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ABSTRACT

In this paper, a novel fuzzy adaptive controller is investigated for a class of multi-input multi-output
(MIMO) nonaffine systems with unknown control direction. An equivalent model in affine-like form is
first derived for the original nonaffine system by using a Taylor series expansion. Then, a fuzzy adaptive
control is designed based on the affine-like equivalent model. The adaptive fuzzy systems are used to
appropriately approximate the unknown nonlinearities, while the lack of knowledge of the control
direction being closely related to the sign of control gain matrix is handled by incorporating in the
control law a Nussbaum-type function. A decomposition property of the control gain matrix is used in
the controller design and the stability analysis. The effectiveness of the proposed fuzzy adaptive
controller is illustrated through simulation results.

1. Introduction

Control process problems are more and more complex as the
involved systems are multivariable in nature and exhibit uncertain
nonlinear behaviors. This explains the fact that only few engi-
neering solutions are available. Thanks to the universal approx-
imation theorem [1], some adaptive fuzzy control systems [2-14]
have been developed for a class of multivariable nonlinear
uncertain systems. The stability of the underlying control systems
has been investigated using a Lyapunov approach. The robustness
issues with respect to the approximation error and external
disturbances have been enhanced by appropriately modifying
the available adaptive fuzzy controllers. The corner stone of such
a modification consists in a robust compensator which is con-
ceived using a sliding mode control design [3-5,7,9,11-14] or an
H* based robust control design [4,6,8,10]. In the fuzzy indirect
adaptive scheme [2-5,8,10], the singularity problem occurring
when determining the inverse of the estimated control gain
matrix has been particularly solved thanks to a suitable projection
inside the parameter space up to an priori knowledge on the
system under control, namely a feasible set in which the singu-
larity problem does not happen [2,3,8,10]. A genuine procedure
involving an appropriate regularization of the estimated control
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gain matrix has been also used in [4,5] up to an admissible
tracking performance reduction. The key modeling assumption in
these above fuzzy adaptive control schemes is that the systems
considered are characterized by inputs appearing linearly in the
system equation, i.e., the systems considered are affine-in-
control. To the authors’ best knowledge, there are few works in
the fuzzy control literature which were devoted to the control
problem of the nonaffine multivariable systems.

In practice, there are many nonlinear systems with nonaffine
structure, such as chemical reactors [15], biochemical process
[16], some aircraft dynamics [17], dynamic model in pendulum
control [18], etc. Some remarkable results for nonaffine mono-
variable systems have been obtained [19-31]. It is worth noting
that affine systems are a special case of the nonaffine systems.
Thus, all schemes in [19-31] can be applied directly to affine
systems in which the control input appears in a linear fashion. In
the literature, one can find five methods dealing with nonaffine
problem, such as: (i) Method using Taylor series expansion in
order to get an affine system (seen in [19,20]). (ii) Method using
implicit function theorem (seen in [21-24]). (iii) Method exploit-
ing the mean value theorem in order to obtain an affine form
(seen in [25-28]). (iv) By differentiating the original system
equation so that, in the augmented resulting model, the time
derivative of the control input appears linearly and the latter can
be used as a new control variable (seen in [29]). (v) By using
a local inversion of the Takagi-Sugeno (TS) fuzzy affine model
(seen in [30,31]). Note that there are two common modeling
assumptions in these above adaptive control schemes [19-31]



namely: the sign of the control-gain is known a priori and the
model is monovariable. The sign of the control gain (i.e., the so-
called control direction) represents motion direction of the
system under any control, and knowledge of this sign makes
adaptive control design much easier.

In the adaptive control literature, the unknown control-direction
problem has been addressed by many methods: (i) By incorporating
the Nussbaum-type function in the control law [32,33]. (ii) By directly
estimating unknown parameters involved in the control direction
[34]. (iii) By using the so-called correction-vector method for first
order nonlinear systems [35]. (iv) Via a switching scheme based on a
monitoring function for variable structure model reference adaptive
control for linear plants [36]. (v) By incorporating a hysteresis-type
function in adaptive fuzzy control [37,38]. (vi) By using a hysteresis-
dead-zone type function with the Nussbaum function in the adaptive
control law [39]. Other hand, few results are available in the literature
on the design of the fuzzy adaptive controllers for multivariable
nonaffine nonlinear uncertain systems, [40-42]. Note that it is
difficult and complicated to control this class of systems due to the
existence of unknown nonaffine functions and the coupling strength
among subsystems. In [40], this difficulty has been overcome by
introducing some special type Lyapunov functions and taking advan-
tage of the mean-value theorem, the backstepping design method
and the approximation property of the fuzzy systems. In [41], the
fuzzy adaptive controller designed for a class of multivariable non-
affine nonlinear systems has not been derived rigorously in mathe-
matics. In fact, the time derivative of the Lyapunov function candidate
is completely false. In [42], the considered systems are a more general
class of nonaffine MIMO systems. To facilitate the controller design,
the mean value theory is used to transform unknown non-affine
functions into a structure which is similar to affine form. This control
scheme has two main advantages: (i) it does not require a priori
knowledge of the signs of the control gains and (ii) only one
parameter is needed to be adjusted online in controller design
procedure for each subsystem.

In this paper, a novel direct adaptive fuzzy controller is
proposed for a class of uncertain multivariable nonaffine non-
linear systems with unknown control direction. Note that the
approach proposed in this paper can be considered as an exten-
sion of our previous works [11,13]. The main contributions of this
paper are emphasized below:

(i) To the authors’ best knowledge, in the literature, there are no
results reported on the direct fuzzy adaptive control design
for our considered class of the non-affine multivariable
systems with unknown control direction (i.e., system (1)).

(ii) A unique Nussbaum-type function is used in order to
estimate the true control direction.

(iii) The combined effect of the fuzzy approximation error
together with the higher order terms (HOT) issued from the
use of the Taylor series expansion is compensated for by a
dynamical robust adaptive control term.

2. Problem statement, preliminaries and fuzzy systems

2.1. Problem statement and preliminaries

Consider the following class of MIMO nonaffine nonlinear
uncertain systems:

W =frxu)+A1(t)

Yo" = fp(x,u)+ Ap() 1)

where x=[x],...xI]"eR" is the overall state vector which is
assumed available for measurement, where x;=[y;y;.-.

ygr,—l)]T eRi,Vi=1,..,pand ri+--- +rp=r. u=[us,.. ._up]T cRP is
the control input vector, and fi(x,u), i=1,...,p are smooth
unknown nonaffine nonlinear functions. A;t), i=1,...,p are

unknown bounded disturbances.

Let us also denote

YO =y Feow = [ ), f ]
Aty =[A1(t),.. ., Ap(t)]".

Then, the system (1) can be rewritten in the following compact
form:

¥y =F(x,u)+ A(t) 2

Throughout this paper, one makes the following realistic
assumptions:

Assumption 1. The desired trajectory vector Xg=I[Xj,....Xj,
('p) . i—1 . .
vyl where Xgi=[yaiYai- - Vg U1, Vi=1,...p, is sup-
posed to be continuous, bounded and available for measurement.

Then, one has x4 € Qx, € R™*P, with Qy, is a known compact set.

Assumption 2. The matrix oF(x,u)/ou is non-singular. Its sign is
assumed to be unknown. But, it is must be positive-definite or
negative-definite.

Remark 1. Assumption 2 ensures that the matrix oF(x,u)/ou is
always regular. This assumption can be seen as a controllability
condition and is not restrictive as it is satisfied by many affine or
nonaffine (MIMO or SISO) physical systems: e.g., robotic systems,
induction motors, chaotic systems, some mechanical systems.
Note that the affine nonlinear systems are a special case of the
non-affine systems. In the affine SISO case, this assumption is very
standard (see [31,32], and reference therein) and is equivalent to
a control gain which should be strictly positive or strictly
negative. In the affine MIMO case, it is equivalent to a control
gains matrix which should be non-singular (see [2-14]).

The objective is to design a continuous adaptive control law u;
(for alli=1,...,p) which ensures that the state vector x; asympto-
tically tracks a time-varying desired trajectory x4, while all the
signals in the derived closed-loop system remain bounded despite
uncertainties and bounded external disturbances. To quantify this
objective, the tracking errors are defined as follows:

€1=Ya—-V1

: 3)
€ =Yap—Yp
Let us define also the filtered tracking error as
S=1[S1,..,Spl" (C))
with
d ri—1
Si= |:E +)Li:| e;, for 4;>0 Vi:1,...,p. 5)

Remark 2. Notice that if one chooses 4; >0, withi=1,...,p, then
the roots of the polynomial Hi(s)=A/""'+(ri—1)A' s+ - +
(ri—1)/;s"i—24+s"—1 related to the characteristic equation of S; =0
are all in the open left-half plane. From (5), it follows that e;—0
asymptotically as S;—0. Thus, the problem of tracking the
ri—dimensional vector y4 can be replaced by a 1st-order stabili-
zation problem in the scalar S;.

In this case, the control objective becomes the design of a
controller to force S; —»0 asymptotically, fori=1,...,p.



The time derivative of S;, for i = 1,...,p, can be written as

Si = Uiffi(x-u)f/li(t)- for i= 1-- -aD (6)
with
Vi=Yi' +Bipa€ V4 e for i=1,..p (7)
where

(=D . . .
ﬁi,j*m)“i , for i=1,...p, j=1,..,r—1

denote V =[vy,...vp]", then (6) can be written in the following
compact form

S = V—Fxu)—A(t). (8)

Now, to facilitate the control system design for the system (2),
one transforms the nonaffine system (2) into an affine system by
performing a Taylor series expansion around an unknown optimal
control u = u*(x) as follows:

F(x,u) = F(x)+Gx)u+H(x,u) 9)
with

F(x) = [F1(x),. ... Fp(0]" = F(X,t* (X))~ [OF (X,11) /3]y, oy U* (%),

G(x) = [g;j(x)] = [OF (x,u) /0u], _ y+(x)»

where H(x,u) is the higher order terms (HOT) of the expansion,
and u=u*x) is an unknown smooth function minimizing
the HOT.

Motivated by [11-14,43-46] and since the matrix G(x) is not
generally symmetric, the following important lemma will be
exploited in the controller design and stability analysis.

Lemma 1. [43,44] Any real matrix G(x) e R™" with non-zero lead-
ing principal minors can be decomposed as follows:

G(x) = G5(x)DT(x) (10)

where Gs(x) e R™*? is a symmetric positive-definite matrix, D € R™*F is

a diagonal matrix with +1 or —1 on the diagonal, and T(x) e R™* is
a unity upper triangular matrix. The diagonal elements of D are
nothing else than the ratios of the signs of the leading principal
minors of G(x).

Remark 3. Note that if G(x) has non-zero leading principal
minors, three cases can arise:

o If G(x) is positive-definite, then D = Ip.

e If G(x) is negative-definite, then D = —Ij.

e While in the case where G(x) is indefinite, the matrix D has +1
and —1 on its principal diagonal.

In order to cope with the unknown control direction (i.e., the
unknown sign of the control gain matrix G(x)), the Nussbaum gain
technique will be used in Section 3.

Properties of a Nussbaum-function: A function N({) is called a
Nussbaum-function, if it has the following useful properties [47,48]:

. 1 S I I

1) sygnmsuvg JoN©Qd{ =400
R B

2) sllinocme/O Nd{ = —c0

Example: The following functions are Nussbaum functions
[47-49]:

NI =8 cos(Q), Na(O)=¢ cos( c

), and N3({)=cos (g()e‘fz,

of course, the cosine in the above examples can be replaced by the
sine. It is very easy to show that Nq({), N»({), and N3({) are
Nussbaum functions. For clarity, the even Nussbaum
N() = cos(¢) will be used throughout this paper.

Thereafter, one needs the following lemma in the stability analysis.

Lemma 2. [47,50] Let V(.) and {(.) be smooth functions defined on
[0,t5), with V(t)>0, Vte[0,t), and N(.) be an even Nussbaum
function. If the following inequality holds:

t .
V(t) < cot+ /0 AN+ Didr, Veeo,), an

where d is non-zero constant and cp represents some suitable
constant, then V(t), {(t) and fé(dN(g”)+l)g”dr must be bounded on
[0,t7).

Proof of Lemma 2. See the proof in [47].
2.2. Dynamics of the filtered tracking errors
Using the matrix decomposition (10) and the expression (9),
the dynamics (8) can be rewritten as follows:
S = V—F(x)—Gs(x)DT(x)u—H(x,u)— A(t). 12)
Now let us consider the following realistic assumption.

Assumption 3. The matrix G(x) is of class C' and satisfies the
following property:

ogi(x) /oy V=0, vi=12...p and j=12,...p.
Remark 4.

a) Although Assumption 3 restricts the considered class of MIMO
nonaffine systems, many affine physical systems, such as
robotic systems and electric machines, fulfill such a property
[11-14].

b) The required property on the partial derivatives of the control
gain matrix ensures that the time derivative of G;1(x) depends
only on the state vector x (i.e., it ensures that dG;'(x)/dt does
not depend on the system inputs) [11-14].

From Eq. (12), one has
G, 'S = G ') [V—F(x)]-DT(xu—G; ' OHx,u)—G; ' x)A®t)  (13)

Posing G1(x) = 6;1()(), Fi(x,u) = G;1(x)[VfF(x)]f[DT(x)fD]u, and
Hy(x,u,4) = G; ' x)(H(x,u)+ A(t)), Eq. (13) becomes

G1(x)S = F1(x,u)—Du—H; (x,u,A) (14)

One can rearrange (14) as follows
G1(x)S+1G1S = o(z)—Du—Hi (x,u,A) (15)
where U2) = [01(Z1),. - . 0p(p)]" =F1(x,u)+ 1 G1(x)S with

z=[z],2},....z}]". By examining the expressions of Fy(x,u), the
vectors z; can be determined as follows:

T
Z1 = [XT-UZ-- . --up]

T
Zy = [XT-u3-- . --up]

zp1 = [xT,up]

Zp =X. (16)

It is clear from the property of the matrix of DT(x)—D, that z;
depends on control inputs uj,...,up, zZ; depends on us,...,u,, and



so on. In fact, the structure of the nonlinearities «(z) is known
under the name “upper triangular control structure”. Recall that
this useful structure allows for algebraic loop free sequential
synthesis of control signals u;, Vi=1,2,...,p.

Define the operating compact sets as follows:

Q= {X" Ui g, U] |Xe QR xge Ry}, i=1,...,p-1,
Q, ={x|xe QxCR}. 17)

Remark 5. Since the nonlinear functions («(z) and H;(x,u,4)) and
the matrix D are unknown, moreover H;(x,u,A) depends explicitly
on the input u, the control system design to asymptotically
stabilize the dynamics (15) is very difficult. Thereafter, to over-
come such problems, one will use

e an adaptive fuzzy system to approximate the unknown non-
linear function o(z),

e a Nussbaum function to estimate the sign of the matrix D (i.e.,
the sign of the control gain matrix G(x)) and,

e a dynamic adaptive robust control to dynamically compensate
for the effect of the uncertain nonlinearity Hq(x,u,A).

2.3. Description of the fuzzy logic system

The basic configuration of a fuzzy logic system consists of a
fuzzifier, some fuzzy IF-THEN rules, a fuzzy inference engine and
a defuzzifier, as shown in Fig. 1. The fuzzy inference engine uses
the fuzzy IF-THEN rules to perform a mapping from an input
vector xT =[x1,Xa,...,X:] € R" to an output f € R. The ith fuzzy rule
is written as
RV :if x; is A} and and x, is A then f is f'

(18)

where A} AL, and Al are fuzzy sets and f is the fuzzy
singleton for the output in the ith rule. By using the singleton
fuzzifier, product inference, and center-average defuzzifier, the
output of the fuzzy system can be expressed as follows:

fx) = Z?:: 1fi<r§'1= 1 “A;(Xj))
izt <Hj=1 MAJ,_(xj))

where f1,i(x;) is the degree of membership of x; to Aj‘ m is the
number of fuzzy rules, 07 =[f' f?,...f™ is the adjustable para-
meter vector (composed of consequent parameters), and
Yl =1y ™ with
<Hjn= 1 MAJ'_(Xj))
Z;n=1 <H;n= 1 #A}(xj))

being the fuzzy basis function (FBF). Throughout the paper, it is
assumed that the FBFs are selected so that there is always at least
one active rule [1], i.e,Z{ ;(IT}_ 1 (%)) > 0.

J

Fuzzy Rules Base I

=07y ) (19)

Y'(x)= (20)

H |

Fuzzifier

Fuzzy Inference
Engine

Fig. 1. Basic configuration of a fuzzy logic system.

It is worth noting that the fuzzy system (19) is commonly used
in control applications. Following the universal approximation
results, the fuzzy system (19) is able to approximate any non-
linear smooth function f(x) on a compact operating space to an
arbitrary degree of accuracy [1]. Of particular importance, it is
assumed that the structure of the fuzzy system, namely the
pertinent inputs, the number of membership functions for each
input and the number of rules, and the membership function
parameters are properly specified beforehand. The consequent
parameters are then determined by appropriate parameter adap-
tation algorithms.

3. Design of fuzzy adaptive controller

The unknown nonlinear function o;(z;) in (15) can be approxi-
mated, on the compact set €, by the linearly parameterized
fuzzy systems (19) as follows:

8i(z,0) = 0] Yi(z), i=1,...p, @D

where /;(z;) is the fuzzy basis function (FBF) vector, which is fixed
a priori by the designer, and 6; is the adjustable parameter vector
of the fuzzy system.

Let us define

07 = arg min| sup |o;(z)—8(z;,0;)| 22)
0; zie Qz,
as the optimal value of 6; which is mainly introduced for analysis
purposes as its value is not needed when implementing the
controller.
Define

é,‘ = 9,‘—9? and &i(z)) = OC,‘(Z,‘)—&,‘(Z,‘,G?) with &j(Zj,e;k) = G?Tllli(zl‘)

23)
as the parameter estimation error and the fuzzy approximation
error, respectively.

As in the literature [1-14,20,21,27,28,30-33,50-58], one
assumes that the used fuzzy systems do not violate the universal
approximator property on the compact set €, which is assumed
large enough so that the input vector of those fuzzy systems
remains in Q. under the closed-loop control system. It is hence
reasonable to assume that the fuzzy approximation error is
bounded for all z; € Q,, i.e,,

lei@)| <&, VzieQ,

where §; is an unknown constant.
Now, let us denote

(z,0) = [61(21,01),. - . 0p(2p,0p)] = [01%1(z0)... --Q;Wp(zp)]T-
S(Z) = [81 (Z] )-- . --SP(ZP)]T-

s _r= = 1T
E=[Er,.. .5l

From the above analysis, one has
U(z,0)—a(z) = U(z,0)—zZ,0%)+ Uz, 0" —a(2),
=6u(z,0)—6u(z,0™)—¢(2),
=0 y@—2). 24)

where éTw(z) = [9?;&1(21 ). .,égwp(zp)]T, and 0;=0,—07, for
i=1,...,p.
From (24), one can rewrite (15) as follows:

% EsTca(x)s} =SToz)—STDu—S"Hy (x,u, A)

— —ST0" (@) +Se(z) + STéu(z,0)— ST Du—STHy (x,u, A).
(25)



Then, (25) can be rewritten as follows:

;t F e (x)S} — S0 (@) +STz,0)—S"Du+ STHa (x,11,5)
1<& w012
—5 2 ouilSil 67 ] (26)
i=1
with Ho(x,u,S) = e(z)—H; (x,u, A) + 9*Sign(ST), with
9* = Diag{0.50, || 0%|*,0.5002| |05 ... ..0.500, | 05| |*] 27)

oy (for i=1,...
defined later.
In the sequel, one needs the following realistic assumption.

,p) is a small positive constant that will be

Assumption 4. One assumes that

|Ha(x,u,9)| < k*H(x,u) (28)

with Hx,u)=1+||x||+||u|| , where x*= 17 is an

unknown constant vector.

& % %
[17.165,. - 1

Remark 6. As started by [38], this assumption is not restrictive.
In fact, Hy(x,u,A) can be theoretically approximated over a large
compact set by a first-order TS fuzzy system [1] as follows:
Hixu,A) = 0Ty, u, )Z + ep(x,u,A) - with  yu(x,u,A4) is  the
FBF vector (Note that this approximation is only used for analysis
purposes, because A(t) is unknown), 0; is a real constant
matrix, &p(x,u,d) is a bounded fuzzy approximation error,
and Z=[1,x",u",A"]". Since the matrix 0} is constant, and (A(t),
Yn (x,u,A) and &(x,u,A)) are bounded, one can easily show that
[Hi(xu,A)| < u * is a given positive
constant. Finally, since &(z) is bounded, then one can obtain (28).

For the system (1), one can consider the following fuzzy
adaptive controller:

u=NO[—(z,0)-KS—u,] (29)
with

N({) = ¢? cos(), (30)
{ = S"[a(z,0)+KS+u,], 31

and K =Diagfky ,k,. . ..k,], where k; >0, i=1,...,p, are free posi-
tive design constants. Recall that the Nussbaum gain function N({)
is used here to estimate the true control direction. The dynamic
robust control term uy = [uy,. . ., Urp]T, will be given below, allows
to dynamically compensate for the effect of the uncertain non-
linearity Ha(x,1,S).

After substituting the control law (29) into (26), one gets

~T p b
91- Wi(zi)si_ Z kiSiZ— Z Siun-

i=1 i=1

p

It {js G1(x)5} < —i;

_ P . o1&
+H&W) Y [Si[KF+(1+dNCOY -5 > oalsi|[]6F|| (32)
i=1

i=1

with d =Dy, for i=1,...,p, where D;; are diagonal terms of D.
The dynamic robust control term u,; is given by

Ui = —Yrillri+ 5 | Si for i=1,...p (33)

ri i

with

Si=—Vsi J SH(x, for i=1,...,p (34)
Uz +0;

where k; is the estimate of x} defined in (28), y» and v are

positive design parameters and §;(0) > 0.

Adaptation laws associated to the proposed controller (29) are
given by:

0 = —00i70:|Si| Oi+70:S¥i(20) (35)
Ki=7Hxu)|S] (36)
where v,,7,; and oy; are positive design constants.

Remark 7. Due to special structure of the nonlinearities o(z)
(Egs. (15) and (16)) and due to dynamical feature of the control
robust compensator u, (given by Egs. (33) and (34)), our adaptive
controller is free of the algebraic loop.

Our main result is summarized by the following theorem.

Theorem 1. Consider the system (1) with Assumptions 1-4.
Then, the control law defined by (29)-(31) and (33)-(36) can
guarantee the following properties:

e All signals in the closed-loop system are bounded.

e The tracking errors and their derivatives asymptotically
decrease to zero, i.e., e?’(t)aO as t—-oo for i=1,..,p and
j=01,...,r—1.

Proof of Theorem 1. Let us consider the following Lyapunov
function candidate:

velsGesi I Lol iy Leen iy 1
2 ! 21=1V01 o 21-:1"/1‘1 ' 21_]Vbll
181,
+§quri 37)

with K = k;—«f, fori=1,...,p.
The time derivative of V can be given by:

V =STGi(x)S + 1sTc;1(x)s+ 2_9 0;+ Z—K K

1—1 i=1 Vi

+Z'})155+Z—u”un (398

i=1 i=1 Vri

Using (32)-(36), (38) can be rewritten as follows:

b
V<— stz Zun+(l+dN(g))g—Zom\S\99

i=1 i=1

1 ; w112
-3 S alsi ) 69)

One can easily check that

~T ~
215i(0; 0= |Sil 10:] [*~[si] || 6F | |* (40)
using (40), V can be bounded as follows:

. p .

V<= kS +1+dNO) 41

i=1
Integrating (41) over [0, t], one has
V() < V() + / Z k;S?dt < V(0)+ / E+dNOdT 42)
0

i=1

According to Lemma 2, [13,50], one has V(t), fé(l+dN(g”))Zdr
and { which are bounded on [0, t7). Similar to discussion in
[13,50], one knows that the above discussion is also true for
ty = +oo, therefore S, 0;, %;, 8; and u,;eL.. This implies the



boundedness of 6;, k;, x and u. From (41) and since
f6’°(l+dN(§))Zdr and V(t) are bounded, it is easy to show that
Jo© ZP_,S7dt exists, ie., S; e L.

In order to show the boundedness of $;, one can rearrange
Eq. (15) as follows:

S =G7'(0[—0.5G1 (x)S+ ou(z)—Du—H (u,x,A)]. 43)

From (43), since (x,S,u)eL,, and G;(x) is a positive-definite
matrix (i.e., 3¢ >0, such as ||G1(x)|| > ), and all functions in
(43) are continuous, one can conclude about the boundedness of
S; (i.e., one has $; e Ly).

Finally, since S; € L, N Ly, and $; € Ly, by using Barbalat’s lemma
one can conclude that S;(t)—0 as t— oo. Therefore, the tracking
errors and their derivatives converge asymptotically to zero, i.e.,
edt)»0ast—ocofori=1...pandj=0,1,...,r—1. O

Remark 8. The main contributions of this paper with respect to
the existing works in the literature [32,11,13,40-42] are empha-
sized below.

a) Despite the large class of the nonaffine systems considered in
[40,42], the controllers proposed in [40,42] cannot be applied
to our system (1), because the latter has not a triangular
structure form. Moreover, unlike this paper, in [40,42] only a
practical stability is guaranteed.

b) Although a similar class of MIMO nonaffine systems has been

considered in [41], the fuzzy adaptive controller designed in

[41] has not been derived rigorously in mathematics. In fact,

the time derivative of the Lyapunov function candidate is

completely false. Moreover, the sign of the control gain matrix
is assumed to be known and the effect of the external
disturbance has not been considered.

Unlike this paper, the design of a fuzzy adaptive output-

feedback control system for a simple class of affine SISO

nonlinear systems with unknown control direction has been

considered in [32].

Unlike this paper, in [11,13], a simple class of MIMO affine

nonlinear systems with unknown control direction has been

considered. Note that the extension of our results in [11,13] to

a perturbed nonaffine MIMO system (1) is not a trivial task

because of the uncertain nonlinear HOT which depend on the

input vector u. In this paper, for dealing with this problem, a

dynamic adaptive robust control term has been introduced.

g]
~—

e

Remark 9. If the matrix D obtained by the matrix factorization
(10) is known, one does not need to use the Nussbaum function in
the control law (29)-(31) and (33)-(36). In this case, the control
law becomes:

u =D[o(z,0)+KS+u,] (44)

with

. Ui — .

Uri = =Ppilri+Vri |Sim— " Hxwi|S;||, for i=1,...p (45)

i i

. 5 — .

0= —Ysi 5 sHx,Wwxk|S;|, for i=1,..p (46)
7t 0i

0 = —0074i|Si| Oi+ 7S i(2) 47)

K= Viciﬁ(x-u)‘si‘ (48)

It is worth noting that the design constants are defined as in the
first controller, and the proof of the stability associated to the

controller (44)-(48) and the convergence of tracking errors
towards zero is straightforward.

4. Simulation results

This section presents an illustrative simulation example which
highlights the performance of the proposed adaptive fuzzy con-
troller. The control problem of an academic MIMO nonaffine
uncertain system is considered to this end. Its dynamic equations
are given by:

X11 =X12,
X12 = X3 +X35 +0.15u3 + (2 +cos(X11))u1 —Uz + A1(t)
X21 =X22,
X9 = X3, +X11 +x3,—0.5u71 + (1 + X3 )13 +(2+ sin(x21))uz + Ax(t)
Y1(0) =X11(0,Y2(8) = X21(0).
(49)

where x = [X11,X12,X21,X22]" is the state vector of the system, u; and
u, are the control inputs, and y; and y, are the system outputs.
Aq(t) and A,(t) are external disturbances which are assumed to be
square waves having an amplitude + 1 with a period of 27n(s). The
control objective consists in allowing the system outputs y; and
y» to, respectively, track the sinusoidal desired trajectories
Y41 =sin(t) andyy, = sin(t). The fuzzy system 9?;&1(21) has the
vector [xT,u,]" as input, while the fuzzy system 95;&2(22) has the
state vector x as input. For each variable of the entries of these
fuzzy systems, as in [52], we define three (one triangular and two
trapezoidal) membership functions uniformly distributed on the
intervals [ -2, 2] for x11, X12, X21, and x25, and [—10, 10] for u,.

The design parameters are chosen as follows: 74, =600,
Vo2 =600, 691 =09 =0,001, 9,y =V, =0.5, 71 =7, =100, 75, =
Vs2 =0.005, 41 =1, =2, k; =k, =1. The initial conditions are
selected as: x(0)=[05 0 05 0], uq(0)=u;(0)=0.1,
01(0) =92(0)=1, x(0)=0, 04(0)=0,(0)=0, with 0 denotes the
null vector. The simulation results are shown in Fig. 2.

Fig. 2(a) and (b) illustrate the boundedness and convergence of
the tracking errors for both subsystems. The boundedness of the
corresponding control signals (uq, uy) is well illustrated in
Fig. 2(c). Fig. 2(d) also displays the control signals (u;, uz) but
for t € [0s,0.5s].

Note that Fig. 2(d) shows that just one switching in the control
direction was need. The jump made in the control signals at
t=0.13s, which also causes their amplification, is naturally due to
the Nussbaum gain-function. After t=0.13s, the control direction
is correctly identified and all tracking errors vanish, but not in
exponential way (see Fig. 2(a) and (b)). Finally, it is worth
mentioning that the Nussbaum gain function-based control may
generally have wild transient performance.

5. Conclusion

A novel fuzzy adaptive control algorithm for multivariable
unknown nonaffine systems has been presented. In the controller
designing, neither prior information about the control direction
nor knowledge of the system nonlinearities are required. Indeed,
adaptive fuzzy systems have been used to approximate unknown
nonlinearities and a Nussbaum-type function has been particu-
larly employed for dealing with the unknown control direction. Of
fundamental interest, it has been shown that the underlying
control system is stable and that the involved tracking errors
converge to the origin. The effectiveness of the proposed con-
troller is particularly emphasized throughout simulation results.
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Fig. 2. Simulation results: (a) tracking errors of subsystem 1: e; (dotted line) and é; (solid line). (b) Tracking errors of subsystem 2: e, (dotted line) and é, (solid line).
(c) Control input signals: u; (dotted line) and u; (solid line) (d). Control input signals for te[0s, 0.5s]: u; (dotted line) and u; (solid line).
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