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Abstract

Venn Prediction (VP) is a new machine learning framework for producing well-calibrated probabilistic
predictions. In particular it provides well-calibrated lower and upper bounds for the conditional probability
of an example belonging to each possible class of the problem at hand. This paper proposes five VP
methods based on Neural Networks (NNs), which is one of the most widely used machine learning techniques.
The proposed methods are evaluated experimentally on four benchmark datasets and the obtained results
demonstrate the empirical well-calibratedness of their outputs and their superiority over the outputs of the
traditional NN classifier.
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1. Introduction

Machine learning techniques are becoming increasingly popular for solving all kinds of problems that
cannot be solved with conventional tools. They have been applied to a great variety of problems and fields
with very good results. However, most machine learning techniques do not provide any indication about the
uncertainty of each of their predictions, which would have been very beneficial for most applications and
especially for risk sensitive settings such as medical diagnosis [1]. An indication of the likelihood of each
prediction being correct notifies the user of a system about how much he can rely on each prediction and
enables him to take more informed decisions.

A solution to this problem was given by a recently developed machine learning theory called Conformal
Prediction (CP) [2]. CP can be used for extending traditional machine learning algorithms and developing
methods (called Conformal Predictors) whose predictions are guaranteed to satisfy a given level of confidence
without assuming anything more than that the data are independently and identically distributed (i.i.d.).
More specifically, CPs produce as their predictions a set containing all the possible classifications needed
to satisfy the required confidence level. To date many different CPs have been developed, see e.g. [3–11],
and have been applied successfully to a variety of important problems such as the early detection of ovarian
cancer [12], the classification of leukaemia subtypes [13], the recognition of hypoxia electroencephalograms
(EEGs) [14], the recognition of gestures [15], the prediction of plant promoters [16], the diagnosis of acute
abdominal pain [17], the assessment of the risk of complications following a coronary drug eluting stent
procedure [18], the assessment of stroke risk [19] and the estimation of effort for software projects [20]. The
CP framework has also been extended to additional problem settings such as active learning [21] and change
detection in data streams [22].

This paper focuses on an extension of the original CP framework, called Venn Prediction (VP), which
can be used for making multiprobability predictions. In particular multiprobability predictions are a set of
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probability distributions for the true classification of the new example. This set can be summarized by lower
and upper bounds for the conditional probability of the new example belonging to each one of the possible
classes1. The resulting bounds are guaranteed to contain well-calibrated probabilities (up to statistical
fluctuations). Again, like with CPs, the only assumption made for obtaining this guaranty is that the data
are i.i.d.

The VP framework has until now been combined with the k -nearest neighbours algorithm in [2] and
[23] and with Support Vector Machines in [24]. A Venn Predictor based on Neural Networks (NNs) was
first proposed in [25] for binary classification problems. This work is extended here by developing five Venn
Predictors based on NNs for multiclass problems, for which NNs have more than one output neurons. The
choice of NNs as basis for the proposed methods was made for two main reasons: (a) their popularity among
machine learning techniques for almost any type of application, see e.g. [26–31], and (b) that they can
produce probabilistic outputs which can be compared with those produced by the Venn Predictors. The
experiments performed examine on one hand the empirical well-calibratedness of the probability bounds
produced by the proposed methods and on the other hand compare them with the probabilistic outputs of
the traditional NN classifier.

The rest of this paper starts with an overview of the Venn Prediction framework in the next section,
while in Section 3 it details the proposed Neural Network Venn Prediction methods. Section 4 presents
the experiments performed on four benchmark datasets and reports the obtained results. Finally, Section 5
gives the conclusions and future directions of this work.

2. The Venn Prediction Framework

This section gives a brief description of the Venn prediction framework; for more details the interested
reader is referred to [2]. We are given a training set {(x1, y1), . . . , (xl, yl)} of examples2, where each xi ∈ Rd

is the vector of attributes for example i and yi ∈ {Y1, . . . , Yc} is the classification label of that example.
We are also given a new unclassified example xl+1 and our task is to predict the probability of this new
example belonging to each class Yj ∈ {Y1, . . . , Yc} based only on the assumption that all (xi, yi), i = 1, 2, . . .
are generated independently by the same probability distribution (i.i.d.).

The main idea behind Venn prediction is to divide all examples into a number of categories based on their
similarity and calculate the probability of xl+1 belonging to each class Yj ∈ {Y1, . . . , Yc} as the frequency of
Yj in the category that contains it. However, as we don’t know the true class of xl+1, we assign each one
of the possible classification labels to it in turn and for each assigned classification label Yk we calculate a
probability distribution for the true class of xl+1 based on the examples

{(x1, y1), . . . , (xl, yl), (xl+1, Yk)}. (1)

To divide each set (1) into categories we use what we call a Venn taxonomy. A Venn taxonomy defines a
number of categories and a rule based on which each example is assigned to one of these categories; formally
a category is a multiset of examples. In effect similar examples should be assigned to the same category
so that the resulting probability distribution for each assumed classification label Yk will depend on the
examples that are most similar to (xl+1, Yk).

Typically each taxonomy is based on a traditional machine learning algorithm, called the underlying
algorithm of the Venn predictor. The output of this algorithm for each attribute vector xi, i = 1, . . . , l + 1
after being trained either on the whole set (1), or on the set resulting after removing the pair (xi, yi) from
(1), is used to assign (xi, yi) to one of a predefined set of categories. For example, a Venn taxonomy that
can be used with every traditional algorithm puts in the same category all examples that are assigned
the same classification label by the underlying algorithm. At this point it is important to emphasize the

1It should be noted that moving from multiprobability predictions to the corresponding lower and upper bounds entails
some loss of information, since the set of probability predictions for each class is replaced by their maximum and minimum
values.

2The “training set” is in fact a multiset, as it can contain some examples more than once.
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difference between the classes of the problem and the categories of a Venn taxonomy. Even though this
example taxonomy consists of a category corresponding to each classification label, these categories are
assigned examples based on the output classification label of the underlying algorithm and not on the true
class to which each example belongs. Therefore the category corresponding to a given classification label
Yk will contain the examples that the underlying algorithm “believes” to belong to class Yk, which are not
necessarily the same as the examples that actually do belong to that class since the underlying algorithm
might be wrong in some cases. Of course other Venn taxonomies can be defined that depend on more
information obtained from the underlying algorithm rather than just the output classification label. Four
new Venn taxonomies for multiclass Neural Networks are defined in the next section.

After partitioning (1) into categories using a Venn taxonomy, the category Tnew containing the new
example (xl+1, Yk) will be nonempty as it will contain at least this one example. Then the empirical
probability of each classification label Yj in this category will be

pYk(Yj) =
|{(x∗, y∗) ∈ Tnew : y∗ = Yj}|

|Tnew|
. (2)

This is a probability distribution for the label of xl+1. After assigning all possible classification labels to
xl+1 we get a set of probability distributions that compose the multiprobability prediction of the Venn
predictor Pl+1 = {pYk : Yk ∈ {Y1, . . . , Yc}}. As proved in [2] the predictions produced by any Venn predictor
are automatically well-calibrated multiprobability predictions. This is true regardless of the taxonomy of
the Venn predictor. Of course the taxonomy used is still very important as it determines how efficient,
or informative, the resulting predictions are. We want the diameter of multiprobability predictions and
therefore their uncertainty to be small, since saying that the probability of a given classification label for an
example is between 0.8 and 0.9 is much more informative than saying that it is between 0 and 0.9. We also
want the predictions to be as close as possible to zero or one, indicating that a classification label is highly
unlikely or highly likely respectively.

The maximum and minimum probabilities obtained for each classification label Yj define the interval for
the probability of the new example belonging to Yj :[

min
k=1,...,c

pYk(Yj), max
k=1,...,c

pYk(Yj)

]
. (3)

To simplify notation the lower bound of this interval for a given class Yj will be denoted as L(Yj) and the
upper bound will be denoted as U(Yj). The Venn predictor outputs the class ŷ = Yjbest as its prediction
where

jbest = arg max
j=1,...,c

p(Yj), (4)

and p(Yj) is the mean of the probabilities obtained for Yj :

p(Yj) =
1

c

c∑
k=1

pYk(Yj). (5)

This prediction is accompanied by the interval

[L(ŷ), U(ŷ)] (6)

as the probability interval of it being correct. The complementary interval

[1− U(ŷ), 1− L(ŷ)] (7)

gives the probability that ŷ is not the true classification label of the new example and it is called the error
probability interval.
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3. Venn Prediction with Neural Networks

This section describes the proposed Neural Network based Venn Prediction methods. The NNs used
were fully connected feed-forward networks with a single hidden layer consisting of units with a hyperbolic
tangent activation function. Their output layer consisted of units with a softmax activation function [32],
which made all their outputs lie between zero and one and their sum equal to one. They were trained with
the scaled conjugate gradient algorithm [33] minimizing cross-entropy error (log loss):

CE = −
N∑
i=1

c∑
j=1

tji log(o
j
i ), (8)

where N is the number of examples, c is the number of possible classes, o1i , . . . , o
c
i are the outputs of the

network for example i and t1i , . . . , t
c
i is the binary form of the true classification label yi of example i, that is

tji =

{
1, if yi = Yj ,
0, otherwise.

(9)

As a result the outputs of these NNs can be interpreted as probabilities for each class and can be compared
with those produced by the proposed methods.

As explained in Section 2 the difference between alternative Venn Prediction methods is the taxonomy
they use to divide examples into categories. Here five different Venn taxonomies are defined which allocate
examples into categories based on the outputs o1i , . . . , o

c
i of the NN for each example i after being trained

on the extended set (1).

Algorithm 1: Neural Networks Venn Predictor

Input: training set {(x1, y1), . . . , (xl, yl)}, new example xl+1, possible classes {Y1, . . . , Yc}.
for k = 0 to c do

Train the NN on the extended set {(x1, y1), . . . , (xl, yl), (xl+1, Yk)};
Supply the input patterns x1, . . . , xl+1 to the trained NN to obtain the outputs o1, . . . , ol+1;
for i = 0 to l + 1 do

Assign (xi, yi) to the corresponding category Tm of the Venn taxonomy V1, V2, V3, V4, or V5

according to the NN outputs o1i , . . . , o
c
i ;

end
Find the category Tnew that contains (xl+1, Yk);
for j = 0 to c do

pYk(Yj) :=
|{(x∗,y∗)∈Tnew:y∗=Yj}|

|Tnew| ;

end

end
for j = 0 to c do

p(Yj) :=
1
c

∑c
k=1 p

Yk(Yj);
end
Output:

Prediction ŷ = argmaxj=1,...,c p(Yj);

The probability interval for ŷ: [mink=1,...,c p
k(ŷ),maxk=1,...,c p

k(ŷ)].

The first Venn taxonomy, which will be denoted as V1, is the simple taxonomy that assigns two examples
to the same category if their maximum outputs correspond to the same class. This produces c categories,
one for each possible class of the problem. This is a taxonomy that can be used with any traditional
classifier as underlying algorithm of the Venn Predictor. The remaining four taxonomies defined below were
developed in this work especially for being used with Neural Networks as the underlying algorithm of the
Venn Predictor. These taxonomies take into account more information about the actual values of the NN
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outputs, rather than just which one is the maximum output, and divide examples more effectively into
more than c categories. Consequently the taxonomy categories are smaller than those of V1 and consist of
examples that are more similar to each other, resulting in more accurate probabilistic outputs.

The second taxonomy, which will be denoted as V2, further divides the examples in each category of
taxonomy V1 into two smaller categories based on the value of their maximum output. It is expected that
the higher the value of the maximum output for an example, the higher the chance of the corresponding
class being the correct one. Therefore the examples of each category of taxonomy V1 are divided into those
with maximum output above a high threshold θ and those with maximum output below θ. This produces 2c
categories. In principle θ can be set to any value between 1

c and 1, which is the range of possible values for
the maximum output of the NN, however values in the upper half of this range are most appropriate since
typically the maximum outputs of NN are relatively high. Here θ is set to 0.75 for all experiments with this
taxonomy.

The third taxonomy, which will be denoted as V3, again further divides each category of taxonomy V1

into two smaller categories, but this time the division depends on the value of the second highest output
of the examples. It is expected that the higher the value of the second highest output of an example,
which corresponds to the most likely classification after the predicted one, the lower the chance of the class
corresponding to its maximum output being the correct one. Therefore the examples of each category of
taxonomy V1 are divided into those with second highest output above a low threshold θ and those with
second highest output below θ. This again produces 2c categories. In this case θ can be set to any value
between 0 and 0.5, as the second highest output cannot be higher than 0.5. Here it is set to 0.25 for all
experiments with this taxonomy.

The fourth taxonomy, which will be denoted as V4, again further divides each category of taxonomy V1

in two, but this time the division depends on the difference between the highest and second highest outputs.
In effect this difference takes into account both how high the maximum output of the example is and how
low the second highest output is. The bigger this difference is for an example, the higher the chance of the
class corresponding to its maximum output being the correct one. Therefore the examples of each category
of taxonomy V1 are divided into those with difference between its two highest outputs above a threshold θ
and those with difference below θ. Like V2 and V3 this taxonomy also consists of 2c categories. In this case
θ can be set to any value between 0 and 1, however values in the middle of this range are most appropriate
as very small or very big differences are very unusual. Here θ is set to 0.5 for all experiments with this
taxonomy.

The fifth and last taxonomy, which will be denoted as V5, assigns two examples to the same category
if their outputs that are above a given low threshold θ correspond to the same set of classes. In effect
this taxonomy considers all outputs above θ as likely and puts the examples that have the same likely
classifications into the same category. In principle this taxonomy consists of 2c categories, but most of them
are almost always empty as having more than 2 outputs above θ is extremely unusual. In this case θ can be
set to a value between 0 and 0.5, as a θ ≥ 0.5 would never have more than one outputs as likely. Here θ is
set to 0.25 for all experiments with this taxonomy.

Using these taxonomies the examples are divided into categories for each assumed classification label
Yk ∈ {Y1, . . . , Yc} of xl+1 and the process described in Section 2 is followed for calculating the outputs of
the Neural Network Venn Predictor (NN-VP). Algorithm 1 presents the complete NN-VP algorithm.

4. Experiments and Results

Experiments were performed on four datasets from the UCI Machine Learning Repository [34], which
has been widely used as a source for benchmark datasets in testing machine learning algorithms:

• Teaching Assistant Evaluation, which is concerned with the evaluation of 151 Teaching Assistant
(TA) assignments over three regular semesters and two summer semesters at the Statistics Department
of the University of Wisconsin-Madison. The 151 TA assignments are described by 5 attributes and
are divided into 3 score classes of roughly equal size: low, medium, high.
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• Glass Identification, which is concerned with the identification of glass types based on their oxide
content, motivated by criminological investigations. The dataset consists of 214 glasses of 6 different
types (classes). The number of glasses of each type ranges from 76 to 9. Each glass is described by 9
attributes.

• Ecoli, which is concerned with the prediction of the localization sites of proteins. It consists of 336
instances described by 7 attributes and divided into 8 classes. The number of examples in each class
ranges from 143 to just 2 and 91% of the examples belong to 4 out of the 8 classes.

• Vehicle Silhouettes, which was gathered at the Turing Institute, Glasgow, Scotland. It is concerned
with the classification of vehicle silhouettes into 4 types of vehicles. There are 846 instances, each
described by 18 attributes extracted from the corresponding silhouette.

In an effort to make the evaluation and comparison presented here as general as possible the four datasets
used correspond to different problem domains. It is also worth to note that two of the datasets have a class
imbalance problem, which results in the corresponding tasks being somewhat more difficult.

The NNs used were fully connected feed-forward networks with a single hidden layer consisting of hyper-
bolic tangent units and an output layer consisting of softmax units. The number of hidden units used for
each dataset was experimentally selected by applying the traditional NN classifier on 10 random divisions
of each dataset into training and test sets consisting of 90% and 10% of the examples respectively. It should
be noted that these randomly generated sets are different from the ones used for evaluating the performance
of the NN-VP in the batch setting described in Subsection 4.2. Despite this difference there still remains an
element of data snooping in the selection of the number of hidden units for each dataset, but this is in fact
in favour of the traditional NN classifier, which is what the performance of NN-VP is compared against,
since this was the classifier used for determining the number of hidden units. The selected number of hidden
units for each dataset is reported in Table 1 along with the dataset characteristics.

All NNs were trained with the scaled conjugate gradient algorithm [33] minimizing cross-entropy error (8)
and early stopping based on a validation set consisting of 30% of the corresponding training set. In an effort
to avoid local minima each NN was trained 3 times with different random initial weight values and the one
that performed best on the validation set was selected for being applied to the test examples. Before each
training session all attributes were normalised setting their mean value to 0 and their standard deviation to
1.

Two sets of experiments were performed: on-line experiments, presented in Subsection 4.1, to demon-
strate empirically that the probability bounds produced by NN-VP are well-calibrated and batch experi-
ments, presented in Subsection 4.2, to compare the performance of NN-VP with that of the traditional NN
classifier and assess the performances of the five different Venn taxonomies.

4.1. On-line Experiments

This subsection demonstrates the empirical well-calibratedness of NN-VP by applying it to the four
datasets in the on-line mode. More specifically, starting with an initial training set consisting of 50 examples,
each subsequent example is predicted in turn and then its true classification is revealed and it is added to
the training set for predicting the next example.

Figure 1 shows the following three curves obtained by applying NN-VP with taxonomy V1 on each
dataset:

TA Glass Vehicle
Evaluation Identification Ecoli Silhouettes

Examples 151 214 336 846
Attributes 5 9 7 18

Classes 3 6 8 4
Hidden Neurons 5 5 10 11

Table 1: Main characteristics and number of hidden neurons used for each data set.
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Figure 1: On-line performance of NN-VP with V1 on the four datasets. Each plot shows the cumulative number of errors En

with a solid line and the cumulative lower and upper error probability curves LEPn and UEPn with dashed lines.
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Figure 2: On-line performance of the traditional NN classifier on the four datasets. Each plot shows the cumulative number of
errors En with a solid line and the cumulative error probability curve EPn with a dashed line.
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• the cumulative error curve

En =

n∑
i=1

erri, (10)

where erri = 1 if the prediction ŷi is wrong and erri = 0 otherwise,

• the cumulative lower error probability curve (see (7))

LEPn =

n∑
i=1

(1− U(ŷi)) (11)

• and the cumulative upper error probability curve

UEPn =

n∑
i=1

(1− L(ŷi)). (12)

In effect the final cumulative errors are expected to lie between the final values of the cumulative upper
and lower error probability curves up to statistical fluctuations. The four plots of Figure 1 confirm that
the probability intervals produced by NN-VP are well-calibrated. In fact the cumulative errors are always
included inside the cumulative upper and lower error probability curves produced by the NN-VP. The same
is true for the plots obtained with the other four Venn taxonomies, which are very similar to the ones shown
in this figure and are presented in Appendix A.

The analogous plots generated by applying the traditional NN classifier to the four datasets are shown
in Figure 2. In this case the cumulative error curve (10) for each NN is plotted together with the cumulative
error probability curve

EPn =

n∑
i=1

|1− p̂i|, (13)

where p̂i is the probability given by the NN for example i belonging to its predicted classification ŷi:

p̂i = max
j=1,...,c

oji . (14)

In effect this curve is the sum of the probabilities of all classes except the predicted one for each example
according to the NN. One would expect that this curve would be very near the cumulative error curve if
the probabilities produced by the NN were well-calibrated. The plots of Figure 2 show that this is not the
case. The NNs underestimate the true error probability in all cases since the cumulative error curve is much
higher than the cumulative error probability curve. To check how misleading the probabilities produced by
the NN are, the 2-sided p-value of obtaining a total number of errors EN with the observed deviation from
the expected errors EPN given the probabilities produced by the NN was calculated for each dataset. The
resulting p-values were 0.0087 for the TA Evaluation dataset, 0.00091 for the Glass Identification dataset,
0.026 for the Ecoli dataset and 0.000013 for the Vehicle Silhouettes dataset. The fact that three out of four of
these p-values are below the 0.01 significance level demonstrates the need for probability intervals as opposed
to single probability values as well as that the probabilities produced by NNs can be very misleading.

4.2. Batch Experiments

This subsection examines the performance of NN-VP in the batch setting and compares its results with
those of the direct predictions made by the traditional NN classifier. For these experiments the four datasets
were divided randomly into training and test sets consisting of 90% and 10% of their examples respectively.
In order for the results not to depend on a particular division into training and test sets, 10 different random
divisions were performed and all results reported here are over all 10 test sets.

Since NNs produce a single probabilistic output oj for each possible classification Yj , for NN-VP the

values p(Yj) corresponding to the estimate of NN-VP about the probability of each test example belonging

9



Table 2: Results of the traditional NN and the five NN-VPs on the TA Evaluation dataset

Method Accuracy CE BS REL

Traditional NN 45.33% 155.62 0.6323 0.0475

V1 48.67% 156.27 0.6286 0.0283
V2 47.33% 155.67 0.6249 0.0294

NN-VP V3 50.67% 152.98 0.6156 0.0335
V4 48.67% 154.88 0.6230 0.0215
V5 52.67% 150.63 0.5997 0.0274

to class Yj were used for this performance evaluation and comparison. Consequently in this Subsection ôji
will be used to denote the probabilistic output of the method in question for classification Yj of example i,

which in the case of the NN-VPs will correspond to pi(Yj). For reporting these results four quality metrics
are used. The first is the accuracy of each classifier, which does not take into account the probabilistic
outputs produced, but it is the most popular metric for assessing the quality of classifiers. The second is
cross-entropy error (8), which is in fact the error minimized by the training algorithm of the NNs on the
training set. The third metric is the Brier score [35]:

BS =
1

N

N∑
i=1

c∑
j=1

(ôji − tji )
2, (15)

where t1i , . . . , t
c
i is the binary form of the true classification label yi (see (9)). The cross-entropy error, or

log-loss, and the Brier score are the most popular quality metrics for probability assessments.
The Brier score can be decomposed into three terms interpreted as the uncertainty, reliability and

resolution of the probabilities, by dividing the range of probability values into a number of intervals K and
representing each interval k = 1, . . . ,K by a ‘typical’ probability value rk [36]. The reliability term of this
decomposition measures how close the output probabilities are to the true probabilities and therefore reflects
how well-calibrated the output probabilities are. This is the most important component of interest in this
work as it evaluates how much one can rely on the probabilistic outputs produced by each method. Hence
this is the fourth metric used here. It is defined in [36] as:

REL =
1

N

K∑
k=1

nk(rk − ϕk)
2, (16)

where nk is the number of ôji , i = 1, . . . , N and j = 1, . . . , c in the interval k and ϕk is the percentage of

these outputs for which tji = 1, i.e. the example belongs to the corresponding class of the output. Here the
number of categories K was set to 100 for the first three datasets and to 200 for the much larger Vehicle
Silhouettes dataset.

Tables 2 to 5 present the results of the traditional NN and the five NN-VPs on each dataset. The values in
bold indicate the best performance for each metric. The values reported in these tables show that all five VPs
perform better than the traditional NN classifier against all metrics except the cross-entropy error. However,
even in the case of the cross-entropy error metric for two out of the four datasets the best values are obtained
by one of the VPs. Overall, the differences between the traditional NN classifier and the five VPs in the
values of the cross-entropy error and Brier score metrics are relatively small ranging from an increase of 8.6%
on the value of the traditional NN in the worst case to a decrease of 9.8% in the best case. The differences in
terms of accuracy are a bit more important ranging from an improvement of 0.6% for the worst performing
VP to an improvement of 16.2% for the best performing VP. More significant differences are observed in
the values of the reliability metric where for the TA Evaluation, Glass Identification and Vehicle Silhouettes
datasets the improvement of VPs ranges from 23.7% to 54.7%. This shows that even if we do not take into
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Table 3: Results of the traditional NN and the five NN-VPs on the Glass Identification dataset

Method Accuracy CE BS REL

Traditional NN 57.62% 236.37 0.5697 0.0172

V1 58.57% 217.71 0.5354 0.0119
V2 59.52% 216.00 0.5311 0.0124

NN-VP V3 60.00% 217.14 0.5306 0.0110
V4 60.48% 213.22 0.5245 0.0109
V5 59.05% 216.35 0.5353 0.0089

Table 4: Results of the traditional NN and the five NN-VPs on the Ecoli dataset

Method Accuracy CE BS REL

Traditional NN 86.76% 151.30 0.2090 0.0061

V1 88.53% 163.35 0.2023 0.0059
V2 88.53% 164.36 0.2040 0.0060

NN-VP V3 89.12% 156.13 0.1948 0.0061
V4 88.53% 161.52 0.2011 0.0061
V5 89.41% 156.61 0.1980 0.0059

account the probabilistic intervals produced by the VPs and consider only the mean probabilities for each
class, we can still achieve a considerable improvement over the reliability of the probabilities produced by
the traditional NN classifier. In the case of the Ecoli dataset the reliability values of all methods are more
or less the same probably because in this case the traditional NN classifier gives more reliable probabilities.
Of course one cannot know if the same will be true for the particular problem and data he is working
on. Moreover, even in such cases the probabilistic intervals of VPs are much more reliable since they are
guaranteed to contain well-calibrated probabilities.

When comparing the performance of the five Venn taxonomies between each other, one can see that in
most cases the new taxonomies defined here, V2, V3, V4 and V5, perform better than the simple taxonomy
V1. In terms of accuracy the best performance is obtained with V4 for two out of the four datasets and with
V5 for the other two; however the differences between them are relatively small. It should also be noted that
V3 gives the second best accuracy for three out of the four datasets. Overall, if we average the performance
of each metric over the four datasets, V5 gives the best accuracy, V3 gives the lowest cross-entropy error
(which is lower than that of the traditional NN classifier), V5 gives the lowest Brier score and V4 gives the
best reliability. This shows the advantage of using the four new Venn taxonomy definitions proposed in
this work. The superior performance of the proposed definitions is due to the more effective partitioning of
the examples into smaller categories and consequently the higher similarity between the examples in each
category, which results in the probabilistic outputs of the VP being more accurate. As the performance of
the proposed taxonomies varies across tasks, the most suitable taxonomy and the best threshold value θ for
a particular task can be chosen by experimentation on the available training examples.

5. Conclusions

This paper presented five Venn Predictors based on Neural Networks. Unlike the traditional NN classifiers
the proposed methods produce probability intervals for each of their predictions, which are well-calibrated
under the general i.i.d. assumption. The experiments performed in the on-line setting demonstrated the
well-calibratedness of the probability intervals produced by the NN-VPs and their superiority over the single
probabilities produced by traditional NNs, which can be significantly different from the observed frequencies.
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Table 5: Results of the traditional NN and the five NN-VPs on the Vehicle Silhouettes dataset

Method Accuracy CE BS REL

Traditional NN 80.35% 356.56 0.2620 0.0139

V1 80.82% 373.85 0.2567 0.0106
V2 81.88% 371.81 0.2517 0.0086

NN-VP V3 81.65% 369.92 0.2516 0.0099
V4 82.12% 368.48 0.2494 0.0088
V5 81.18% 380.11 0.2585 0.0106

Moreover, the comparison performed in the batch setting showed that even when one discards the interval
information produced by the NN-VPs by taking the mean of their multiprobability predictions, these are
still much more reliable in most cases than the probabilities produced by traditional NNs. Lastly, the batch
setting experiments also showed that NN-VPs are more accurate.

An important drawback of the VP approach is its computational inefficiency, which is a result of its
transductive nature. Consequently an immediate future direction of this work is the development of an
inductive VP approach based on the Inductive Conformal Prediction idea [5] in order to overcome this
computational inefficiency problem when dealing with large datasets. In addition, the application of VP to
the problem of osteoporosis risk assessment is currently being studied. Its application to other challenging
real world problems and the evaluation of its results is also of great interest.
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Appendix A. On-line Experiments with V2, V3, V4 and V5

This Appendix presents in Figures A.3 to A.6 the plots produced when applying the NN-VP with tax-
onomies V2, V3, V4 and V5 in the on-line mode to the four datasets. Like in the plots obtained with taxonomy
V1, the cumulative errors are always included inside the cumulative upper and lower error probability curves
produced by the NN-VP, which demonstrates that the probability intervals produced by NN-VP are well-
calibrated.
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Figure A.3: On-line performance of NN-VP with V2, V3, V4 and V5 on the TA Evaluation dataset. Each plot shows the
cumulative number of errors En with a solid line and the cumulative lower and upper error probability curves LEPn and
UEPn with dashed lines.
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Figure A.4: On-line performance of NN-VP with V2, V3, V4 and V5 on the Glass Identification dataset. Each plot shows the
cumulative number of errors En with a solid line and the cumulative lower and upper error probability curves LEPn and UEPn

with dashed lines.
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Figure A.5: On-line performance of NN-VP with V2, V3, V4 and V5 on the Ecoli dataset. Each plot shows the cumulative
number of errors En with a solid line and the cumulative lower and upper error probability curves LEPn and UEPn with
dashed lines.
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Figure A.6: On-line performance of NN-VP with V2, V3, V4 and V5 on the Vehicle Silhouettes dataset. Each plot shows the
cumulative number of errors En with a solid line and the cumulative lower and upper error probability curves LEPn and UEPn

with dashed lines.
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