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Abstract

In this paper, we propose a system for face identification. Given two query
face images, our task is to tell whether or not they are of the same person.
The main contribution of this paper comes from two aspects: (1) We adopt
the one-shot similarity kernel [35] for learning the similarity of two face im-
ages. The learned similarity measures are then used to map a face image
to reference images. (2) We propose a graph-based method for selecting an
optimal set of reference images. Instead of directly working on the image
features, we use the learned similarity to the reference images as the new
features and compute the corresponding matching score of the two query im-
ages. Our approach is effective and easy to implement. We show encouraging
and favorable results on the “Labeled Faces in the Wild” - a challenging data
set of faces.

Keywords: Face identification, Message passing model, One-shot
similarity, Similarity space

1. Introduction

Major progress has been made in the area of face recognition [26, 53,
54] and recognizing the face of a person from general images has become
increasingly robust [32]. However, to be practical enough to deal with a range
of variations such as lighting, pose change, and occlusion, a face recognition
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system often requires a number of training images from each person, which is
not always available. In this paper, we tackle a somewhat different problem:
face identification. Given a pair of face images, the system answers the
question whether or not they are from the same person.

As shown in Fig. 1, in general, face identification has two main steps: (1)
feature extraction, and (2) feature-based matching (comparison). In the past,
a variety of features have been proposed. Local Binary Pattern (LBP) [24]
and its varieties [34] are among popular facial features, which represent each
pixel as a binary number by thresholding its intensity value between its sur-
rounding neighborhood’s and encode these binary numbers by a histogram.
Gabor wavelets [22] has also been used to describe the face appearance which
normalizes and replaces the intensity values by edge responses [3]. SIFT de-
scriptor [21] has been widely used for image representation due to its scale,
orientation, and affine distortion invariant. Guillaumin et al. [14] proposed
to use SIFT descriptors computed at the landmarks on the face (corners of
the mouth, eyes, and nose) as the face feature. As reported in [34, 15], the
baseline results using these features by standard similarity measure, e.g. FEu-
clidean distance, are not satisfactory. The reason is faces of the same person
may have large variation caused by difference in lighting [2], pose [30], ap-
pearance, expression [11], partial occlusion [28] and cluster as illustrated in
Fig. 2.

To increase the accuracy, many researchers focus on designing a more
faithful similarity measure [5; 9, 10, 19]. Most of them learn a Mahalanobis
metric [37, 33] based on an objective function which makes the distance be-
tween the data with the same label much smaller than the distances between
those with different labels. Formally, the Mahanalobis distance between two
data z,y € RYis M D(z,y) = (x —y)TM(z —y), the goal is to learn a proper
symmetric positive definite matrix M € R%*?. Information theoretic metric
learning (ITML) [6] is one of the state-of-the-art methods for Mahalanobis
metric learning which uses an information theoretic approach to optimize M
under the constraints that the similarity between each pair labeled “same”
is below a specified threshold and the one between each pair labeled “dif-
ferent” is above another specified threshold. Chechik et al. [42] learnt a
parametric similarity function which gives supervision on the relative simi-
larity between two pairs of images through a bilinear form. Guillaumin et
al. proposed a logistic discriminant-based metric learning method (LDML)
[15] which relates to the classical logistic regression having the advantage
of giving well-calibrated probabilities that pairs labeled “same”. However,



these metric learning methods face the problem of over-fitting.

In this paper, we proposed a new reference-based method to address the
problems mentioned above. Rather than directly computing the distances of
two face images, we utilize the similarities to learned reference faces as mea-
surement. Directly measuring the distance between pairs of faces is quite
difficult, because the variations between the images of the same face due to
illumination and viewing direction are almost always larger than image varia-
tions due to change in face identify [44]. Therefore, by learning a proper set of
face images and similarity functions, we hope the new features would be able
to capture the intrinsic representation of a person’s face. This paper includes
two main contributions. First, we propose a new graph model for automatic
selection of reference faces. A semi-supervised message passing model is used
to select the references which are informative and representative. Messages
(based on similarity) are propagated between faces and potential references
so that we can achieve the most informative references. Second, we give a
proper way to translate appearance feature to reference-based feature which
captures better within-class similarity. The translation is based on one-shot
similarity kernel, which is the average prediction of two classifiers learned
from one example in a pair repeatedly. We show that the new similarity
measure can make the distance space more compact and discriminative than
metric learning approaches. We evaluate our approach on a challenging data
set and obtain encouraging results.

The rest of this paper is organized as follows. Sec. 2 reviews some pre-
vious methods for face identification. Sec. 3.1 proposes the automatical
algorithm for reference faces selection. In Sec. 3.2, we show how to identify
faces on the similarity space. Sec. 4 provides our experimental results on the
challenge data set “Labeled Faces in the Wild”. Finally, the conclusions are
given in Sec. 5.

2. Related work

In recent years, several approaches have been proposed for face identifica-
tion. For example, Nowak et al. [38] quantize the corresponding patch pairs
sampled from a face image pair by extremely randomized trees and build a
similarity measure from the encoded patch pairs to compute the similarity
of two face images. Hua et al. [43] take a part based face representation and
propose to utilize both elastic and partial matching to handle the different
visual variations in face images. Pinto et al. [27] using several element-wise
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Figure 1: The general framework of face identification. Any facial features and similarity
measures can be employed in this framework.
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differences (e.g. squared and absolute-value) between the feature vectors to
represent a pair of face images and boost the identification performance by
multi kernel learning. Both of the approaches in [15, 39] are based on metric
learning, the difference is the former one defines the similarity between a pair
images by sigmoid function, while the later one uses cosine function. Repre-
senting an image by a reference set has received much attention during the
last several years. The "simile” recognizer in [23] represents the face image
by the scores of a sequence of classifiers. There are two main differences be-
tween our method and [23]: 1) In [23], they collect a reference set of labeled
face images (identities are known) and about 600 faces are required for each
reference person for training, whereas our method automatically selects the
references from a set of unlabeled face images. 2) To train the classifier, they
need to select several useful parts (e.g., eyebrows, eyes) from the face, which
means their method also depends on part detectors. However, we directly
compute the similarities between pairs of holistic faces. Wolf et al. [36] use a
rank vector to represent an image which is generated by retrieving the image
in the reference set. Cao et al. [4] densely sample the local feature vectors
from the reference face images and generate the codebook by clustering the
local feature vectors. Then the input face image is represented by the code
quantized by the codebook.



Figure 2: Face images of the same person may have large visual variations due to lighting
(upper left), pose (upper right), facial appearance and expression (the middle row), partial
occlusion (lower left) and cluster (lower right). The pairs surrounded by green rectangles
and those surrounded by red rectangles are correctly and incorrectly classified by our
method, respectively.

3. Method

In this section, we propose our reference-based method for the problem
of face identification. There are two main steps in our method: First, a
proper set of reference faces is selected from the training set through the
proposed constrained message passing model. Then, based on the learned
references, we map the original features of two test faces to the feature space
adopting the one-shot similarity kernel [35] and obtain two new feature vec-
tors, which are used for the final identification. The discriminative power of
the new feature vectors will depend on the selection of reference faces. We
adopt a constrained message passing model to select reference faces, which
is introduced below.



3.1. Constrained Message Passing Model

In this section, we show how to choose the reference faces. A direct
approach would choose the entire training set. However, this would introduce
redundancy and large overhead in computing.

Most techniques for identifying references, e.g., k-means clustering, re-
quire both a pre-determined number of exemplars and an initial set of can-
didate exemplars. However, detecting references (“exemplars”) goes beyond
simple clustering as references themselves carry key information [41]. The
optimal set of references is the one for which the sum of similarities of within-
class and between-class points are minimized and maximized respectively.
Graph-based learning has been proved to be effective to improve the simi-
larity measure between data points [56, 55]. Here we also propose a graph
model to learn a set of representative reference faces. This method is in spirit
similar to message passing model (MPM)[41], but with some field-specific
constraints.

We formulate the problem of finding the reference faces as a MAP infer-
ence problem by representing it using the binary grid factor-graph [12]. The
graph model is shown in Fig. 3. We adopt an off-line approach to search
the references among the training samples. Considering that there are N
faces in the training set, we have N x N pairwise similarities s(7, j) between
N faces i,j € (1...N). We define N? hidden binary variables ¢;;. Setting
c;j = 1 denotes that face i’s favorite reference is j, and ¢; = 1 means that
1 is a reference face. The graphical model in Fig. 3 has nodes representing
three types of functions. Functions of type [ ensure that each point can be
assigned to at most one reference. Functions of type F introduce a consis-
tency constraint: if 3i,¢;; = 1 = ¢;; = 1. Finally, the S;; function nodes
incorporate the input similarities s;; between face points and evaluate to the
similarity s;; when ¢;; = 1 . Formally, we define the functions as:

—oo if Zj cij # 1,

0 otherwise.

Ii(cilaci27---7CiN) = { (1)

—00 iijj = O, Zz Cij > O,

Ej(Clj,ng, ~-~>CNj) = { O (2)

otherwise.
8(7'7.]> ZfCZJ - 17
() { 0 otherwise. )
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Figure 3: A graph model for the binary variable factor graph. I node represents the con-
straint that one person can only choose one exemplar; F node emphasizes the restriction
that a person must choose itself as an exemplar if others choose him as an exemplar. S
nodes shows that the latent variables c;; is decided by the similarity s;;.
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Figure 4: The message passing model defines messages that are propagated between face
points indicating the similarity each face has to another. (A) shows the propagation
process from one face to all the other candidate exemplars. (B) shows the propagation
process from one candidate exemplar to other faces. Note that all the information (r and
a) are based on the similarity between all the faces.

Hence the MAP formulation of the message passing model in our framework
is:
S(eny-venn) = Y Siley) + Y Lilen) + Y Eyley), (4)
5, i J

where ¢;. represents {¢y, Gia,...,cin} and c,; represents {cij,caj,...,Cn;}-
The approximate MAP setting for the ¢;; variables is inferred by the max-sum
algorithm, a log-domain equivalent of max-product [40]. Fig. 4 illustrates
that two kinds of messages are passed between data points including candi-
date references and normal faces. Candidate references are those who have
potential to be the references, while the normal faces are the remaining ones.
The messages have an intuitive interpretation: the “responsibility” r(i, j)
indicates how much face point ¢ wants the other face j to be its exemplar;
the “availability” a(i,j) is an indicator of the extent face i considers itself
as a perfect exemplar of face j. The messages are updated and exchanged
between the hidden variables and all the function nodes in the following way
[41]:

i) - { e mlorte ) =i

7 min[0, r(j,7) + Zk;ﬁj,i max|0,7(k, j)]] @ # J.



r(i,) = s(i.3) = max(s(i. k) + ali, k). (®

To apply the factor graph model to our problem of finding the refer-
ence faces, we must add some constraints. If two faces are known to be the
same face, they should be linked together. To ensure the constraint, the
method in [13] added some fictitious “meta-faces” or MTFs. The MTFs
allow them to explicitly enforce the must-link constraints and cannot-link
constraints, as well as to propagate must-link constraints and construct a
mechanism for cannot-link constraints to be propagated. However, this ap-
proach significantly complicates the updating of messages. Therefore, we
adopt a simpler strategy. For those who should be linked together, denoted
as SL = {(i,j)|i should linked to j} with assuming that (i,7) € SL,
we can assign a face i to a reference by changing the updating Eq. (5) to:

N >y max[0, r(k, 5)], (1,7) € SL,
a(i,j) = q min[0,r(j,§) + Y _ max[0,r(k, j)]], (i.j) ¢ SL. (7)
k#ji

After convergence we are ready to select the reference faces. Each value
a(i,1) +r(i,1) indicates the confidence for face i to be a reference. Then, we
set a threshold to choose the final references as:

References = {ila(i,i) + r(i,i) > 0}. (8)

By changing the threshold ¢ > 0, we can control the number of references.
In our experiments, we set 6 = 0.

We stress that the proposed method does not fix the number of references.
Through passing messages (similarities), one face tells every other face its
ranked list of favorite reference. A candidate reference tells other faces the
degree of compatibility to be a reference. Every sent message is evaluated
through a simple computation on the basis of the received messages and the
similarity matrix. After several message-passing rounds, every face knows its
favorite reference. In Sec. 4.2.3, we show that MPM is a powerful technology
to select the proper references and to automatically determine their number.

3.2. Identification in the similarity space

In this section, we show how to measure the similarity between a pair of
test faces based on the reference faces.



We represent face images as d-dimensional vectors defined on the origi-
nal feature space R%. Let T = {y1,72, ..., 7o} be the feature vectors of the
reference faces and {z;,x;} be the ones of two test faces. Given a simi-
larity function f(-,-), the face image x € R? is mapped into the similarity
space [25] R™. Then, the feature vector of a test face = can be described by
an n-dimensional similarity vector S(x, T) = [f(z,71), f(x,Y2), .., f(z,v)]T.
Note that, each element of S(x,T) describes a similarity measure between
a reference face and the test face. Intuitively, if z; is similar to z;, S(z;, T)
should be similar to S(z;, T). This property has been discussed explicitly in
[7].

Clearly, the key problem for obtaining S is to find a proper similarity
function f(-,-). Euclidean metric is the most frequently-used similarity mea-
sure, the similarity between a novel face x and a reference face v € T based
on Euclidean metric could be defined by a redial basis function (RBF) kernel
8] as

(z.7) = exp(~ 2By ()
where ED(-,) is the Euclidean distance and o is a hyper-parameter. How-
ever, Euclidean metric is not faithful in the original feature space. Here we
utilize the One-Shot (OS) similarity [35] measure to map the original feature
space into similarity space.

To describe our method better, we briefly review OS similarity here. To
compute the OS similarity for two feature vectors x; and z;, a set A of
“negative” training feature vectors is required which have different labels
(identifies) from those we wish to compare. First a discriminative model is
learned by taking A as the “negative” set and z; as a single positive datum.
This model is then used to classify x;, and obtain a classification prediction
score Scorel. Then the above process is repeated with the roles of x; and x;
switched to obtain Score2. The OS similarity is defined to be the average
of these two scores. The value of this score depends on the classifier used,
such as SVM or LDA, it can be a signed value which gives us a measure
of how likely one vector to be compared is to belong to the same class as
the other. Note that, the OS similarity is not a distance. It is a similarity
measure between —oo to 400 where high positive value means similar and
low value (negative) means dissimilar. In our experiments, the OS similarities
are predominantly negative.

Following the previous work [4, 20], to pursue the compactness, we ap-
ply a dimensionality reduction technique and then L, normalization to the
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similarity vectors S(z, T). Finally, we use the obtained compressed similar-
ity vector S.(x,YT) for identification. Hence, the similarity of a pair {z;, z;}
can be measured by the standard metrics between the compressed similar-
ity vectors ED(Sc(x;, T), Se(x;, T)). We use Euclidean metric as the default
metric on the similarity space without any especial statement. We refer to
this method as RBFM, for reference-based feature mapping.

In our experiments, to reduce the computing complexity, we employ LDA
within the OS scheme. Since the negative set A is used repeatedly, and the
positive class, which contains just one element, does not contribute to the
within class covariance matrix, we can compute the within class covariance
matrix off-line and the OS similarity can be efficiently computed on-line.

4. Experimental results

4.1. Data set

The Labeled Faces in the Wild (LFW)! [18] is a benchmark data set for
face identification, which contains 13233 face images collected from Yahoo!
News in 2002 - 2003. Each face has been labeled with the name of the
person pictured. In total 5749 people appear in the images, 1680 of them
have two or more distinct photos [16]. LFW is a very challenging data set
since the faces in it show a big variety in lighting, pose, appearance, etc as
shown in Fig. 2. To test identification algorithm, the data set provides ten
independent folds for cross validation and each fold contains 600 face pairs
with half labeled “same” and half labeled “different”. In turn, nine folds are
chosen as training data and the remaining one is used for testing. Note that,
when predicting the label of a test pair, neither the identities of the people
in the training set nor the information from the other testing pairs can be
used. The identification accuracy is the percentage of the pairs identified
correctly. The final identification result is reported as the average accuracy
of the ten runs. To test our method on LFW, at each time, we use one
of the nine training folds to produce the negative set and one of the eight
remaining folds to generate the reference faces. LFW has two versions, one
is the original version and the other is the funneled version, in which images
are aligned by the method in [16]. Following [34, 15, 4, 27, 17, 23], we only
use the funneled version in our experiments.

!The dataset can be downloaded from http://vis-www.cs.umass.edu/1fw/
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Table 1: Baseline results on LEW.
| Feature | Euclidean | Hellinger X2 |
LBP 70.78% £ 0.7 | 70.52% + 0.5 | 68.48% £+ 0.4
SIFT 69.42% £ 0.5 | 69.78% £ 0.5 | 70.03% £ 0.7
Gist 68.13% £ 0.6 | 69.12% £ 0.5 | 69.18% = 0.6
LLC 71.18% £ 0.3 | 69.92% + 0.3 | 70.25% =+ 0.2

4.2. Identification result on LFW

4.2.1. Comparison to the baseline

The baseline results on LE'W are reported in Tab. 1, which are obtained
by applying three standard metrics (Euclidean, Hellinger and x? distance)
to three basic features (LBP [24], SIFT [15], Gist [45]) and a bag-of-features
(BoF) representation LLC [46]. Note that, all distance and features lead to a
comparable accuracy of 68% t071%. Since LBP-and SIFT are the two most
popular features used for face identification [34, 15, 39], for fair comparison,
we only use these two basic features hereafter.

Tab. 2 summarizes the performance of our method by using only a single
feature; encouragingly, all our results significantly outperform the baseline.
In our experiments, about 340 faces are selected by MPM from the training
set as the references. To perform dimensionality reduction, a large number
of approaches can be adopted, such as [47, 48, 49, 50, 51, 52, 29, 1]. Here,
we tried three different dimensionality reduction techniques in our method
RBFM, including two linear dimensionality reduction methods PCA and
MDS [1] and one nonlinear dimensionality reduction method Kernel PCA
(KPCA) [29]. We take the implementation from the Matlab Toolbox for
dimensionality reduction ! and we use about 240 dimensions (the total vari-
ance explained by the principal components is equal or greater than 90%)
for the next computation. Unlike the method in [4], these dimensionality
reduction techniques only give a small improvement in our method. Be-
sides Euclidian distance, we could also use the weighted cosine similarity [39]
as the similarity measure on the similarity space. The weights are related
to the eigenvalues obtained in PCA process. We list the results obtained
by weighted cosine similarity in the last column of Tab. 2. The best perfor-
mance achieved is 81.02%+0.3, using SIFT and KPCA with Gaussian kernel.

Thttp://homepage.tudelft.nl/19j49 /Matlab Toolbox for Dimensionality Reduction.html.
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(a) (b)

Figure 5: (Left) Visualization results after the dimension reduction of the similarity vectors
vs. (right) the original feature vectors. Images positioned according to pairwise Euclidean
distances between dimension reduction results of our similarity vectors (left) and those
between original feature vectors (right). Color frames encode subject identities. The faces
in (a) are clustered better than (b).

To give the intuitive explanation, we visualize pairwise Fuclidean distances
between the results after the dimensionality reduction of our similarity vec-
tors and compare with those between the original feature vectors in Fig. 5.
We randomly select six individuals from the LE'W set having at least three
images each. The selected face images are then positioned on the plane by
computing the 2D Multidimensional-Scaling of thier distances (MATLAB’s
mdscale function). Fig. 6 shows the ROC curve comparison between the
two basic features and RBFM based on them with KPCA. The method in
[35] is also based on OS similarity. Hence we also include its ROC curve in
Fig. 6 for comparison. Note that, our ROC curve of RBFM based on LBP
is comparable with the ROC curve of the method in [35] and the one based
on SIFT is better than it.

4.2.2. Quantitative evaluation of the identification methods based on a single
feature

For further comparison, we list the results obtained by the methods based

on only a single feature in Table 3. Note that the “OS Similarity” in [34]

is computed directly on the holistic faces as we do in our experiments. In

[35] each face image pair is represented by randomly selecting 1,000 image

coordinate and sampling patches of normally distributed sizes. The image
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Table 2: Our results on LFW obtained by using a single feature.
| Feature |  PCA | KPCA | MDS | PCA(CS) |

LBP 78.72% £ 0.5 | 78.78% £ 0.5 | 78.60% £ 0.5 | 77.32% £ 0.3
SIFT 80.20% £ 0.3 | 81.02% £ 0.3 | 80.30% £ 0.3 | 80.83% + 0.3

True Positive Rate

RBFM with SIFT
RBFM with LBP
— SIFT
LBP
Ranodm sub-windows OSS

0 1 1 1 1 J
0 0.2 0.4 0.6 0.8 1

False Positive Rate

Figure 6: ROC curve comparison with the two basic features and the random sub-windows
based representation using OS similarity[35].

pair is represented by a vector containing 1,000 OS similarities, one for every
corresponding patch pair. Our best result for LBP is 78.78% + 0.5, better
than the other two results related to OS similarity and the highest score for
a single feature obtained by our method is not significantly different from
the score reported in [4], which is the best for a single feature.

14



Table 3: Performance comparison with the methods using a single feature.

‘ Method H feature ‘ accuracy ‘
OS Similarity [34] LBP 74.63% 4+ 0.5
OS Similarity, patches [35] LBP 76.37% £ 0.7
Single LE [4] Single LE | 81.22% £ 0.5
LDML [15] SIFT 77.50% £ 0.5
RBFM SIFT 81.02% + 0.3

Figure 7: Reference faces selected by MPM (Top) and k-means (Bottom), respectively.

Table 4: Accuracy on LFW based on different references selection methods.
| [ PCA | KPCA | MDS |
k-means || 76.20% + 0.4 | 76.81% + 0.5 | 76.62% 4+ 0.4
random || 75.82% £ 0.5 | 76.04% £+ 0.5 | 75.93% + 0.5
MPM 78.72% + 0.5 | 78.78% + 0.5 | 78.60% =+ 0.5

4.2.3. Quantitative evaluation of the methods for references selection

To quantitatively show the power of constrained message passing model
in our method, we compare it to the reference faces selected by other methods
such as k-means clustering and random selection. The results on LEFW are
shown in Tab. 4. All the results are computed based on the same single
feature LBP. Clearly, no matter which dimensionality reduction method is
used, constrained message passing model achieves better performance. We
also show and compare the reference face images selected by MPM and k-
means in Fig. 7. We pick the first 16 reference face images from the first
folds of LE'W. The reference faces images selected by MPM come from more
individuals and have larger variations in pose, appearance and expression, so
they are more informative.

15



Table 5: Performance comparison to the previously published methods on LFW.

‘ Method H accuracy ‘
Hybrid descriptor-based [34] 78.47% £ 0.5
V1-like/MKL [27] 79.35% + 0.6
Multi-Shot [31] 83.98% =+ 0.4
Combined b/g samples [36] 86.83% £ 0.3
Attribute and Simile classifiers [23] || 85.29% + 1.2
Multiple LE [4] 84.45% + 0.5
MERL-+Nowak [17] 76.18% + 0.6
Combined-LDML [15] 79.27% £ 0.6
CSML [39] 88.00% £ 0.4
Multi-RBFM 84.50% + 0.4

4.2.4. Comparison to the state-of-the-art

As pointed out in [34, 15, 4], different features and metrics may have
complementary information, thus the identification accuracy can be improved
by combining them. Following the previous works, we linearly combine two
features with three different methods of dimension reduction (c¢f. Table 2),
totally eight scores. The distances are transformed into similarities by Eq.
(9). The linear combinations are learnt for each fold independently. In the
following, we refer to these combined methods as Multi-RBFM. To compare
with the state-of-the-art, we list previously published results on LFW in
Table 5 and plot the ROC curves in Fig. 8. All reported results are obtained
by combining several features or methods. It needs to be mentioned that
the method in [31] uses additional information such as pose. Wolf et al.’s
work [36] and Nguyen et al.’s work [39] adopt the face alignment algorithm
in [36] other than the funneled version. The method in [23] uses extra data
to train a sequence of trait classifiers which is outside the LF'W test protocol.
Therefore, it is not fair to compare with these methods. Under the LE'W test
protocol, without any extra data, the performance of our method outperforms
others on the funneled version, which is a remarkable achievement.

5. Conclusions and Future Work

We propose a framework for face identification problem in which faces are
mapped to a new feature space determined by their similarities to reference
faces. A graph-based model named constrained message passing model is pro-
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Figure 8: ROC curve comparison to the state-of-the-art on LEW.

posed to select an optimal set of reference faces. The presented experimental
results on LEFW data set show that the proposed method is comparable to
the state-of-the-art methods. This demonstrates the discriminative power of
our reference-based features. Our future work includes three main aspects:
(1) improvement of this approach by learning the different distributions of
similarities among same-class and different-class; (2) pose and illumination
estimation for more accurate face representation and matching; (3) extension
to other problems such as image retrieval and image annotation.
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