutionary process on the datasets used in our experiments.

Figures from 8 to 13 report the values of the ‘actual’ probability for each generation. Each
point represents the average of the ‘actual’ probability of crossover operator computed over all
the combinations of mutation probabilities used in all the experiments carried out in this work.
By observing the shapes, we can identify three different phases that correspond to three different
behaviors of the ‘actual’ probability: an initialization phase, corresponding to the first generation, in
which the behavior of the ‘actual’ probability is conditioned by the random individual initialization;
an exploration phase, corresponding to the core of the evolution in which the behavior of the ‘actual’
probability is influenced by the exploration of the solution space of the evolutionary algorithm; and
a convergence phase, corresponding to the second half of the generations in which the behavior of
the ‘actual’ probability follows the convergence of the evolutionary algorithm.

In the initialization phase we can observe two different behaviors of the ‘actual’ probability:
values that are close to the ‘desired’ probability and values that are close to zero. This fact
is caused by the random initialization of the population; indeed, a significant diversity of the
generated individuals may lead to low values of the ‘actual’ probability. Such diversity in the
topology initialization is also influenced by the number of the output classes for each considered
benchmark. For example, for the datasets of Glass and Iris, with, respectively, 6 and 3 output
classes, the starting ‘actual’ probability is close to zero for all the corresponding values of the
‘desired’ probability. At this stage, local similarity is hard to obtain. Instead, for the other four
datasets, that have only two classes, corresponding to just one output neuron, the diversity of the
population at the initialization is lower; therefore, it is easier for the crossover operator to find
parents that are locally similar.

A similar scenario occurs in the exploration phase, where, again, similar topologies are difficult
to find. Examples are given by Credit Card, Heart, Ionosphere, and Pima, for which a decrease of
the ‘actual’ probability is reported. This occurs because, after the initialization phase, especially
on datasets for which the generated individuals are quite similar, the algorithm explores different

21

network topologies in the solution space. Therefore, the crossover operator has more difficulties in
finding candidate parents that are locally similar in order to generate new offspring.

Finally, when the algorithm starts the final convergence phase, after the exploration phase, the
probability of finding parents that are locally similar increases, with a consequent decrease of the
difference between ‘actual’ and ‘desired’ probabilities.

Table 11: Actual and desired values of the crossover probability for the considered benchmark problems.
pcross Desired Setting

All Benchmark [0.2 0.4 0.6 0.8 1.0]

pcross Actual Setting
Iris [0.28 0.49 0.68 0.80 0.89]

Glass [0.12 0.26 0.40 0.56 0.76]
Ionosphere [0.07 0.16 0.30 0.52 0.91]
Credit Card [0.12 0.23 0.38 0.53 0.79]

Heart [0.11 0.24 0.38 0.55 0.78]
Pima [0.09 0.18 0.31 0.45 0.90]

Table 11 shows how the ‘actual’ crossover probability changes for each benchmark problem that
we considered, according to a best setting reached during the evolutionary process. Such values
can be compared to the ‘desired’ probability shown at the top of the table.

The actual values reported show that, except for the Iris setting, for all the other benchmark
problems the actual values are always less than the desired ones.

0,20 0,40 0,60 0,80 1,00

Figure 8: Trend of the actual crossover probability on the CREDIT CARD dataset.

7. Conclusion and Future Work

We have presented SimBa, a novel similarity-based crossover operator, applied in conjunction
with weights and topology mutations, for the evolution of artificial neural networks. The crossover
operator considers the similarity between the neuron outputs in order to choose which neurons
may be swapped between the networks. The approach has been validated over six well-known
benchmark problems from the UCI Repository. Moreover, according to the number of output
classes presented by each benchmark, in this neuro-genetic approach two kinds of fitness function
are defined, named respectively, mono and multi class function. All the experiments carried out
by comparing different methodologies, both traditional and evolutionary, show that the application

22

0,20 0,40 0,60 0,80 1,00

Figure 9: Trend of the actual crossover probability on the GLASS dataset.

0,20 0,40 0,60 0,80 1,00

Figure 10: Trend of the actual crossover probability on the HEART dataset.

0,20 0,40 0,60 0,80 1,00

Figure 11: Trend of the actual crossover probability on the IONOSPHERE dataset.

23

0,20 0,40 0,60 0,80 1,00

Figure 12: Trend of the actual crossover probability on the IRIS dataset.

0,20 0,40 0,60 0,80 1,00

Figure 13: Trend of the actual crossover probability on the PIMA Indian Diabetes dataset.

24

of a similarity-based crossover operator to a well-tested neuro-genetic approach achieves promising
results, by demonstrating the viability of such operator.

Two kinds of crossover probabilities, ‘desired’ and ‘actual’, are presented and discussed in the
paper, and the experimental results show how the ‘actual’ probability is always less than or equal
to the desired one. This happens because, in this work, the application of the crossover operator is
conditional on the local-similarity between the individuals. The overall accuracy, however, confirms
satisfactory performances with reduced computational costs, also thanks to the capability of the
algorithm to evolve small network topologies.

An interesting aspect that could be investigated in the next future regards the use of multiple
criteria instead of a single-objective fitness function, to better separate orthogonal issues like ac-
curacy and complexity. An additional interesting aspect that could be analyzed is the influence of
different similarity thresholds of the SimBa crossover operator over the implemented evolutionary
approach.

References

[1] D. Fogel, The advantages of evolutionary computation, in: Proc. of the Int. Conf. on Biocom-
puting and Emergent Computation, BCEC’97, World Scientific, 1997, pp. 1–11.

[2] K. Stanley, R. Miikkulainen, Evolving neural networks through augmenting topologies, Evo-
lutionary Computation 10 (2002) 99–127.

[3] P. Wang, T. Weise, R. Chiong, Novel evolutionary algorithms for supervised classification
problems: an experimental study, Evolutionary Intelligence Special Issue (2011) 1–14.

[4] X. Yao, Y. Xu, Recent advances in evolutionary computation, International Journal on
Computer Science and Technology 21 (2006) 1–18.

[5] X. Yao, Y. Liu, A new evolutionary system for evolving artificial neural networks, IEEE
Transactions on Neural Networks 8 (1997) 694–713.

[6] D. Floreano, P. Durr, C. Mattiussi, Neuroevolution: from architectures to learning, Evolu-
tionary Intelligence 10 (2008) 47–62.

[7] P. Hancock, Genetic algorithms and permutation problems: a comparison of recombination
operators for neural net structure specification, in: Proc. of IEEE Int. Workshop on Com-
binations of Genetic Algorithms and Neural Networks, COGANN’92, IEEE Press, 1992, pp.
108–122.

[8] N. Radcliffe, Genetic set recombination and its application to neural network topology opti-
mization, Neural Computing and Applications 1 (1993) 67–90.

[9] N. Garcia-Pedrajas, C. Hervas-Martinez, J. Munoz-Perez, COVNET: A cooperative coevolu-
tionary model for evolving artificial neural networks, IEEE Transactions on Neural Networks
14 (2003) 575–596.

[10] A. Azzini, M. Dragoni, A. Tettamanzi, A novel similarity-based crossover for artificial neural
network evolution., in: Proceedings of the XI International Conference on Parallel Problem
Solving from Nature, PPSN’10 - Lecture Notes in Computer Science, volume 6238, Springer,
2010, pp. 344–353.

25

[11] A. Azzini, A. G. B. Tettamanzi, M. Dragoni, Simba-2: Improving a novel similarity-based
crossover for the evolution of artificial neural networks, in: S. Ventura, A. Abraham, K. Cios,
C. Romero, F. Marcelloni, J. M. Benitez, E. Gibaja (Eds.), Proceedings of the 2011 11th
International Conference on Intelligent Systems Design and Applications (ISDA 2011), IEEE,
2011, pp. 374–379.

[12] A. Azzini, A. Tettamanzi, A new genetic approach for neural network design, in: A. Abra-
ham, C. Grosan, W. Pedrycz (Eds.), Engineering Evolutionary Intelligent Systems. Studies in
Computational Intelligence, volume 82, Springer, 2008, pp. 289–323.

[13] P. Angeline, D. Fogel, An evolutionary program for the identification of dynamical systems,
in: Proceedings of SPIE Volume 3077: Application and Science of Artificial Neural Networks
III., SPIE, 1997, pp. 409–417.

[14] D. Fogel, K. Chellapilla, Verifying anaconda’s expert rating by competing against chinook:
experiments in co-evolving a neural checkers player., Neurocomputing 42 (2002) 69–86.

[15] T. Froese, E. Spier, Convergence and crossover: the permutation problem revisited., Cognitive
Science Research Papers CSRP 596 (2008).

[16] J. Schaffer, D. Whitley, L. Eshelman, Combinations of genetic algorithms and neural networks:
A survey of the state of the art, in: Proceedings of the InternationalWorkshop on Combinations
of Genetic Algorithms and Neural Networks, COGANN’92, IEEE Press, 1992, pp. 1–37.

[17] X. Yao, Evolving artificial neural networks, in: Proceedings of the IEEE, pp. 1423–1447.

[18] D. Thierens, J. Suykens, J. Vanderwalle, B. D. Moor, Genetic weight otpimization of a feed-
forward neural network controller., Artificial Neural Networks and Genetic Algorithms (1993)
658–663.

[19] F. Gomez, R. Miikkulainen, Active guidance for a fitness rocket through neuroevolution., in:
Proceedings of the Genetic and Evolutionary Computation Conference, GECCO’03, ACM,
2003, pp. 2084–2095.

[20] S. Haflidason, R. Neville, On the significance of the permutation problem in neuroevolution,
in: Proc. of Genetic Evolutionary Computational Conference, GECCO’09, ACM, 2009, pp.
787–794.

[21] A. Mahmood, S. Sharmin, D. Barua, M. Islam, Graph matching recombination for evolving
neural networks, in: Proc. of Int. Symposium on Neural Networks, ISNN’2007, Springer, 2007,
pp. 562–568.

[22] M. Mandischer, Representation and evolution of neural networks, in: Artificial Neural Nets
and Genetic Algorithms, Springer, 1993, pp. 643–649.

[23] N. Garcia-Pedrajas, D. Ortiz-Boyer, C. Hervas-Martinez, An alternative approach for neural
network evolution with a genetic algorithm: Crossover by combinatorial optimization, Neural
Networks 19 (2006) 514–528.

[24] A. Azzini, A. Tettamanzi, Evolving neural networks for static single-position automated trad-
ing, Journal of Artificial Evolution and Applications 2008 (2008) 1–17.

26

[25] F. Camargo, Learning algorithms in neural networks, Technical Report, Computer Science
Department, Columbia University, 1990.

[26] K. Gurney, An Introduction to Neural Networks, Taylor & Francis, Inc., Bristol, PA, USA,
1997.

[27] B. Kröse, P. Van der Smagt, An introduction to neural networks, URL ftp://ftp.informatik.uni-
freiburg.de/papers/neuro/ann intro smag.ps.gz, The University of Amsterdam, 1996.

[28] G. Zhang, Neural networks for classification: A survey, IEEE Transaction on Systems, Man,
and Cybernetics - Part C: Applications and Reviews 30 (2000) 451–462.

[29] A. Bahrammirzaee, A comparative survey of artificial intelligence applications in finance:
artificial neural networks, expert system and hybrid intelligent systems, Neural Computing
and Applications 19 (2010) 1165–1195.

[30] M. Castellani, H. Rowlands, Evolutionary artificial neural network design and training for wood
veneer classification, Engineering Applications of Artificial Intelligence 22 (2009) 732–741.

[31] K. Ferentinos, Biological engineering applications of feedforward neural networks designed and
parameterized by genetic algorithms, Neural Networks 18 (2005) 934–950.

[32] J. Fernández, C. Hervás, F. Mart́ınez-Estudillo, P. Gutiérrez, Memetic pareto evolutionary
artificial neural networks to determine growth/no-growth in predictive microbiology, Applied
Soft computing 11 (2011) 534–550.

[33] K. Tang, M. Lin, L. Minku, X. Yao, Selective negative correlation learning approach to
incremental learning, Neurocomputing 72 (2009) 2796–2805.

[34] A. Azzini, A. Tettamanzi, A neural evolutionary approach to financial modeling, in: Proceed-
ings of the Genetic and Evolutionary Computation Conference, GECCO’06, volume 2, Morgan
Kaufmann, San Francisco, CA, pp. 1605–1612.

[35] A. Azzini, C. da Costa Pereira, A. Tettamanzi, Modeling turning points in financial markets
with soft computing techniques, in: A. Brabazon, M. ONeill, D. Maringer (Eds.), Natural
Computing in Computational Finance, volume 293 of Studies in Computational Intelligence,
Springer Berlin / Heidelberg, 2010, pp. 147–167.

[36] A. Azzini, M. Lazzaroni, A. Tettamanzi, Incipient fault diagnosis in electrical drives by tuned
neural networks, in: Instrumentation and Measurement Technology Conference, IMTC’06, pp.
1284–1289.

[37] A. Azzini, S. Marrara, Dermatology disease classification via novel evolutionary artificial
neural network, in: Proceedings of the 18th International Conference on Database and Expert
Systems Applications, DEXA’07, pp. 148–152.

[38] A. Azzini, A. Tettamanzi, A neural evolutionary classification method for brain-wave analysis,
in: Proceedings of the European Workshop on Evolutionary Computation in Image Analysis
and Signal Processing, EVOIASP’06, pp. 500–504.

[39] A. Azzini, A. Tettamanzi, Evolutionary ANNs: A state of the art survey, Intelligenza Artificiale
5 (2011) 19–35.

27

[40] T. Bäck, F. Hoffmeister, H. Schwefel, A survey of evolutionary strategies, in: R. Belew,
L. Booker (Eds.), Proceedings of the Fourth International Conference on Genetic Algorithms,
Morgan Kaufmann, San Mateo, CA, 1991, pp. 2–9.

[41] H. Muhlenbein, D. Schlierkamp-Voosen, The science of breeding and its application to the
breeder genetic algorithm (bga), Evolutionary Computation 1 (1993) 335–360.

[42] D. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, Kluwer
Academic Publishers, Boston, MA, 1989.

[43] H. Schwefel, Numerical Optimization for Computer Models, John Wiley, Chichester, UK, 1981.

[44] L. Prechelt, PROBEN1 — a set of neural network benchmark problems and benchmarking
rules, Technical Report, Fakultät für Informatik, Universität Karlsruhe, 1994.

[45] M. Hestenes, E. Stiefel, Methods of conjugate gradients for solving linear systems, Journal of
Research of the National Bureau of Standards 49 (1952).

[46] A. Engelbrechts, Computational Intelligence: An Introduction, John Wiley & Sons, 2007.

[47] P. Gutiérrez, C. Hervás, M. Carbonero-Ruz, J. Fernández, Combined projection and kernel
basis functions for classification in evolutionary neural networks, Neurocomputing 72 (2009)
2731–2742.

[48] F. Fernández-Navarro, C. Hervás-Mart́ınez, P. Gutiérrez, M. Carbonero-Ruz, Evolutionary
q-gaussian radial basis function neural networks for multiclassification, Neural Networks 24
(2011) 779–784.

[49] J.-Y. Wu, Mimo cmac neural network classifier for solving classification problems, Appl. Soft
Comput. 11 (2011) 2326–2333.

[50] F. J. Mart́ınez-Estudillo, C. Hervás-Mart́ınez, P. Gutiérrez, A. C. Mart́ınez-Estudillo, Evolu-
tionary product-unit neural networks classifiers, Neurocomputing 72 (2008) 548–561.

28

