
Applying Soft Computing Techniques to Optimise a Dental 
Milling Process 

 

Vicente Vera1, Emilio Corchado2,3, Raquel Redondo4, Javier Sedano5, Álvaro E. García1 

1Facultad de Odontología, UCM, Madrid, Spain. {viventevera, aegarcia}@odon.ucm.es 

2Dept. de Informática y Automática, Universidad de Salamanca, Spain. escorchado@usal.es 

3Visiting Professor at VŠB-TUO, VŠB-Technical University of Ostrava, Czech Republic. escorchado@usal.es 

4Department of Civil Engineering, University of Burgos, Burgos, Spain. rredondo@ubu.es 

5Dept. of AI &Applied Electronics, Castilla y León Technological Institute, Burgos, Spain. javier.sedano@itcl.es 

Abstract. This study presents a novel soft computing procedure based on the application of artificial 
neural networks, genetic algorithms and identification systems, which makes it possible to optimise the 
implementation conditions in the manufacturing process of high precision parts, including finishing 
precision, while saving both time and financial costs and/or energy. This novel intelligent procedure is 
based on the following phases. Firstly, a neural model extracts the internal structure and the relevant 
features of the data set representing the system. Secondly, the dynamic system performance of different 
variables is specifically modelled using a supervised neural model and identification techniques. This 
constitutes the model for the fitness function of the production process, using relevant features of the data 
set. Finally, a genetic algorithm is used to optimise the machine parameters from a non parametric fitness 
function. The novel proposed approach was tested under real dental milling processes using a high-
precision machining centre with five axes, requiring high finishing precision of measures in micrometers 
with a large number of process factors to analyse. The results of the experiment, which validate the 
performance of the proposed approach, are presented in this study. 

Keywords. Soft Computing, Unsupervised Learning, Genetic Algorithm, Identification Systems, 
Optimisation, Dental Milling Process 

1 Introduction 

It is becoming increasingly necessary to have intelligent software tools to optimise tasks associated with 
modelling industrial processes, especially those associated with high precision finishing, such as the 
dental milling process. 
The optimisation of machine parameters in the fabrication process could potentially improve the 
flexibility of the process, the adjustments of machine parameters, research in new materials, and its 
implementation in the fabrication process. It also improves some future designs. Presently, this is 
achieved with the help of experts (Research and development units in companies work to adjust 
parameters from the experimental design by carrying out a number of machine trials based on their own 
experiences). Machine parameter optimisation in the fabrication process includes the development of 
models to assess the behaviour of the variables in the process and to find the fitness function that can be 
optimised. The machine parameter optimisation should help the experts in better understanding the 
production process itself in order to produce products using new materials in a short period of time. 
The application of the optimisation process in the field of Medical Therapeutics (Odonto-Stomatology), a 
booming industry, is both novel and economically advantageous [1, 2, 3, 4, 5, 6]. Improved processing 
and optimisation of parameters such as processing time, accuracy, etc., for the development of pieces 
(such as dental-oral prostheses to perform partial crowns, inlays, onlays, etc. with application for 
rehabilitation and oral-dental restoration) are to the focus of rigorous studies today. The optimisation 
process of machine parameters, for example the time parameter, permits significant economic savings due 
to the high number of dental pieces produced daily by the same high-precision dental milling machine 
centre. This could significantly help to increase a company’s efficiency, and substantially contribute to 



cost reductions in the preparation and setting of the machines processes. Another example is the marginal 
adjustment of a dental prosthesis to the remaining tooth structure (dentine and enamel), thus avoiding 
tissue invasion and/or unprepared anatomical areas. This is the goal of any dental treatment, since the 
success now lies in the adjustment of approximately 15-25 micrometers between the prosthesis and the 
remaining structures. This would enhance and prevent the filtering of germs and oral fluids that within the 
short or medium term will lead to treatment failure. 
For many years the traditional process of making and preparing dental structures has involved the use of 
wax, followed by a process called "Lost Wax" [7]. 
This is a valid methodology, but could interfere with the preparation of a series of variables that are not 
securely controlled. In fact, there have been cases in which the prosthesis has not fit the tooth structure 
correctly, resulting in short or medium term tooth decay and failure of the treatment. The optimal 
outcome would be the so-called passive adjustment, i.e. adjusted between 15-25 micrometers which 
would lead to success in dental restorative treatment. 
Because of these and other reasons it is currently of great interest to optimise processes [8, 9] related to 
the preparation of dental prostheses (dental structures of materials such as cobalt chromium, titanium, 
ceramics and/or resin) characterised by a high precision of adjustment in micrometers. 
Artificial Intelligence [10], in conjunction with optimisation and identification algorithms [11, 12], is a 
very appropriate technology for addressing the development of such intelligent tools. Nevertheless, the 
variable and parameter setting processes are a well-known problem that has not yet been fully resolved. 
Several different techniques have been proposed in literature. In [13] a Taguchi orthogonal array is used 
to optimise the effect of injection parameters; in [14] the influence of ultrasonic machining operating 
parameters is studied using Taguchi and the F-test method; [15] explores different ways of improving the 
quality of the KrF excimer laser micromachining of metal using the orthogonal array-based experimental 
design method. Conventional methods can be greatly improved through the application of soft computing 
techniques [16]. 
The novel method proposed in this research is a three-step procedure based on several soft computing 
techniques as artificial neural networks (ANN) [17, 18] and genetic algorithms (GA) [19, 20, 21]. Firstly, 
the dataset is analysed using statistical and projection methods such as Principal Component Analysis 
(PCA) [22, 23, 24] and Cooperative Maximum-Likelihood Hebbian Learning (CMLHL) [25] to extract 
the dataset structure and to perform feature selection to establish whether the data set is sufficiently 
informative. This means that if the initial collected data set, once analysed shows a certain degree of 
clustering, it can be seen as a sign of a representative data set (there are no problems related to any sensor 
when collecting the information, and the process is well defined by the data set).The subsequent steps of 
the process can then be applied, in which the most representative features are identified and used. A 
model is generated during the modelling stage to estimate, in this case, the production time errors by 
modelling techniques. As previously explained, this study is interested in decreasing the production time. 
Finally, the ANN model obtained in the last step is used as a fitness function to be optimised in the 
genetic algorithm. 
This paper is organised as follows. Section 2 introduces the unsupervised neural models for analysing the 
datasets. Section 3 presents the system identification techniques used in the system modelling. Section 4 
introduces the applied GA. Section 5 describes the case study: a real dental milling process. Section 6 
presents the optimising of a dental milling process. The final section presents the different models that are 
used to solve the high precision dental milling optimisation case study. At the end, the conclusions are set 
out and some comments on future research lines are outlined. 

2 Data Structure Analysis using Connectionist Techniques 

Soft Computing [10, 26, 27, 28, 29, 30] is a set of several technologies whose aim is to solve inexact and 
complex problems [31, 32]. It investigates, simulates, and analyses very complex issues and phenomena 
in order to solve real-world problems [33, 34]. Soft Computing has been successfully applied in many 
different fields as, for example, feature selection [17, 18]. 
In this study, an extension of a neural PCA version [22, 23, 24] and other Exploratory Projection Pursuit 
[35, 36, 37, 38] extensions are used to select the most relevant input features in the data set and to study 
its internal structure. 
Feature Selection [39, 40, 41] and extraction [42, 43, 44, 45] entails feature construction, space 
dimensionality reduction, sparse representations and feature selection among others. They are all 



commonly used pre-processing tools in machine learning tasks, which include pattern recognition. 
Although researchers have grappled with such problems for many years, renewed interest has recently 
surfaced in feature extraction. 
The feature selection approach in this study is based on the issue of dimension reduction. Initially, some 
projection methods such as PCA [22, 23, 24], MLHL [36] and CMLHL [25, 46, 47] are applied. Their 
first step is to analyse the internal structure of a representative data set from a case study. If after applying 
these models, a clear internal structure can be identified, this means that the data recorded is informative 
enough. Otherwise, further data must be properly collected [8, 9]. 
 
2.1 Principal Component Analysis 
Principal Component Analysis (PCA) originated in work by Pearson [22], and independently by Hotelling 
[23], is a statistical method describing multivariate data set variations in term of uncorrelated variables, 
each of which is a linear combination of the original variables. Its main goal is to derive new variables, in 
decreasing order of importance, which are linear combinations of the original variables and are 
uncorrelated with each other. 
From a geometrical point of view, PCA can be defined as a rotation of the axes of the original coordinate 
system to a new set of orthogonal axes that are ordered in terms of the amount of variation of the original 
data that they account for. PCA aims to find that orthogonal basis which maximises the data’s variance 
for a given dimensionality of basis. 
Using PCA, it is possible to find a smaller group of underlying variables that describe the data. PCA has 
been the most frequently reported linear operation involving unsupervised learning for data compression 
and feature selection [24]. 
 
2.2 A Neural Implementation of Exploratory Projection Pursuit 
The standard statistical method of EPP [25, 37, 38], provides a linear projection of a data set, but it 
projects the data onto a set of basic vectors which best reveal the interesting structure in data. 
Interestingness is usually defined in terms of how far the distribution is from the Gaussian distribution 
[48]. 
One neural implementation of EPP is Maximum Likelihood Hebbian Learning (MLHL) [36]. It identifies 
interestingness by maximizing the probability of the residuals under specific probability density functions 
that are non-Gaussian. 
An extended version of this model is the Cooperative Maximum Likelihood Hebbian Learning (CMLHL) 
[25, 49] model. CMLHL is based on MLHL [36] adding lateral connections [25, 49], which have been 
derived from the Rectified Gaussian Distribution [48]. The resultant net can find the independent factors 
of a data set but does so in a way that captures some type of global ordering in the data set. 
Considering an N-dimensional input vector ( x ), and an M-dimensional output vector ( y), with Wij being 

the weight (linking input j to output i), then CMLHL can be expressed [49] as: 
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Weight change:  
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Where:   is the learning rate, [ ]+ is a rectification necessary to ensure that the y -values remain within 

the positive quadrant,   is the "strength" of the lateral connections, b  is the bias parameter, p  is a 



parameter related to the energy function [25, 36] and A  is the symmetric matrix used to modify the 
response to the data [25]. The effect of this matrix is based on the relation between the distances 
separating the output neurons. 

3 System Identification and Modelling 

System identification (SI) [11, 26] aims to obtain mathematical models to estimate the behaviours of a 
physical process whose dynamic equations are unknown. The identification criterion consists in 
evaluating the group of candidate models that best describes the dataset gathered for the experiment; that 
is, given a certain model )( *M , its prediction error may be defined as in Eq. (5), where )(ty  is the real 

output and )|(ˆ *ty is the prediction of this. The goal is to obtain a model that meets the following 

premise [11]: a good model is one that makes good predictions and which produces small errors when the 
observed data is applied. 
Classic SI refers to the parametrical literature, which has its origin in linear system analysis [12]. 
Nevertheless, increased computational capability and the availability of soft computing techniques have 
widened research into SI. ANNs are one of the most interesting soft computing paradigms used in SI. 
When using ANN, the purpose of an identification process is to determine the weight matrix based on the 

observations tZ , so as to obtain the relationships between the network nodes. The supervised learning 
algorithm is then applied to find the estimator θ, so as to obtain the identification criterion. In this case, the 
minimization of the mean square error criterion as defined in Eq. (6) and Eq. (7) is used. The iterative 
minimization scheme is defined in Eq. (8), where θ(t) is the estimated parametrical vector, )(tf  represents 
the search direction and )(t  the step size. 

The SI procedure comprises several steps: the selection of the models and their structure, the learning 
methods, the identification and optimisation criteria and the validation method [11, 12, 50, 51, 52]. 
Validation ensures that the selected model meets the necessary conditions for estimation and prediction. 

Typically, validation is carried out using three different methods: the residual analysis ))(ˆ,( tt   (by 

means of a correlation test between inputs, their residuals and their combinations); the mean squared error 
(MSE) and the generalization error value (normalised sum of squared errors (NSSE), and finally a 
graphical comparison between the desired outputs and the model outcomes through simulation [8, 9, 12]. 
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4 Genetic Algorithms for System Optimisation 

Metaheuristic algorithms [53, 54] are considered a computational method that optimises a problem by 
iteratively trying to improve a candidate solution with regards to a given measure of quality. 
Metaheuristics are powerful strategies that can efficiently detect high-quality (near optimal) solutions to 
complex optimization problems within reasonable running time. 
Metaheuristics make few or no assumptions about the problem being optimised and can search very large 
spaces of candidate solutions. Among these algorithms, there are two well-known types: the genetic 
algorithms [55, 56, 57], and the simulated annealing algorithm [58, 59]; other methods can be: Tabu 
search [60, 61] and ant colony optimisation [62]. 
GA [19, 20, 21, 63, 64] are a type heuristic search that mimics the process of natural evolution (Darwin's 
theory about evolution). This heuristic is routinely used to generate useful solutions to optimisation and 
search problems. It solves both constrained and unconstrained optimisation problems. 
Genetic algorithms find (xi, ... , xn) such that f(xi, ... , xn) will be maximum or minimum. The functions are 
shown from Eq. (9) to Eq. (11), where f(x) is the fitness function, c(x) represents inequality constraints, 



ceq(x) represents the equality constraints, m is the number of nonlinear inequality constraints and mt is 
the total number of nonlinear constraints: 
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5 A Real Case Study: Optimising a Dental Milling Process 

The acronym CAD/CAM (Computer Aided Design / Computer Aided Manufacturing) refers to a 
production technique that combines computer skills, which are then applied in both the design and 
manufacturing of pieces. Originally applied in the field of engineering, its use is now widespread, 
extending to many other areas. 
In the field of dentistry, CAD/CAM systems are used primarily to manufacture fixed prosthetic 
restorations such as inlays, veneers and crowns. During the last decade, the technological evolution of 
these systems has provided restoration alternatives to rehabilitate teeth deficiencies, using different 
materials such as porcelain, composite and metal blocks, which previously could not be processed due to 
technical limitations [65]. 
There is currently an increased interest in manufacturing pillars and in making the structure of the 
prosthesis implant using CAD/CAM technology [1]. There are several reasons for this increase. First, the 
structure of the prosthetic implant is constructed from a solid block of material. With this specific 
production technique, the material is more homogeneous and contains high mechanical properties. 
Second, the inaccuracies are reduced since the processes of waxing, coating and casting no longer exist 
[66]. The prosthetic implants drawn up by CAD/CAM technology present more passive adjustment than 
the cast structures [2, 3, 4]. 
Since 1971 a marginal fit of less than 120 micrometers in tooth-supported restorations [67] has been 
regarded as clinically acceptable. In the prosthetic implant, the tolerable discrepancy between the implant 
abutment and the prosthetic supra-structure can be variable. A mismatch that does not exceed 30 
micrometers can be tolerated [68], although Branemark et al. declare that the discrepancy must never 
exceed 10 micrometers [69]. However there is a consensus that the lack of passive adjustment acts as a 
causal factor in many technical complications such as loosening and/or fractures in the metal structure, 
retaining screws, abutments and ceramic or acrylic [70]. 
To perform any one of the many treatments allowed by this systematic approach, the CAD/CAM systems 
consist of the following stages of processing: 
1. Digitization of the substrate that will make the restoration. It can be taken directly, optically in the 
patient's mouth, or extra-orally, after making a conventional impression, and emptied in a plaster cast. 
2. Computer aided design. This is done by the specific software for each system, designing the prosthetic 
cap structure or the final restoration. This step is not done in those cases where the digitization is from the 
scanning of the structure to be obtained. 
3. Once the design of the structure is finished, the next step is to manufacture the structure, which is 
achieved by applying the third stage of processing, the machining or CAM phase [5]. 
The operating system is accomplished through computer numerical control (CNC). The data obtained 
using the CAD-software are converted into "commands" which are “read” by the milling machine and 
then translated into drilling steps. 
This multidisciplinary study uses a 5-axis milling (latest generation) device. In addition to controlling 
movement between the tool and the piece in three axes, this 5-axis machine can also control both the 
rotation of the piece in two axes, one perpendicular to the axis of the tool and the other parallel to it, and 
the rotation of the piece on a horizontal axis with the inclination of the tool around an axis perpendicular 
to the former. The advantages of 5-axis machines are numerous: it allows complete multilateral 
machining in a single cycle, which implies a reduction of non-productive time and eliminates the lack of 
precision arising from the multiple ties of the piece. It also allows better access to restricted areas difficult 
to reach. The angle adjustment can be freely defined. Another advantage is that it is possible to use 
shorter and more rigid tools, which results in improved surface finish. 



This multidisciplinary research describes the way in which a soft computing system can be applied to 
optimise the data gathered by means of a Machining Milling Center of HERMLE type-C 20 U (iTNC 
530), with swivelling rotary (280 mm), with a control system using high precision drills and bits (Fig. 4 to 
Fig. 6), by optimising the time error detection for manufacturing dental metal. Fig. 1 to Fig. 3 show the 
metal pieces manufacturing process using a dynamic high-precision machining centre with five axes. 
 

Fig. 1 Metal milled cobalt-chromium consists of a bridge with 
two lower molars 

Fig. 2 Occlusal view of milled cobalt-chromium consists 
of a bridge with two lower molars 

  

Fig. 3 Finished metal-porcelain bridgework Fig. 4 Milling of cobalt-chromium specimens 

 

Fig. 5 Machining/ Milling Center of HERMLE type-C 20 U 
(iTNC 530), with swivelling rotary (280 mm), with a control 

system using drills and bits of high precision 

Fig. 6 Metal pieces manufactured by a dynamic high-
precision machining centre with five axes 

 
The case study is described by an initial data set of 98 samples obtained by the dental scanner in the 
manufacturing of dental pieces with different tool types (plane, toric, spherical and drill) and 
characterized by 8 input variables (Tool, Radius, Revolutions, Feed rate X, Y and Z, Thickness, Initial 



Temperature) and 1 output variable (Time Error for manufacturing) as shown in Table 1. Time error for 
manufacturing is the difference between the estimated time by the machine itself and real production time 
(negative values indicate that real time exceeds estimated time). 
 

Variable (Units) Range of values 

Type of tool Plane, toric, spherical and drill 

Radius (mm.) 0.25 to 1.5 

Revolutions per minute (RPM) 7,500 to 38,000 

Feed rate X (mm. by minute) 0 to 3,000 

Feed rate Y (mm. by minute) 0 to 3,000 

Feed rate Z (mm. by minute) 50 to 2,000 

Thickness (mm.) 10 to 18 

Temperature (ºC) 24.1 to 31 

Real time of work (s) 6 to 1,794 

Time errors for manufacturing (s) -28 to -255 

Table 1 Values of each variable used in the process 

6 A Novel Soft Computing Procedure to Optimise a Dental Milling Process 

The manufacturing of dental pieces process optimisation in terms of time errors, based on the 
optimisation of the system behaviour, is carried out within the framework of this study by means of an 
ANN estimated model. The time error parameter is chosen as an important factor in this process (in terms 
of economical benefits for the company) as an example to show the potential of this novel soft computing 
proposal. 
 
6.1 Identification of the Relevant Features 
Firstly, the dental manufacturing process is parameterised and its dynamic performance in normal 
operation is obtained by the real process of manufacturing dental pieces. Then, the gathered data is 
processed using projection models based on the analysis of parameters as the variance [22, 23, 24] or the 
kurtosis as CMLHL [25, 46, 47, 49]. This is done to identify internal data set structures in order to 
analyse whether the data set is sufficiently representative and to identify the most relevant features in the 
second step. 
 
6.2 Modelling and optimisation of a normal dental milling operation  
Once the relevant variables and their transformations have been extracted from the production data, then a 
model capable of fitting the normal manufacturing operation must be obtained. This is done to identify 
bias in the estimated production time. The different model learning methods used in this study were 
implemented in Matlab© [71]. The model structures were analysed in order to obtain the models that best 
suited the dataset. Since the number of examples was somewhat small; a 10-fold cross-validation schema 
was selected. The number of samples is low as they were obtained during the real process, delaying the 
company timing. The final model is obtained using the entire data set. 
Moreover, several different indexes were used to validate the models [8, 9] such as the percentage 

representation of the estimated model; the graphical representation for the prediction ( m)|(ty1ˆ ) versus 

the measured output ( (t)y1 ); the loss function or error function (V) and the generalization error value. 

The percentage representation of the estimated model is calculated as the normalised mean error for the 
prediction (FIT1, FIT) using the validation data set and the complete data set, respectively. The loss 
function or error function (V) is the numeric value of the mean square error (MSE) that is computed using 
the estimation data set; the generalisation error value is the numeric value of the normalised sum of 
square errors (NSSE) that is computed using the validation data set. Finally, is calculated the variance of 
the mean square errors () [34, 72]. 
Once the model for the time error in the manufacturing of dental pieces is selected, this model is used as a 
fitness function in GA's in order to obtain the best optimisation of the time errors. This optimisation 
process begins with a set of solutions called population (chromosomes). Each individual in the population 



is then evaluated by the fitness function obtained in the last step (ANN model of the manufacturing 
system). GA and the different types of genetic operators (selection, crossover and mutation) used in this 
study were implemented in Matlab© [73]. The complete novel soft computing procedure is showed in 
Fig. 7. 

 

 

 
 

 

Fig. 7 A novel soft computing procedure to optimise a Dental Milling Process 

7 Results 

This case study initially analysed the data set in order to obtain the variables/characteristics that are most 
closely related to manufacturing time errors. 
In the first step, several unsupervised models were applied for the sake of comparison. In this case a 
neural version of PCA and CMLHL were applied as powerful techniques for identifying internal dataset 
structures. The axes forming the projections (Fig. 8.a and Fig. 8.b) represent combinations of the 
variables contained in the original datasets. In the case of PCA, the model is looking for those directions 
with the biggest variance, while CMLHL is looking for the kurtosis (directions which are as little 
Gaussian as possible) [25, 36]. 
As may be seen in Fig. 8, PCA (Fig. 8.a) and CMLHL (Fig. 8.b), both methods found a clear internal 
structure in the dataset by identifying several clusters (see Table 2 and Table 3). Both also identified 
revolutions and radius as relevant variables. It is clear that CMLHL provides a more sparse representation 
than the PCA, and that CMLHL projections provide more clear information identifying parameters such 
as temperature and time error as other important variables. 
An analysis of the results obtained with the CMLHL model (Fig. 8.b) leads to the conclusion that this 
method has identified several different clusters ordered by radius, revolutions and temperature. Inside 
each cluster, there are further classifications by 'time error' and the dataset can be said to have an 
interesting internal structure based on the clusters identified. 
 

Obtaining Data from Dental Scanner in real 
process of manufacturing dental pieces 

Data processing using projection models 
(PCA & CMLHL) 

1. Identify internal data set structures 

2. Identify the most relevant features 

Use Relevant Variables  in next step

Obtain Model capable of fitting the 
manufacturing operation of dental pieces 

Model as Fitness function in GA

Best optimization of time errors in 
production using Genetic Algorithms 



Fig. 8.a Projection of PCA 

 

Fig. 8.b CMLHL projection after 100,000 iterations using a learning rate of 0.01, p=0.5 and =0.05 

 

Fig. 8 PCA projection (Fig. 8.a) and CMLHL projection (Fig. 8.b) 

 
Cluster Samples RPM Radius 

- 2 7,500 1.25 

C1 9, 17, 37, 45, 53, 55, 62, 70, 74, 83, 91 9,600 1.05 

C2 3, 10, 18, 23, 29, 38, 46, 56, 63, 71, 75, 92 10,600 1.5 

- 28 13,500 0.75 

C3 

C3.1 
1, 8, 16, 20, 30, 32, 36, 40, 44, 48, 52, 54, 58, 61, 65, 
69, 73, 77, 82, 85, 90, 94 

17,000 

1  34 17,000 

C3.2 5, 12 18,000 

C3.3 4, 11, 19, 24, 31, 39, 47, 57, 64, 72, 84, 93 17,800 



C4 

7, 15, 22, 26, 27, 33, 41, 43, 49, 51, 60, 66, 68, 86, 89, 
95, 98 22,000 

0.75 

1 1 

C5 6, 13, 21, 42, 50, 59, 67, 79, 87, 96 24,000 0.75 

- 25 30,000 0.5 

C6 14, 80, 88, 97 38,000 0.25 

 

Table 2 Samples description and clusters obtained by using PCA method 

 

Cluster Samples RPM Radius Temperature 

C1 80, 14, 97 38,000 0.25 24.1 to 25.3 

- 88 38,000 0.25 28.4 

- 25 30,000 0.5 25.7 

C2 79, 13, 21, 6, 96 24,000 0.75 24.1 to 25.3 

C3 87, 59, 42, 67, 50 24,000 0.75 28.4 to 31 

C4 78, 81, 15, 22, 7, 95, 98, 26 22,000 0.75 24.1 to 25.7 

C5 86, 89, 60, 41, 43, 27, 33, 35, 66, 68, 49, 51 22,000 0.75, 1 28.4 to 31 

C6 73, 77, 76, 8, 11, 12, 16, 20, 19, 90, 94, 1, 4, 93, 5 
17,000, 
17,800, 
18,000 

1 24.1 to 25.3 

- 24 17,800 1 25.7 

C7 82, 85, 84, 54, 58, 57, 52, 36, 40, 39 
17,000, 
17,800 

1 28.4 to 29.3 

C8 30, 32, 61, 65, 31, 64, 44, 48, 69, 47, 72 
17,000, 
17,800 

1 30.4 , 31 

- 28 13,500 0.75 30.4 

C9 74, 75, 9, 10, 17, 18, 91, 3, 92 
9,600, 
10,600 

1.05 , 
1.5 

24.1 to 25.3 

- 23 10,600 1.5 25.7 

C10 83, 55, 56, 53, 37, 38, 62, 29, 63, 45, 70, 46, 71 
9,600, 
10,600 

1.05 , 
1.5 

28.4 to 31 

- 2 7,500 1.25  

 

Table 3 Samples description and clusters obtained by using CMLHL method 

 

When the dataset is considered sufficiently informative, as in this case, the next step is to model the 
relations between inputs and production time errors in the process, which is begun by applying several 
artificial neural network modelling systems. 
 
A multilayer perceptron network (feedforward network) was used to monitor time error detection in the 
manufacturing of dental pieces. Data set is pre-processed from the input and output normalization step 
(normalizing the minimum and maximum values to [-1 1] ), the reduction of the input vectors dimension 
(the data set gathered in the previous step). ANN is trained from the most widely used training algorithms 
such as the Lenvenberg-Marquardt algorithm [74], quasi-Newton methods [75], the resilient back-
propagation algorithm [76] and the escalated conjugate gradient algorithm [77], using criteria from early 
stopping and Bayesian regularization techniques [78]. 



The graphic representations of the prediction ( m)|(ty1ˆ ) of time error detection in the manufacturing of 

dental pieces versus the real time measured ( (t)y1 ) for the model chosen are shown in Fig. 9. These 

figures were used to validate the models. In Fig. 9.a and Fig. 9.b the X-axis shows the total number of 
samples. In Fig. 9.a and Fig. 9.b the Y-axis represents the normalized output and unnormalised output 
variable range, respectively, which refers to the time errors for manufacturing. 
Table 4 shows the features for the best ANN proposed: the characteristics and qualities for estimation and 
prediction, and its indexes (indicator values). The final model chosen is a Feedforward Network. The 
ANN structure has 30 hyperbolic tangent units (layer 1), 20 hidden hyperbolic tangent units (layer 2), 5 
hidden hyperbolic tangent units (layer 3) and 1 linear output unit. The network is estimated by using the 
Lenvenberg-Marquardt algorithm with Bayesian regularized criterion. This model does not only present a 
lower loss function (V) and error values (NSSE), but also a higher system representation index value 
FIT1. Also a good FIT value and a small variance of the mean square errors (). 
From Fig. 9, it may be concluded that the ANN selected is able to simulate and predict the behaviour of 
time errors for the manufacturing of dental pieces (as a consequence of the production process). They are 
capable of modelling more than 86% of the actual measurements. 
 

Model Indexes 

The feedforward network has 30 hyperbolic tangent units (layer 1), 20 hidden hyperbolic 
tangent units (layer 2), 5 hidden hyperbolic tangent units (layer 3) and 1 linear output 
unit [30 20 5 1]. The network is estimated using the resilient back-propagation algorithm 
with early stopping criterion. 

FIT1: 71.03%;V: 0.024;  
NSSE: 0.033;  

: 0.00023; FIT: 85.19% 

The feedforward network has 30 hyperbolic tangent units (layer 1), 25 hidden hyperbolic 
tangent units (layer 2), 25 hidden hyperbolic tangent units (layer 3), 4 hidden hyperbolic 
tangent units (layer 4) and 1 linear output unit [30 25 25 4 1]. The network is estimated 
using the resilient backpropagation algorithm with early stopping criterion. 

FIT1: 73.00%;V: 0.017;  
NSSE: 0.038;  

: 0.00007; FIT: 87.43% 

The feedforward network has a structure [3 30 3 1]. The network is estimated using the 
Lenvenberg-Marquardt algorithm with Bayesian regularized criterion. 

FIT1: 74.36%;V: 0.018;  
NSSE: 0.019;  

: 0.00042; FIT: 86.45% 

The feedforward network has a structure [30 20 5 1]. The network is estimated using the 
Lenvenberg-Marquardt algorithm with Bayesian regularized criterion. 

FIT1: 78.57%;V: 0.0097;  
NSSE: 0.015;  

: 0.000059; FIT: 86.87% 

The feedforward network has a structure [30 25 25 4 1]. The network is estimated using 
the Lenvenberg-Marquardt algorithm with Bayesian regularized criterion. 

FIT1: 75.31%;V: 0.015;  
NSSE: 0.0168;  

: 0.00012; FIT: 85.03% 

The feedforward network has a structure [30 20 5 1]. The network is estimated using the 
quasi-Newton algorithm with early stopping criterion. 

FIT1: 71.17%;V: 0.023;  
NSSE: 0.028;  

: 0.000054; FIT: 88.49% 

The feedforward network has a structure [30 20 5 1]. The network is estimated using the 
escalated conjugate gradient algorithm with early stopping criterion. 

FIT1: 71.37%;V: 0.018;  
NSSE: 0.042;  

: 0.00012; FIT: 85.76% 

The feedforward network has a structure [30 20 5 1]. The network is estimated using the 
Lenvenberg-Marquardt algorithm with early stopping criterion. 

FIT1: 70.17%;V: 0.035;  
NSSE: 0.045;  

: 0.0037; FIT: 89.39% 

The feedforward network has a structure [30 25 25 4 1]. The network is estimated using 
the Lenvenberg-Marquardt algorithm with early stopping criterion. 

FIT1: 77.67%;V: 0.0098;  
NSSE: 0.035;  

: 0.000045; FIT: 89.39% 

Table 4 Indicator values for several proposed models of time error for manufacturing under the Dental Milling process 
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Fig. 9.a Normalized output response of the model  Fig. 9.b Unnormalized output response of the model 

Fig. 9 Output response of the model: The feedforward network [30 20 5 1] is estimated using the Lenvenberg-Marquardt 
algorithm with Bayesian regularized criterion. The current output (solid line) is graphically presented with prediction (dash-dot 

line) 

 
The model of the time error obtained may be used not only to predict time errors for the manufacture of 
dental pieces, but as a fitness function in the next step to determine the best operating conditions of dental 
milling processes. GA starts with a randomly generated initial population of size 100 individuals. 
Tournament selection is used to determine the parents for the next generation. Individuals from the 
current population are selected proportionally to their fitness, thus forming the basis for the next 
generation. Two-point crossover combines two parents to form a new individual for the next generation. 
And adaptive feasible mutation makes small changes in the individuals in the population. The population 
obtained by these genetic modifications is evaluated against the fitness function and enters a new search 
process in the next generation. The algorithm stops after it reaches a fixed number of generations and the 
best individual is returned as a solution to the given problem. Fig. 10 shows the output response of the 
time error for different unnormalised input variable ranges. In Fig. 10.a the X-axis shows the revolutions 
per minute (RPM), from 10,000 to 35,000 RPM. The Y-axis shows the temperature from 24ºC to 31ºC, 
and the Z-axis represents the unnormalised output variable range from -200 s to 200 s (seconds). The time 
error is also shown on the bar. In Fig. 10.b the X-axis shows the temperature from 24ºC to 31ºC, and the 
Y-axis represents the unnormalised output variable range, from -100 s to 60 s for a constant value of 
20,000 RPM. In both figures the radius is fixed to a constant value of 0.75 mm. In Fig. 10.c the X-axis 
shows the radius, from 0.25 mm. to 1.5 mm. The Y-axis shows the temperature from 24ºC to 31 ºC and 
the Z-axis represents the unnormalised output variable range from -80 s to 20 s. The time error is shown 
on the bar, too. In Fig. 10.d the X-axis shows the temperature from 24ºC to 31ºC, and the Y-axis 
represents the unnormalised output variable range, from -30 s to 5 s for a constant radius value of 1 mm. 
In both figures the number of revolutions is fixed per minute to a constant value of 30,000 RPM. 
Some results obtained in order to obtain the best optimisation of the time errors for different conditions of 
operation fixed are shown following. For example, the time error can be optimised for different values of 
radius, temperature and RPM; i.e., it is possible to achieve a time error close to zero for a radius of 1.45 
mm, 22,834 RPM and a temperature of 27.69ºC. Furthermore, if the temperature is fixed to 26ºC and the 
time error is close to zero, the revolutions and the radius to optimise those variables are 37,592 RPM and 
1 mm., respectively. 
 

Fig. 10.a 3D graph, the X-axis represents the RPM, the Y-axis 
the temperature and the Z-axis the output (time error). The 

other variable radius is fixed to 0.75 mm 

Fig. 10.b 2D graph, the X-axis represents the temperature and 
the Y-axis the output (time error). The others variables, RPM 
and radius are fixed to 20,000 RPM and 0,75 mm, respectivily 



Fig. 10.c 3D graph, the X-axis represents de radius, de Y-axis 
the temperature and the Z-axis the output (time error). The 

other variable, RPM is fixed to 30,000 RPM 

Fig. 10.d 2D graph, the X-axis represents the temperature and 
the Y-axis the output (time error).The others variables, radius 

and RPM are fixed to 1 mm and 30,000 RPM, respectivily 

Fig. 10 Output response of the time error for different unnormalised input variable ranges 

8 Conclusions and future work 

The novel soft computing optimisation process described in this study can be used to optimise machine 
parameters for industrial processes, based on the obtained results. This method increases the companies’ 
efficiency and substantially reduces the cost of preparing and setting machine processes. It also helps in 
the production process using new materials. We have used this method for optimisation and adjustments 
during the manufacturing process of dental pieces such as implants according to medical specifications 
for precise mouldings. 
The method proposed is based on the selection of the most important features in an initial step. ANN are 
then used for modelling the features. Finally, a GA tries to achieve the best conditions for manufacturing 
from the model. The ANN model is used as fitness function in the GA. 
The dental milling process presents an important manufacturing time error rate of about 29%. This is due 
to the difference between the estimated time of the machine itself and the real production time. The 
obtained model is capable of modelling more than 86% of the actual measurements in relation to time 
error (modelling more than 96.8% of real time work). This helps to reduce the error and the variability 
rate of manufacturing processes down to 4%, compared to the initial 29%, which is an acceptable error 
rate in planning work for dental milling. 
Future lines of research include modelling the temperature difference and the erosion difference 
(difference between diameters of the tool before and after the manufacturing), which helps to measure the 
accuracy of the dental milling process. Additionally, it will investigate the selection of the most suitable 
features using a wrapper feature selection method, in which genetic algorithms and neural networks are 
hybridized. Finally, an algorithm will be developed to automatically identify the best operating 
conditions: minor time errors for the manufacturing of dental pieces and minor erosion. The resulting 
model would moreover be applied to different metals used in prosthetic dentistry and in other industrial 
processes, such as the automotive sector. 
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