
Tree Echo State Networks

Claudio Gallicchioa, Alessio Michelia,∗

aDepartment of Computer Science, University of Pisa, Largo B. Pontecorvo 3, 56127

Pisa, Italy

Abstract

In this paper we present the Tree Echo State Network (TreeESN) model,
generalizing the paradigm of Reservoir Computing to tree structured data.
TreeESNs exploit an untrained generalized recursive reservoir, exhibiting ex-
treme efficiency for learning in structured domains. In addition, we highlight
through the paper other characteristics of the approach: First, we discuss
the Markovian characterization of reservoir dynamics, extended to the case
of tree domains, that is implied by the contractive setting of the TreeESN
state transition function. Second, we study two types of state mapping func-
tions to map the tree structured state of TreeESN into a fixed-size feature
representation for classification or regression tasks. The critical role of the
relation between the choice of the state mapping function and the Markovian
characterization of the task is analyzed and experimentally investigated on
both artificial and real-world tasks. Finally, experimental results on bench-
mark and real-world tasks show that the TreeESN approach, in spite of its
efficiency, can achieve comparable results with state-of-the-art, althought
more complex, neural and kernel based models for tree structured data.

Keywords: Reservoir Computing, Echo State Networks, Learning in Tree
Structured Domains

Reference to Published Article
C. Gallicchio, A. Micheli, Tree Echo State Networks, Neurocomputing, vol. 101,
pp. 319-337, Elsevier, DOI: 10.1016/j.neucom.2012.08.017, ISSN: 0925-2312, 2013.

∗Corresponding author. Tel.: +39 050 2212798.
Email addresses: gallicch@di.unipi.it (Claudio Gallicchio),

micheli@di.unipi.it (Alessio Micheli)

Preprint submitted to Neurocomputing April 2012

© 2019. This manuscript version is made available under the

CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/

by-nc-nd/4.0/

1. Introduction

Traditional Machine Learning models, including neural networks, are suit-
able for dealing with flat data. Thereby, when applied to real-world prob-
lems, they often need to resort to fixed-size vectorial representations (or
descriptors) of the input data under consideration. This involves a number
of undesirable drawbacks such as the possible loss of relational information
in the original data and the need of domain experts to design appropri-
ate descriptors for the problem at hand. Variable size structures, such as
sequences and trees, often represent more suitable means for describing re-
lations among the entities involved in many real-world applicative domains,
including Chemistry, Molecular Biology, Automated Reasoning and Speech
and Text Processing. It is therefore conceivable that the generalization of
Machine Learning for directly processing structured information represents
a wide area of research including very different paradigms such as inductive
logic programming and statistical relational learning (see, e.g., [1] and [2]),
relational data mining (see, e.g., [3]), tree-distance based approaches (see,
e.g., [4, 5, 6]), probabilistic learning (see, e.g. [7, 8, 9], and more recently
[10, 11]), neural networks and kernel-based approaches. In particular, we fo-
cus on the latter neurocomputing related approaches, i.e. neural and kernel
based models, for supervised learning (classification or regression) on tree
structured domains, which has increasingly attracted research interest dur-
ing the last two decades. However, the design of such models for treating
structured information has raised several research issues [12]. In this con-
cern, the efficiency of learning algorithms deserves particular attention from
a theoretical and practical point of view.

Recurrent Neural Networks (RNNs) represent a widely known and used
class of neural network models for learning in sequential domains. In this con-
text, Reservoir Computing (RC) [13, 14] models in general, and Echo State
Networks (ESNs) [15, 16] in particular, are becoming more and more pop-
ular as extremely efficient approaches for RNN modeling. An ESN consists
in a large non-linear reservoir hidden layer of sparsely connected recurrent
units and a linear readout layer. The readout is the only trained part of
the architecture, whereas the reservoir is initialized to satisfy a condition of
the state dynamics called the Echo State Property (ESP) [15] and then is
left untrained. A contractive initialization of state transition functions in
RNNs implies a bias on the state dynamics towards Markovian process mod-
eling. This property leads to the ability of inherent discrimination among

2

different input histories even prior to training [17, 18]. Through the use of
fixed contractive state dynamics this ability is efficiently exploited by ESNs
[19, 20].

Recursive Neural Networks (RecNNs) [21, 7] represent a generalization of
RNNs for processing of hierarchical data structures (e.g. rooted trees) consti-
tuting a powerful class of models [22, 23] with applications in many real-world
domains (e.g. [24, 25, 26, 27, 28, 29]). Recent developments concerned mod-
els such as Relational Neural Networks (RelNNs)[30, 31] and Graph Neural
Networks (GNNs) [32]. In particular, GNN is a recursive neural network
based on a constraint of contractivity applied to the learning of the state
transition function. As such, once applied to the same tree structured data,
these models allow us to have a direct comparison of TreeESN with the class
of RecNNs. However, the known issues related to RNN training (e.g. [14, 33])
continue to hold also for RecNNs [34], in which case training may be even
more computationally expensive. Another widely used class of learning mod-
els for tree structured domains is represented by the kernel methods for trees
(see e.g. [35, 12]), among which a common approach is represented by the
convolution tree kernels (e.g. [36, 37, 38, 39, 40]). Such approaches, however,
are typically very expensive in terms of the required computational cost for
the kernel computation (possibly implying a quadratic cost in the number of
input nodes) and for training the Support Vector Machine (SVM). Thereby,
the investigation of possible efficient approaches for the adaptive processing
of tree structured data represents a very appealing and worth of interest open
research problem.

In this paper we present the Tree Echo State Network (TreeESN) model1

to extend the applicability of the ESN approach to tree structured data and
to allow for an extremely efficient modeling of RecNNs. As for standard
ESNs, the architecture of a TreeESN is composed of an untrained recurrent
non-linear reservoir and a linear readout that can be trained by efficient
linear methods. In a TreeESN input trees are processed in a bottom-up
recursive fashion, from leaves to the root by the application of the gener-
alized reservoir architecture to each node, and hence building a structured
state representation. For modeling functions in which input structures are

1A short preliminary version of the paper was recently proposed in [41]. Here we extend
the work in [41] through an in-dept study of Markovianity for trees, the introduction of
the computational complexity analysis and new experiments.

3

mapped into unstructured output vectors (e.g. for classification or regres-
sion tasks on trees), the structured state computed by the reservoir can be
mapped into a fixed-size feature representation according to different state
mapping functions. A contractive setting of the reservoir dynamics is in-
herited from ESN for sequences. Beside ensuring stability of state dynamics,
contractivity allows us also to study an interesting region of the state space of
recursive models characterized by Markovian nature, generalized to the case
of tree structure processing [34]. Moreover, based on the ability of inherently
discriminating among input structures in absence of learning of recurrent
connections, TreeESNs represent both an architectural and an experimental
performance baseline for RecNN models with trained recurrent dynamics.
Although the framework of recursive structural transduction is not new, its
modeling through reservoir computing introduces interesting advantage con-
cerning the efficiency. It also opens experimental challenging issues in terms
of the effectiveness in comparison to more complex approaches and in terms
of the evaluation of the effects of Markovianity and of state mapping func-
tions. In particular, the role of the state mapping function in relation to
Markovianity has a relevant impact on the organization of the feature space
and on the predictive performance of TreeESNs, that we investigate through
experiments on artificial and real-world tasks. The effective evaluation of
the efficiency and of the predictive performance is investigated through a
set of variegate tasks using different performance measures according to the
literature results.

This paper is organized as follows. Section 2 reviews the foundations
for recursive processing of tree structured data2. The core of the ESN for
trees (TreeESN) is presented in Section 3, describing the novelties concerning
the architecture, the computational complexity (efficiency) of the model, the
initialization conditions and the Markovian characterization of reservoir dy-
namics. Section 4 presents experimental applications of TreeESNs on tasks
on tree domains of different nature. First, we analyze the characteristics and
limitations of the approach related to the state mapping function and Marko-
vianity. Then, we show the potentiality of the model in terms of efficiency
and predictive performance through comparisons with related approaches in

2Section 2 is useful to introduce readers to transductions on trees, which is new in
the context of Reservoir Computing for sequences. Readers familiar with recursive neural
models for structured data can skip this section except for the notation and the introduc-
tion of the state mapping function χ() (equation 9).

4

the neural and kernel field. Finally, conclusions are discussed in Section 5.

2. Recursive Transductions on Tree Domains

In this Section we review the framework of transductions on trees (i.e. hi-
erarchical discrete structured data). The concept of structural transduction
and the extension of the input domain are the ground to extend Reservoir
Computing approaches for sequence (signal/series processes) to discrete hi-
erarchical processing. Although new in the context of Reservoir Computing,
the description in this section is rooted in the previous framework for RecNN
approaches for both supervised [21, 7, 23] and unsupervised learning [42, 43].

2.1. Tree Domains

In this paper we are interested in processing models on tree structured
domains. In particular, we will restrict our focus on rooted trees, and the
word rooted will therefore be omitted for the sake of simplicity. A tree is
represented by t and its set of nodes is denoted by N(t), whereas |N(t)|
is the number of nodes in t. The root of t is denoted by root(t), while a
generic node in N(t) is indicated by n. The i-th child of n is denoted by
chi(n), whereas the number of children of n is the degree of n. A k-ary tree
is a tree in which every node has degree k. In the following, the symbol k is
used to refer the maximum degree over a set of trees of interest. In general,
a k-ary tree is positional, i.e. for each node n it is possible to distinguish
among the positions of its children. In a non positional tree, the children of
each node n can be enumerated, but their positions cannot be distinguished.

The ancestors of a node n are the nodes in the unique path from root(t) to
n. If v is an ancestor of n we also say that n is a descendant of v. We denote
by t(n) the sub-tree rooted at n, i.e. the tree induced by the descendants of
n and rooted at n. The depth of a node n in t, i.e. depth(n, t), is the length
of the path from root(t) to n. The largest among the depths of the nodes in
t is the height of t, denoted as h(t).

In a recursive definitions of trees, a k-ary tree t can be defined as either
the empty tree, denoted by nil, or as the root node n and the k sub-trees
rooted in its children, denoted by n(t(ch1(n)), . . . , t(chk(n))). Note that in
this recursive definition, some of the k children of n could be absent (or
missing), in which case the corresponding sub-trees are empty.

5

The suffix of height h ≥ 0 of a tree t, indicated as Sh(t), is the tree
obtained from t by removing every node whose depth is greater than h:

Sh(t) =















nil if h = 0 or t = nil

n(Sh−1(t(ch1(n))), . . . ,

Sh−1(t(chk(n))))

if h > 0 and

t = n(t(ch1(n)), . . . , t(chk(n)))
(1)

We consider labeled trees, in which a (numerical) label information is
assigned to every node. The set of trees with node labels in the domain
L, is denoted by L#, while L#k is used whenever the maximum degree k

is specified. The skeleton of a tree t ∈ L#, denoted by skel(t), is the tree
obtained from t by removing the labels on its nodes.

In the following, as label domains of interest we consider the NU di-
mensional real input space R

NU and the NY dimensional output space R
NY .

Accordingly, input and output structured domains are denoted by (RNU)#

and (RNY)#, respectively. Moreover, the label associated to node n of an
input tree is denoted by u(n), whereas for an output tree the label of n is
indicated by y(n).

Note that special cases of trees are represented by sequences, which can
be viewed as 1-ary trees in which the leaf node corresponds to the oldest
element and the root to the most recent one.

2.2. Structural Transductions on Tree Domains

We are interested in computing structural transductions on trees, i.e.
functions for which the input and the output spaces are tree domains:

T : (RNU)#k → (RNY)#k (2)

Such structural transductions can be qualified in different ways. T is a
tree-to-tree (or structure-to-structure) transduction if its output is always
isomorphic to its input, i.e. ∀t ∈ (RNU)#, skel(T (t)) = skel(t). T is a tree-
to-element (or structure-to-element) transduction if the output computed for
each input tree is a single unstructured vector, i.e. a trivial tree with a single
node, and the output domain reduces to the fixed-size vectorial space R

NY .
T is causal if the output computed for each node n of an input tree depends
only on n and the descendants of n. T is stationary if the mapping applied to
each node of the input tree does not depend on the particular node to which

6

it is applied. An adaptive transduction is learned from examples, whereas a
fixed transduction is a-priori defined.

We are in particular interested in the possibility of computing structural
transductions based on recursive approaches. To this aim we find it useful
to consider tree transductions admitting a recursive state representation [7].
In this case, a transduction T can be usefully decomposed in an encoding
transduction, denoted by Tenc, and an output transduction, denoted by Tout:

T = Tout ◦ Tenc (3)

The encoding transduction Tenc is a tree-to-tree transduction that maps an
input tree t into a corresponding tree structured feature representation (or
state) x(t):

Tenc : (R
NU)#k → (RNR)#k

x(t) = Tenc(t)
(4)

where (RNR)# is the tree structured state space and R
NR is the NR dimen-

sional numerical feature label space. In the following, we adopt the assump-
tion of considering causal and stationary encoding transductions, which can
be computed by resorting to a node-wise encoding function τ :

τ : RNU × R
kNR → R

NR

x(n) = τ(u(n),x(ch1(n)), . . . ,x(chk(n)))
(5)

where x(n) is the state representation computed for node n and x(ch1(n)), . . . ,
x(chk(n)) are the states associated to the children of n. Equation 5 describes
the relation between the state corresponding to a node n and the states cor-
responding to its children. Note that if one of the children of n is absent
then a null state is used for it, e.g. xnil = 0 ∈ R

NR . The node-wise encoding
function τ of equation 5 induces a recursive function on trees, denoted by τ̂

τ̂ : (RNU)#k × R
NR → R

NR

τ̂(t,xnil) =















xnil if t = nil

τ(u(n), τ̂(t(ch1(n)),xnil), . . . ,

τ̂(t(chk(n)),xnil)))
if t = n(t(ch1(n)), . . . , t(chk(n)))

x(root(t)) = τ̂(t,xnil)
(6)

7

where τ̂(t,xnil) is the state of the root of t, i.e. x(root(t)), given that the
null state for absent nodes is xnil (which is used as base for the recursive def-
inition of τ̂). The recursive definition of τ̂ is given in equation 6 in analogy
with the extension to paths of the definition of transition functions in finite
automata for sequences [44]. Equation 6 describes the relation between the
state of a node n and the states computed for the descendants of n. Thus,
the computation of the structured feature representation corresponding to
an input tree t, i.e. Tenc(t), consists in the application of τ̂ to t. This implies
the computation of the state for each node n in t through the application
of the node-wise encoding function τ according to a bottom-up visit of t
(i.e. starting from the leaf nodes and ending in the root). According to the
assumption of stationarity, function τ of equation 5 is applied in correspon-
dence of every visited node n, taking as inputs the label of n and the states
already computed for the children of n. This bottom-up recursive encoding
process is shown in Figure 1 through two illustrative examples.

a

b

c

d

x()nil

τ

τ

τ

τ

a

c

d

b

(a)

x()nil x()nil

τ

ττ

x()nil x()nil

τ

x()nil x()nil

b
τ

a

cd

e

d

e

c

ba

(b)

Figure 1: Bottom-up recursive encoding process on trees. Example (a) shows the process
of visit for the special case of sequential input (i.e. k = 1), while example (b) shows the
same process for the case of binary trees (i.e. k = 2).

The output transduction Tout is then used to map the structured state
representation of an input tree into its corresponding output.

For tree-to-tree transductions T , the output transduction Tout is also tree-
to-tree:

Tout : (R
NR)#k → (RNY)#k

y(t) = Tout(x(t))
(7)

8

where y(t) represents the structured output associated to t. Tout can be
computed by resorting to a node-wise output function g:

g : RNR → R
NY

y(n) = g(x(n))
(8)

where y(n) ∈ R
NY is the (unstructured) output associated to node n. In this

case y(t) is computed by applying function g to every node of t. Figure 2
summarizes the computation of tree-to-tree structural transductions.

T enc T out

x(t) y(t)

(a)

t

Figure 2: Computation of a tree-to-tree structural transduction T .

For tree-to-element transductions, a state mapping function χ is prelimi-
narly applied to the structured state computed by Tenc, in order to obtain a
single fixed-size feature state, representative of the whole input structure:

χ : (RNR)#k → R
NR (9)

The unstructured fixed-size output is then computed by applying the node-
wise output function g of equation 8 only to the output of the state mapping
function:

y(t) = g(χ(x(t))) (10)

In this case, y(t) ∈ R
NY denotes the unstructured output associated to t.

Moreover, input and output domains of Tout of equation 7 actually degenerate
into the unstructured vectorial spaces R

NR and R
NY respectively, and the

computation of the whole transduction can be expressed as the composition
of the encoding transduction, the state mapping function and the output
transduction:

T = Tout ◦ χ ◦ Tenc (11)

Figure 3 graphically shows the steps of the computation of a tree-to-element
structural transduction.

9

T out

x(t) y(t)x(t)

(b)

T enc

t ()

χ

χ

Figure 3: Computation of a tree-to-element structural transduction T .

Considering a supervised learning paradigm, a training set of input trees
with maximum degree k is represented by T = {(t,ytarget(t)) : t ∈ (RNU)#k,

ytarget(t) ∈ (RNY)#k}, where ytarget(t) is the target output associated to tree
t in the general case of a tree structured output (tree-to-tree transduction).
In the following of the paper, we focus on tree-to-element transductions which
allow us an immediate assessing of the TreeESN (provided with different state
mapping functions) on known problems modeling a variety of interesting
tasks on tree domains, such are classifications of trees. For the specific case of
regression tasks related to tree-to-element transductions, ytarget(t) is a fixed
size vector in R

NY . In the case of classification tasks with M target classes,
ytarget(t) is a M -dimensional binary vector in which, for the instances used
in the experiments, the element corresponding to the correct classification is
equal to 1 and all the other elements are equal to 0.

2.3. RecNNs and Related Models for Processing Structural Trasductions

When the node-wise encoding and output functions of a structural trans-
duction, i.e. τ and g in the above definitions (equations 5 and 8, respectively)
are computed by neural networks, we get RecNN models [21, 7]. In the sim-
plest architectural setting, a RecNN consists in a recursive hidden layer,
which is responsible for the computation of τ , and a feed-forward output
layer, which is responsible for the computation of g. Structural transduc-
tions computed by RecNNs are usually characterized by causality, station-
arity and adaptivity, as the parameters of both the hidden and the output
layers are trained from examples. RecNNs have been sucessfully applied to
several real-world applicative domains of relevant interest, including Chem-
informatics (e.g. [25, 45, 29]), Natural Language Processing [26, 28] and
Image Analysis [24, 27]. In addition, a number of results concerning the
computational capabilities of RecNN models have been established, includ-
ing universal approximation theorems for tree domains processing [23, 22].

10

The recursive dynamics can also be exploited for unsupervised learning, as
introduced in [46] using self-organizing maps, or more in general in [42, 43]. A
recent RecNNs variant is represented by the RelNN model [30, 31], in which
encoding is based on a sequential processing of the children of each node.
The GNN model [32], based on a trained encoding process under contrac-
tive constraints, extends the recursive approaches allowing cyclic dynamics
in the definition of the state to process graph structures (and hence also tree
structures).

However, training RecNNs can face similar problems to those encountered
with RNNs [14, 33, 34], such as high computational training costs, local min-
ima, slow convergence and vanishing of the gradients [47]. In particular,
training RecNNs can be even more computationally expensive than training
RNNs. In this regard, the RC paradigm represents a natural candidate for
investigating efficient approaches to RecNN modeling. The following Sec-
tion 3 describes the TreeESN model, a first extension of the RC paradigm to
structured domains processing.

3. TreeESN Model

TreeESNs are RecNNs implementing causal, stationary and partially adap-
tive transductions on tree structured domains. A TreeESN is composed of
an untrained hidden layer of recursive non-linear units (a generalized reser-
voir) and of a trained output layer of feed-forward linear units (the read-
out). The reservoir implements a fixed encoding transduction, whereas the
readout implements an adaptive output transduction. For tree-to-element
transductions, a state mapping function is used to obtain a single fixed-size
feature representation. The following sub-sections describe the components
of a TreeESN model.

3.1. Reservoir of TreeESN

The reservoir consists in NR recursive (typically) non-linear units, which
are responsible for computing the encoding of a tree transduction by imple-
menting the node-wise encoding function τ of equation 5, which takes the role
of a recursive state transition function. Accordingly, the state corresponding
to node n of a tree t is computed as follows:

x(n) = f(Winu(n) +
k

∑

i=1

Ŵx(chi(n))) (12)

11

where Win ∈ R
NR×NU is the input-to-reservoir weight matrix (which might

also contain a bias term), Ŵ ∈ R
NR×NR is the recurrent reservoir weight

matrix and f is the element-wise applied activation function of the reservoir
units (in this paper we use tanh). In correspondence of absent children of
node n, a null state xnil = 0 ∈ R

NR is used. As in standard ESNs, a sparse
pattern of connectivity among the reservoir units is used, i.e. Ŵ is a sparse
matrix. Notice that if the input structures reduce to sequences, i.e. for
k = 1, the generalized reservoir of a TreeESN (whose dynamics are described
in equation 12) reduces to a standard reservoir of an ESN.

Equation 12 is customized for non-positional trees, whereas in the case of
positional trees it can be modified so that different recurrent weight matrices
are used in correspondence of different child positions.

Figure 4 depicts the application of the generalized reservoir architecture
to a node n of an input tree. The reservoir units are fed with an external input

W
^

W
^Win W

^

...

x (ch1 (n)) x (ch2 (n)) x (chk (n))

()x n

u n()

τ

Node Label States of Children

Reservoir
Units

Figure 4: The application of the generalized reservoir architecture of a TreeESN to node
n of an input tree.

consisting in the numerical label attached to node n, i.e. u(n), weighted by
the input-to-reservoir weights in Win. Each reservoir unit receives in input
also the activation of the reservoir units computed for each child of node
n, weighted by the weights in Ŵ. Note that not every couple of reservoir
units is connected, according to the sparse pattern of connectivity within the
reservoir (see Figure 5). Moreover, a connection between two reservoir units
carries all the corresponding state information computed for the children of
the node n. This is illustrated in Figure 5, showing that a connection from
unit B to unit A in the generalized reservoir architecture carries to unit A

the whole set of activations of unit B computed in correspondence of every
child of n, i.e. xB(ch1(n)), . . . , xB(chk(n)). Assuming a number of R <

12

x
B (ch1(n))

x
B (ch2(n))

x
B (ch (n))k

...

W
^

τ

A

B

Reservoir Units

Figure 5: The generalized reservoir architecture of a TreeESN.

NR recurrent connections for each reservoir unit (sparse connectivity of the
reservoir), the total number of recurrent weights in the TreeESN architecture
is given by kRNR. The number of different recurrent reservoir weights then
reduces to RNR because of the assumption of stationarity for processing the
states of the children (see equation 12).

The generalized reservoir architecture described in Figure 4 is unfolded
on an input tree t according to the bottom-up recursive encoding process
shown in Figure 1 and corresponding to the application to t of the func-
tion τ̂ (equation 6) induced by the reservoir implementation (equation 12)
of function τ (equation 5). In practice, the same reservoir architecture is
recursively applied to each node of t, following the topology of t (with an
information flow that is isomorphic to the structure of t itself). An example
of this encoding process is shown in Figure 6, in which the same binary tree
presented in Figure 1 is considered as input tree t. The discrete input space
{a, b, c, d, e} is encoded using a 1-of-5 binary encoding such that a is encoded
as 10000, b as 01000 and so on up to e encoded as 00001, i.e. NU = 5. The
reservoir states for the leaf nodes in t (i.e. for nodes labeled by a, b and
c in Figure 6) are computed first, given the encoding of the corresponding
labels and the null state for absent children. The reservoir state for the node
with label d is then computed, given the encoding of the corresponding label
and the reservoir states computed for the nodes labeled by a and b. Finally,
the state for the root of t (with label e) is computed, given the encoding
for its label and the reservoir states computed for the nodes with labels d

and c. If a different tree structure is given in input, the encoding process
changes according to a topology which is isomorph to the topology of the
input structure (see Figure 1). Note that the number of nodes (i.e. |N(t)|)
and the topology of the input tree are independent of the number of units

13

x(t)
T enc

W
^

W
^

W
^

W
^

Win
...

W
^
W
^

Win Win

W
^
W
^

W
^

W
^

Win

...

...

...

...

Win

b

c

e

d

a

t

[00...0][00...0]

τ τ [00...0] [00...0]

[00...0] [00...0]

τ

τ

τ

[10000] [01000]

[00010]

[00001]

[00100]

Figure 6: Example of the encoding process computed by the reservoir of a TreeESN.
Symbolic node labels are encoded using a 1-of-m binary encoding.

(i.e. NR) and the topology of the reservoir architecture.
A further point to remark is that, differently from the standard ESN

approach (that is specifically designed for signals/time series processing), the
reservoir of a TreeESN is run only once on each finite input structure (see
Figure 6), without any initial transient to discard. This aspect of reservoir
computation is related to the different nature of the data under consideration.
In fact, the purpose of reservoir computation in TreeESNs is to encode a set of
discrete finite input structures, rather than to build an high dimensional non-
linear dynamical representation of a (single, possibly infinite) input signal
stream.

As in the standard ESN model, the parameters of the reservoir of a
TreeESN are left untrained after initialization. In particular, matrices Win

and Ŵ in equation 12 are randomly chosen and then Ŵ is scaled to im-
plement a contractive state transition function τ . The contractive setting
of the reservoir state transition function has the twofold effect of ensuring
stability of reservoir dynamics (regardless of other initialization aspects) and
of bounding such dynamics into a region of the state space characterized by
a Markovian flavor organization [34]. Section 3.5 details the initialization
setting and the resulting Markovian characterization of TreeESN reservoir
dynamics.

3.2. State Mapping Function: TreeESN-R and TreeESN-M

When processing tree-to-element transductions with variable size (and
topology) input trees, the feed-forward readout architecture cannot be ap-
plied to the structured reservoir state directly. Such structured state is indeed

14

isomorphic to the variable size input, whereas the number of readout param-
eters (i.e. the weights in Wout) is fixed. Thereby, in order to implement
tree-to-element transductions, the structured state representation computed
for an input tree t, i.e. x(t), is mapped into a fixed-size NR dimensional
feature representation through the state mapping function χ of equation 9.
In this paper we consider two possible choices for the state mapping function,
namely a root state mapping and a mean state mapping.

The root state mapping consists in selecting the state of the root of t:

χ(x(t)) = x(root(t)) (13)

The root state mapping is used in standard RecNNs, in which the state of
the root is always used as representative of the whole input structure. Note
that when a TreeESN with root state mapping is used to process sequential
inputs, the standard ESN model arises.

The mean state mapping computes the mean over the states of the nodes
in t:

χ(x(t)) =
1

|N(t)|

∑

n∈N(t)

x(n) (14)

By using the mean state mapping, the fixed-size feature representation χ(x(t))
depends (to the same extent) on the state of every node in the input structure
t, rather than depending only on the state of a particular node.

In the following, TreeESN-R and TreeESN-M are respectively used to
refer to a TreeESN with root state mapping and to a TreeESN with mean
state mapping.

3.3. Readout of TreeESN

The readout consists inNY feed-forward linear units and is used to process
the adaptive output of a tree transduction by implementing the node-wise
output function g of equation 8.
For tree-to-tree transductions, the readout is applied to the state of each
node n in the input structure:

y(n) = Woutx(n) (15)

where Wout ∈ R
NY ×NR is the reservoir-to-readout weight matrix (possibly

including a bias term). For tree-to-element transductions, the readout is
applied only to the output of the state mapping function:

y(t) = Woutχ(x(t)) (16)

15

Figure 7 shows an example of the application of the mean state mapping
and of the output function for processing tree-to-element transductions with
TreeESNs, referring to the same input tree as in Figure 6.

Wout

Tout

< >a < >b

< >d < >c

< >e

...

x(t)

1/5
1/5

1/5
1/5

1/5

Σ
g

x ()x ()

x () x ()

x ()

x(t) y(t)()
χ

χ

Figure 7: Example of mean state mapping and output functions computed by TreeESNs.
The notation x(< a >) is used here to denote the state computed for the node with label
”a” in the input tree.

As for standard ESNs, (off-line) training of the readout is performed by
adjusting the weight values in Wout to solve a linear regression problem.
Let us consider a training set T containing a number of P patterns. For
tree-to-tree transductions, input patterns in T correspond to nodes and the
corresponding states computed by the reservoir are column-wise arranged
into a state matrix X ∈ R

NR×P . Analogously, the target outputs for the pat-
terns in T are column-wise arranged into a target matrix Ytarget ∈ R

NY ×P .
For tree-to-element transductions, input patterns in T correspond to trees
and the columns of matrix X contain the states obtained by applying the
state mapping function to the corresponding structured states computed by
the reservoir. Matrix Wout is therefore selected to solve the least squares
linear regression problem:

min ‖WoutX−Ytarget‖
2
2 (17)

In this paper, to solve equation 17 we use both Moore-Penrose pseudo-
inversion of matrix X and ridge regression. In the first case, the reservoir-
to-readout matrix is computed as

Wout = YtargetX
+ (18)

16

where X+ denotes the pseudo-inverse of X. In the second case, Wout is
computed as

Wout = YtargetX
T (XXT + λrINR

)−1 (19)

where INR
is the identity matrix of size NR and λr is the regularization

parameter (which determines the magnitude of the readout weights).

3.4. Computational Complexity of TreeESNs

In this section we provide an analysis of the computational complexity
of the TreeESN model. For each input tree t, the encoding process consists
in the computation of the state for each node in N(t) using equation 12.
It is straightforward to see that the application of equation 12 to a node n

requires a number of O(kRNR) operations, where k is the maximum degree
over the set of trees considered, R is the maximum number of connections
for each reservoir unit (R is smaller for sparser reservoirs) and NR is the
dimension of the reservoir. The total cost of the encoding process on tree t
is

O(|N(t)|kRNR) (20)

which scales linearly with both the number of nodes in the input tree and
the number of units in the reservoir. Note that the cost of the encoding in
TreeESNs is the same for training and testing, resulting in a very efficient
approach. For the sake of comparison, training the recurrent connections in
standard RecNNs, even using efficient learning algorithms such as the Back-
propagation Through Structure [21, 48], requires the extra cost (both in
memory and in time) for the gradient computations for each training epoch.
Analogously, extra-costs for gradient computations for recurrent connections
are required also by RelNNs and GNNs. In particular, GNN is based on a
iterative training algorithm, which alternates state relaxation and gradient
computation phases, possibly requiring thousands of learning iterations [32].
The TreeESN model compares well also with state-of-the-art kernel methods
for tree structured data. Here we limit our discussion to kernels considered
in this paper for performance comparison, and make the assumption of a
bounded maximum degree k. The cost of the encoding (considered with
respect to the number of nodes) scales quadratically for the Partial Tree
(PT) [37], Subset Tree (SST) [39], Route [40], q-gram and q-gram based
kernels [49], Yamanishi [50], Subtree (ST) [38] and Subpath [51] kernels.
As a particular case, the ST and the Subpath kernels can be computed in
linear and log-linear (on average) time, respectively, under the assumption

17

of a finite set of input labels. In the cases of the Activation Mask (AM)
[52] and of the AMπ [53] kernels, the encoding includes a stage involving a
preliminary training of a Self-Organizing Map for structured data (SOM-SD)
[46], possibly requiring hundreds of learning iterations.

As regards the state mapping function for TreeESNs implementing tree-
to-element transdutions, note that its cost is constant for the root state
mapping and linear in the number of nodes and reservoir units for the mean
state mapping.

The cost of training the linear readout in a TreeESN depends on the
method used to solve the linear least squares problem of equation 17. This
can range from a direct method e.g. using Moore-Penrose pseudo-inversion
computed by singular value decomposition, whose cost is cubic in the number
of training patterns (trees in our cases), to efficient iterative approaches for
which the cost of each epoch is linear in the number of training patterns. Note
that the cost of training the extremely simple readout tool in TreeESNs,
i.e. a single layer of feed-forward linear units, is in general inferior to the
cost of training more complex readout implementations, such as Multi-layer
Perceptrons (often used in RecNN and related approaches) or SVMs, used
in kernel methods.

3.5. Markovian Characterization and Initialization of Reservoir Dynamics

In the context of sequence processing it is a known fact that state models
implementing contraction mappings are characterized by a Markovian nature
of the state dynamics. Relations between contractions and Markovianity have
been investigated in the contexts of Iterated Function Systems (IFS), vari-
able memory length predictive models, fractal theory and for describing the
bias of trainable RNNs initialized with small weights [17, 54, 18, 19]. In fact,
it has been shown in [17, 18] that RNNs initialized to implement contrac-
tive state transition functions are architecturally biased towards Markovian
process modeling, being able to discriminate among different input histo-
ries in a suffix-based Markovian flavor even prior to training of the recurrent
connections. ESNs, through a fixed contractive setting of the state transi-
tion function, directly exploit the Markovian nature of state dynamics for
efficiently approaching tasks within the architectural bias of RNNs, without
any adaptation of the recurrent state transition function parameters [19, 20].

Preliminary results on a similar architectural bias towards Markovian
models on tree domains for RecNNs initialized with contractive recursive
state transition functions have been presented in [34]. In particular, in [34]

18

it has been proved that the class of RecNNs with contractive state transi-
tion function and bounded state space is equivalent to (can be approximated
arbitrarily well by) the class of models on tree domains with state space or-
ganization of Markovian nature. Therefore, TreeESNs, implementing fixed
contractive recursive state transition functions, allow to extend the advan-
tages of the RC approach to RecNN modeling.

3.5.1. Markovianity of TreeESN dynamics

For the aims of this paper, we say that a state model on tree domains is
characterized by a state space organization of a Markovian nature whenever
the states it assumes in correspondence of different input trees sharing a
common suffix are close to each other proportionally to the height of the
common suffix [34].

In TreeESNs, the contractive setting of the state transition function im-
plies a Markovian characterization of the reservoir state space. For our pur-
poses, the definition of contractivity of the node-wise encoding function τ

(equation 5) implemented by the recursive state transition function of the
reservoir (equation 12) is given as follows. The node-wise encoding function
τ : RNU ×R

kNR → R
NR is a contraction with respect to the state space R

NR

if there exists a non-negative parameter C < 1 such that for every u ∈ R
NU

and for every x1, . . . ,xk,x
′

1, . . . ,x
′

k ∈ R
NR it holds that

‖τ(u,x1, . . . ,xk)− τ(u,x′

1, . . . ,x
′

k)‖ ≤ C max
i=1,...,k

‖xi − x′

i‖ (21)

Whenever the state transition function of a TreeESN is contractive ac-
cording to equation 21 and the network state space is bounded, the nature
of the reservoir dynamics is characterized by Markovianity. Intuitively, the
roots of different input trees sharing a common suffix are mapped into reser-
voir states which are close to each other proportionally to the height of the
common suffix. More formally, the Markovian property of a TreeESN reser-
voir space can be described in the following way. Consider a TreeESN with
recursive state transition function τ implementing a contraction with pa-
rameter C with respect to the state space R

NR . Suppose that the subset of
states which are assumed by the reservoir of the TreeESN is bounded with
diameter denoted by diam. Then, for every height h > 0, any two input
trees t, t′ ∈ (RNU)# sharing the same suffix of height h, i.e. Sh(t) = Sh(t

′),
and any states x,x′ ∈ R

NR , the distance between the states computed by the
reservoir for the root of the two input trees t and t′, with null states x and

19

x′ respectively, is upper bounded by a term proportional to Ch:

‖τ̂(t,x)− τ̂(t′,x′)‖ ≤ Ch diam (22)

In fact:

‖τ̂(t,x)− τ̂(t′,x′)‖ =

‖τ(u(root(t)), τ̂(t(ch1(root(t))),x), . . . , τ̂(t(chk(root(t))),x))−
τ(u(root(t)), τ̂(t(ch1(root(t

′))),x′), . . . , τ̂(t(chk(root(t
′))),x′))‖ ≤

C max
i1=1,...,k

‖τ̂(t(chi1(root(t))),x)− τ̂(t(chi1(root(t
′))),x′‖ ≤

C2 max
i1,i2=1,...,k

‖τ̂(t(chi2(chi1(root(t)))),x)− τ̂(t(chi2(chi1(root(t
′)))),x′‖ ≤

Ch max
i1,...,ih=1,...,k

‖τ̂(t(chih(. . . (chi1(root(t))) . . .)),x)−

τ̂(t(chih(. . . (chi1(root(t
′))) . . .)),x′)‖ ≤

Chdiam

(23)
As a consequence of this Markovian property, the distance between the

reservoir states computed for nodes whose induced sub-trees are different
only before a common suffix of height h is anyhow bounded by a term which
exponentially decreases for increasing h. Equivalently, the influence on the
reservoir state computed for node n (i.e. x(n)) due to nodes at depth d in the
sub-tree rooted at n (i.e. t(n)) is exponentially decreasing for increasing d.
Hence, the reservoir of a TreeESN is able to discriminate between different
input trees in a Markovian tree suffix-based way without any adaptation
of its parameters. A straightforward consequence is that TreeESNs result
in a very efficient RecNN approach particularly suitable for tasks in which
the target characterization is compatible with such Markovian state space
organization.

The Markovian nature of TreeESN reservoir state space organization is
also graphically illustrated in Figure 8, which shows different input trees
and corresponding states for their root nodes, computed by a model obey-
ing Markovian organized dynamics. The states computed for the roots of
the different input trees cluster together in a tree suffix-based fashion. In

20

RI NRState Space

a

c

a c

a

d common

suffix

common

suffix

b

da

a b c

b

da

a b cd a

a c

a

ac c a

B

Ad C

D

Figure 8: Graphical illustration of the Markovian nature of reservoir state space organi-
zation in TreeESNs. The root of input trees with shared suffix correspond to close points
in the reservoir state space R

NR (see equation 22).

particular, the roots of trees A and B are mapped into very close state rep-
resentations with respect to the state representation of the root of C and D.
Thereby, the readout of the network can naturally perform better whenever
the target of the task at hand requires to assign similar outputs for the roots
of A and B and a different one for the root of C and D. On the contrary,
the Markovian constrained state space turns out to be less appropriate e.g.
for targets requiring similar outputs for the roots of A and C and a different
one for the root of B.

The example in Figure 8 corresponds to the case of tree-to-element trans-
ductions computed using root state mapping (and to the case of tree-to-tree
transductions). However, note that in general, for tree-to-element transduc-
tions, the Markovian characterization of reservoir dynamics, holding locally
in correspondence of each node of an input tree, can be mitigated as a global
property of the feature representation used to feed the readout, according to
the state mapping function adopted. This aspect is discussed in Section 3.5.3.

3.5.2. Reservoir Initialization

The recursive state transition function (equation 12) of a TreeESN is
initialized to implement a contraction mapping (equation 21) with a bounded
state space. Under such conditions, the reservoir state dynamics are stable

21

and characterized by Markovianity as discussed in Section 3.5.1.
The condition on the bounded reservoir state space is ensured under very

mild assumptions, e.g. for a bounded reservoir activation function such is
tanh.
As regards the contractivity of the reservoir state transition function, we
provide a condition assuming the Euclidean distance as metric on R

NR and
tanh as activation function of the reservoir units3. For every input label
u ∈ R

NU and children states x1, . . . ,xk,x
′

1, . . . ,x
′

k ∈ R
NR :

‖τ(u,x1, . . . ,xk)− τ(u,x′

1, . . . ,x
′

k)‖2 =

‖tanh(Winu+
k
∑

i=1

Ŵxi)− tanh(Winu+
k
∑

i=1

Ŵx′

i)‖2 ≤

‖Ŵ
k
∑

i=1

(xi − x′

i)‖2 ≤

‖Ŵ‖2
k
∑

i=1

‖xi − x′

i‖2 ≤

k‖Ŵ‖2 max
i=1,...,k

‖xi − x′

i‖2

(24)

Contractivity of the state transition function is hence guaranteed by the
condition:

σ = k‖Ŵ‖2 < 1 (25)

where k is the maximum degree over the set of trees considered and σ is called
the contraction coefficient of the TreeESN, governing the degree of contrac-
tivity of the reservoir dynamics. A straightforward initialization procedure
for TreeESNs then consists in a random setting of both the input-to-reservoir
weight matrix Win and the recurrent reservoir weight matrix Ŵ, after which
Ŵ is scaled such that σ < 1 (equation 25) holds. Elements in Win can be
chosen according to a uniform distribution over the interval [−scalein, scalein]
as in standard ESNs, where scalein determines the size of the input scaling.

Equation 25 generalizes the sufficient condition (on the maximum sin-
gular value of the reservoir recurrent matrix) for the ESP in standard ESN

3In [34] a similar condition is provided assuming the maximum norm as metric on the
state space.

22

processing [15], that corresponds to the case k = 1 in equation 25. As for
the sufficient condition for the initialization of standard ESNs, equation 25 is
quite restrictive. Actually, even though the recursive state transition function
τ is not contractive in the Euclidean norm, it could still be a contraction in
another norm and the argumentation in equations 22 and 23 would hold any-
way. For this reason, in this paper we also consider values of the contraction
coefficient σ slightly greater than 1.

3.5.3. Markovian Characterization and Tree-to-element Transductions

For TreeESNs implementing tree-to-element transductions, the influence
on the output of the network due to the Markovian characterization of state
dynamics is influenced by the state mapping function adopted.

When the root state mapping is used, the only state information con-
sidered for the computation of the output corresponding to an input tree
is the state computed for its root. In fact, the strong assumption under-
lying the application of the root state mapping with TreeESNs is that the
(fixed) dynamics of interest to be caught for properly tackle the task at hand
can be centered in the root of the input structure. In this case, the relevant
Markovian characterization of reservoir dynamics is centered only in the root
node as well. Accordingly, the suitability of TreeESN-R is limited to those
tasks whose target dynamics is compatible with this root-focused Markovian
characterization.

In the case of mean state mapping, the Markovian characterization of
reservoir dynamics is mitigated by the use of the mean operator. Indeed,
the state information used to feed the readout depends to the same extent
on the states computed for every node in the input tree. This choice for the
state mapping function might therefore result in a less restricting model, in
particular for applications to tree-to-element tasks whose target dynamics is
not suitable for any specific node-focused Markovianity.

The effects and limitations of the two proposed state mapping functions
are analyzed through experiments on two ad-hoc defined target functions on
trees with explicit Markovian and anti-Markovian characterization in Sec-
tion 4.1.1, and further investigated on a real-world task in Section 4.1.2.

4. Experiments

In this Section we present the application of the TreeESN model to tasks
on domains of different nature related to tree-to-element transductions. The

23

aim is to support with empirical evidences the different characteristics of the
approach. First, in Section 4.1 we focus on the analysis of the characteristics
and of the limitations of the TreeESN approach due to the relation between
the state mapping function and the Markovianity of the target. To this
aim we take into consideration artificial Markovian/anti-Markovian tasks on
trees and a task from a Chemical domain, already treated as tree domains
by RecNN and kernel approaches, for which we can have a tight control of
the target and data meaning (specifically in terms of Markovianity) either by
construction (artificial data) or by know previous characteristic/results (e.g.
[55]). Due the analysis purpose of these experiments, we report explicitly
the results of the model with respect to different hyper-parameters setting.
The aim is to characterize the analyzed phenomena also into different con-
dition setting, instead of trying to optimize such setting for performance
improvements.

Then, in Section 4.2 we evaluate the potentiality of such efficient approach
considering several benchmarks that allow us to compare with a large set
of state-of-the-art related models, considering both the efficiency and the
predictive performance (evaluated according to the error measure reported in
the corresponding literature). In this case we select the main TreeESN hyper-
parameters through a model selection procedure based on cross-validation
(thought without adopting further optimization approaches).

In all the experiments, we assume a basic general architecture (e.g. with
full stationary condition of equation 12, linear readout). TreeESN-R and
TreeESN-M are obtained by applying the different state mapping functions
to the structured state representations computed by the same reservoirs.

4.1. Experimental Analysis of Markovian Properties for TreeESN

In this Section we present and discuss the experimental analysis of TreeESN
with respect to Markovianity and its relationship with root and mean state
mapping functions.

4.1.1. Markovian/anti-Markovian Tasks

In order to have a tight control of the Markovian conditions, we introduce
two new artificial regression tasks on tree structures with target functions
characterized respectively by a distinct Markovian and anti-Markovian na-
ture, designed to extend to tree domains the analogous tasks on sequences
used in [41, 20].

24

The trees in the dataset have height between 3 and 15, and degree equal
to 3. The skeleton of every tree was randomly generated in a top-down
fashion, starting from the root and such that for every node the probability
of an absent child is 0.4 for the first child and 0.7 for the other children.
Symbolic node labels were assigned randomly using a uniform distribution
over the alphabet A = {a, b, . . . , j} and then mapped into the numerical set
{0.1, 0.2, . . . , 1.0}, such that a is represented by 0.1, b is represented by 0.2
and so on up to j represented by 1.0. The numerical label associated to
node n is denoted by u(n). Two examples of input trees in this dataset are
reported in Figure 9. The number of trees in the dataset is 1000, of which
800 were used for training and 200 for testing. The number of nodes in the
trees is highly variable between 4 and 478.

b

j

g

d

g

j

a

e

b

label 0.7

1.0

0.1

0.5

0.2

0.7

0.41.0

0.2

b

g

a i

h

f b

chgc

0.80.70.3

0.2

0.7

0.1 0.9

0.6
0.2

0.3

0.8

Figure 9: Two examples of input trees in the Markovian/anti-Markovian dataset.

The two different tasks were obtained by associating different target
outputs with Markovian or anti-Markovian flavor to the same trees in the
dataset, using a parameter λ > 1 to control the degree of Markovianity/anti-
Markovianity of the task.

For the Markovian task, the target associated to each tree t was computed
as follows:

ytarget(t) =
∑

n∈N(t)

u(n)

λdepth(n,t)
(26)

such that the contribution of each node n to the target value for t exponen-
tially decreases with the depth of n.

25

For the anti-Markovian task, the target function is defined as:

ytarget(t) =
∑

n∈N(t)

u(n)

λ(h(t)−depth(n,t))
(27)

in which case the contribution of node n to the target ytarget(t) exponentially
increases with the depth of n.

The target values computed for both the tasks, according to equations 26
or 27, respectively, were normalized in [−1, 1]. In our experiments, we used
the value of λ = 2 for both the tasks.

On the Markovian/anti-Markovian tasks, we tested TreeESNs with 200-
dimensional sparse reservoirs with 40% of connectivity, input scaling scalein =
1 and contraction coefficient σ ∈ {0.5, 1, 1.5, 2, 2.5}. For each value of σ, the
results are averaged over 30 independently generated random guessed reser-
voirs. The readout was trained by using pseudo-inversion (eq. 18).

Figures 10 and 11 show the Mean Absolute Error (MAE) and the stan-
dard deviation (among the 30 guesses) on the Markovian and anti-Markovian
tasks, respectively, obtained by TreeESNs in correspondence of both the
choices for the state mapping function. For the sake of comparison, in the
same figures we also report the error obtained by the null model whose output
is always equal to the target output value averaged on the training set.

The errors of TreeESNs on both the tasks are only slightly influenced by
the value of σ, while the choice of the state mapping function reveals a deep
impact on the performance. Indeed TreeESN-R outperforms TreeESN-M on
the Markovian task for every value of σ, while on the anti-Markovian task the
performance of TreeESN-M is always better than that of TreeESN-R, which
in turn is worse than the result obtained by the null model. These results
enlighten the effects of the different organizations of the feature spaces corre-
sponding to the different state mapping functions considered. In particular,
TreeESN-R has a good performance on the Markovian task, whose target is
designed to match the nature of reservoir dynamics, with a specific reference
to the root-focused Markovianity (see Section 3.5), whereas a poorer perfor-
mance than the null model is obtained on the anti-Markovian task, whose
target has an opposite characterization. On the other hand, the use of the
mean state mapping function has the effect of merging the states computed
for all the nodes in the input tree such that the relevance of suffixes and
prefixes on the feature state that feeds the readout is the same. Accordingly,
the characterization of the resulting TreeESN-M model can be considered

26

0.5 1 1.5 2 2.5
0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

σ

T
e
s
t

E
rr

o
r

TreeESN−R

TreeESN−M

null

Figure 10: MAEs and standard deviations on the test set of the Markovian task for
TreeESN-R, TreeESN-M and a null model.

as the middle between Markovianity and anti-Markovianity. Compared to
the case of TreeESN-R, the feature space in TreeESN-M is less suitable for
the Markovian task and worse results are obtained (thought it improves the
null model). TreeESN-M clearly leads to better results than TreeESN-R on
the anti-Markovian task. Nevertheless, we note that resorting to the mean
operator is not sufficient by itself to appropriately overcome the unsuitability
of reservoir dynamics for the task. This can be observed by comparing the
scale of the performance of TreeESN-R on the Markovian task (Figure 10)
with the scale of the performance of TreeESN-M on the anti-Markovian one
(Figure 11). However, it is worth noticing that TreeESN-M achieves rather
better performances on the anti-Markovian task than on the Markovian one.
This is interestingly related to the nature of the concept of anti-Markovianity
on tree domains. On tree domains prefixes and suffixes are not symmetric
as for sequences. Indeed for anti-Markovian target functions on trees, the
relevance of each node on the target output exponentially increases with the
depth of the node. As the number of high-depth nodes (constituting the
prefixes) increases by construction with the depth, the average of the states

27

0.5 1 1.5 2 2.5
0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.2

0.21

0.22

σ

T
e
s
t

E
rr

o
r

TreeESN−R

TreeESN−M

null

Figure 11: MAEs and standard deviations on the test set of the anti-Markovian task for
TreeESN-R, TreeESN-M and a null model.

over all the nodes in the input tree is more strongly influenced by the states
of higher depth nodes, further enhancing the suitability of TreeESN-M for
tree anti-Markovian tasks.

4.1.2. Alkanes Task

Alkanes task allow us to show the possible effects of the Markovian condi-
tion on a real-world task. This is a regression task related to a Quantitative
Structure Property Relationship (QSPR) analysis of alkanes [25, 55], consist-
ing in predicting the boiling point (measured in Celsius degrees, oC) of such
molecules on the basis of their tree structure representation.

The dataset consists in 150 alkanes. The dataset is fully reported in [25]
and is also available at http://www.di.unipi.it/∼micheli/dataset, with target
boiling temperatures varying from −164 oC to 174 oC. As introduced in [25],
every molecule is represented by a tree (rooted according to chemical rules)
in which nodes stand for atoms and edges between nodes stand for bonds. In
particular, since only carbon atoms are considered in the molecular descrip-
tions (i.e. hydrogens are suppressed), the node labels used are 1-dimensional
and all equal to 1.0. Figure 12 shows an example of tree representation for

28

an alkane molecule. The degree of the set of trees considered in this dataset
is k = 3 and the maximum number of nodes in a tree is 10.

Tree Representation

C

C

C

C

C

C

label [1.0]

[1.0]

[1.0]

[1.0]

[1.0]

[1.0]

CH3

CH 2

CH2

CH3

Chemical Representation

CH3 CH

Figure 12: Tree representation (hydrogens are suppressed) of the 3-methylpentane
molecule in the Alkanes dataset.

For our analysis aim alkanes represent a class of molecules with rather
uniform and systematic structure, including all the possible configurations
up to 10 carbon atoms. Moreover, the target boiling point temperature is
known to be related to global molecular properties such as the number of
atoms of the main chain (molecular size) and the pattern of atom branching
(molecular shape). The fact that such global characteristics do not depend
on the suffixes of the alkanes trees suggest us that the target does not agree to
Markovian assumptions, as we will detail in the following, making this task
particularly useful to distinguish the role of TreeESN-R TreeESN-M models
in a real-world task.

RecNNs and other state-of-the-art learning models for tree domains have
been applied to this dataset. Thought the main aim in this section is for
analysis purpose, this task gives us also the opportunity to have a a first
rough performance comparisons with other models. More specifically, we
take into consideration the application to this task of Recursive Cascade
Correlation (RCC) [25], Contextual Recursive Cascade Correlation (CRCC)
[45], a variant of the SST kernel [56] and Neural Networks for Graphs (NN4G)
[55].

On the Alkanes dataset we tested TreeESNs with reservoir dimension
varying between 10 and 70 (with a step of 5) and with 40% of connectiv-
ity among reservoir units. Input scaling was set to scalein = 0.5 and the

29

values of the contraction coefficient considered were σ ∈ {1, 2}. For every
parametrization of the reservoir, we averaged the results over 30 indepen-
dently generated reservoirs. The readout was trained by pseudo-inversion
(eq. 18). Results are fully reported for each parametrization and not used
for a model selection (as explained at the beginning of Section 4). Test results
presented here were obtained by using a 10-fold cross validation procedure.

Figures 13 and 14 show the MAE and standard deviation (averaged over
the 10 folds) on the test set obtained by TreeESN-R and TreeESN-M in
correspondence of the two different value of the contraction coefficient σ. It is
evident that the performance of the model is sensible to the choice of the state
mapping function. TreeESN-M outperforms TreeESN-R for every reservoir
dimension and value of σ, with a smaller performance variance as well. The
best result achieved by TreeESN-M, in correspondence ofNR = 40 and σ = 2,
is 2.78 oC. The poorer results of TreeESN-R provide an empirical evidence
on the possible effect of non-Markovian characterization of the target.

10 15 20 25 30 35 40 45 50 55 60 65 70

0

20

50

100

200

300

Reservoir Dimension

T
e
s
t

E
rr

o
r

TreeESN R

TreeESN M

Figure 13: MAE and standard deviatio on the test set of the Alkanes dataset for TreeESN-
R and TreeESN-M with σ = 1.

We also observed the influence of the value of the contraction coefficient
σ (σ = 2, Figure 14, leads to better performances than σ = 1, Figure 13)
and the reservoir dimensionality (with underfitting and overfitting behaviors
observed for too small and too large reservoirs, respectively) on the absolute
performance. However, it results that the qualitative effects of Markovianity
and the relative differences on TreeESN-R and TreeESN-M results are not
due to the effect of the choice of such parameters values.

30

10 15 20 25 30 35 40 45 50 55 60 65 70
0

5

10

15

20

25

Reservoir Dimension

T
e
s
t

E
rr

o
r

TreeESN M

TreeESN M

TreeESN R

Figure 14: MAE and standard deviation on the test set of the Alkanes dataset for TreeESN-
R and TreeESN-M with σ = 2.

The gap between TreeESN-R and TreeESN-M can be further observed
in Table 1, showing that only TreeESN-M achieves reasonable results with
respect to the state-of-the-art. In fact, although the experiments on the
Alkanes dataset were conceived for analysis purposes only, we anyway also
compare in Table 1 the results otained by TreeESNs with those obtained by
RCC, CRCC, SST kernel and NN4G under similar fitting conditions on the
training set. In particular, in analogy to [45], we report the test errors in
correspondence of σ = 2 for the smallest reservoir dimension yielding a maxi-
mum absolute error on the training set below the threshold ǫt = 8 oC. For the
sake of comparison with NN4G [55], we also provide the results correspond-
ing to ǫt = 5oC. In addition, to show the possible range of performances on
this task, the best TreeESNs results (corresponding to the minimum MAE
on the test set) are reported in Table 1 as well.

Note that the performance of TreeESN-M, although obtained by an ex-
tremely efficient model with fixed causal encoding and linear readout, is in
line with those achieved by more complex learning models for structured
data. In addition, the largest test errors of TreeESNs are observed in cor-
respondence of the smallest alkanes, which are in a high non-linear relation
with their target boiling point.

In order to clarify the role of the Markovianity in the reported results, it

31

Model ǫt Test Set MAE
TreeESN-R best 8.09(±3.91)
TreeESN-R 8oC 15.01(±9.24)
TreeESN-R 5oC 13.18(±8.58)
TreeESN-M best 2.78(±0.90)
TreeESN-M 8oC 3.09(±0.93)
TreeESN-M 5oC 3.05(±1.05)
RCC 8oC 2.87(±0.91)
CRCC 8oC 2.56(±0.80)
SST 8oC 2.93(±0.92)
NN4G 8oC 2.34(±0.31)
NN4G 5oC 1.74(±0.23)

Table 1: MAE on the test set (expressed in oC degrees) and corresponding standard
deviation for TreeESNs (σ = 2) and other learning models for tree domains on the Alkanes
dataset.

is interesting to directly analyze the organization of the feature spaces arising
from the application of the different state mapping functions in TreeESNs.
To this aim we refer in particular three examples of alkane molecules in
Figure 15, whose respective tree representations share the same suffix of
height 3, but are associated to very different values of the target boiling
point, corresponding to different molecular size and shape. Such cases well
represent a frequent occurrence of the known characteristic of this dataset,
as mentioned above.

For visualization aim, we applied Principal Component Analysis (PCA) to
the feature representations of the alkanes computed by TreeESNs. Figure 16
shows the plot of the first two principal components of the feature space for a
TreeESN-R and for a TreeESN-M in correspondence of NR = 50 and σ = 2.

According to the Markovian organization of the reservoir dynamics pre-
served by the the root state mapping function (TreeESN-R), Figure 16(a)
clearly shows that the feature states computed for the molecules in the
dataset are clustered together according to the suffix of the input structures
(represented in the same figure under the corresponding cluster). In partic-
ular, the trees in Figure 15 sharing a long common suffix are mapped into
very close states (see the A, B, C labels). Since the target values of A, B, C
molecules are very different, this Markovian organization is very unsuitable
for the task.

32

CA B

Target = 92.0 °C

3,4−dimethylhexane3−methylpentane

Target = 63.3 °C

3−methylhexane

Target = 117.7 °C

Figure 15: Examples of tree representations of molecules in the Alkanes dataset with
common suffix of height 3 and different target values. Molecule A has target 63.3 oC,
molecule B has target 92.0 oC and molecule C has target 117.7 oC.

The use of the mean state mapping function (TreeESN-M) influences the
feature space organization such that Markovianity of reservoir dynamics is
no longer preserved. In this case, the feature space results organized accord-
ing to the size and shape of the input structures. In Figure 16(b), the first
principal component distributes the feature representations according to the
number of carbon atoms in the main chain of the corresponding molecule,
whereas the second principal component distributes them on the basis of
the pattern of atom branching. Considering the trees in Figure 15, we can
indeed observe that the states corresponding to molecules B and C, having
the same number of atoms in the main chain, are mapped into close values
of the first principal component. Analogously, the states for molecules A

and B, with the same pattern of branching, are mapped into close values of
the second principal component. Thus, this organization matches the known
characteristics of the target. In particular, molecules such are A, B, C with
very different target label result in well distinguished positions in the plot,
which is more suitable for the task with respect to the case in Figure 16(a).
For the general case, the arrow in Figure 16(b) approximatively shows the
direction of increasing target values for all the molecules in the plot, that
agrees with the distribution of their corresponding feature representations.
Hence, the organization arising with TreeESN-M fits better the characteris-
tics of the target, resulting in a facilitation for the linear readout tool and

33

−0.15 −0.1 −0.05 0 0.05
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

A
B

C

First Principal Component

S
e
co

n
d
 P

ri
n
ci

p
a
l C

o
m

p
o
n
e
n
t

C
o

174C
o

69C
o

−42

(b)

Increasing target values

Figure 16: Plots of the first two principal components of the reservoir state space computed
by TreeESNs for the Alkanes dataset. The labels A, B and C refer to the molecules in
Figure 15. Plot (a): TreeESN-R, the shared suffixes of height 2 of the molecules are
represented below each cluster. Plot (b): TreeESN-M, the arrow on the top shows the
distribution of the increasing target values.

34

then in better predictive performances.

4.2. Performance Evaluation of TreeESN

In this Section we present and discuss the potentiality of the TreeESN
approach, considering both predictive performance and computational cost in
practical applications in comparison with state-or-the-art neural and kernel-
based models. In particular, we considered 8 predictive tasks of different
nature, namely 5 tasks related to the prediction of aggregation functions, a
multi-classification task in the field of document processing derived from the
INEX2006 international competition, and 2 tasks from glycobiology related
to classification of glycan molecules.

For model selection, in the following experiments, we considered different
hyper-parameterizations for reservoir (including the reservoir dimension, the
scaling of the matrices collecting input-to-reservoir and internal recurrent
reservoir connections weights) and for readout regularization, which have
been shown to be relevant for the RC models performance (e.g. [57, 13, 58,
59]).

As basic experimental setup for our experiments on TreeESNs, we used
reservoirs with 40% of connectivity, contraction coefficient σ ∈ {1, 2, 3} and
input scaling parameter scalein ∈ {0.1, 1}. We explored reservoir configura-
tions varying the number of reservoir units in the range 10-1000, with specific
settings of the range depending on the characteristics of the different datasets
and tasks (as detailed in the following sub-sections). For every setting of the
reservoir hyper-parametrization we independently generated a number of 10
random guessed reservoirs of TreeESNs and averaged the results over the
guesses. Readouts were trained using pseudo-inversion and ridge-regression
with regularization parameter λr ∈ {10−1, 10−2, 10−3, 10−4, 10−5, 10−6, 10−7}.
Model selection and performance assessment are based on cross-validation
techniques. The details of the splitting in training, validation and test sets,
and of the model selection procedure adopted, depend on the characteristics
of the available datasets and are described in the following sub-sections. Note
that distinct model selection procedures were applied for the two possible
choices of the state mapping function, i.e. for TreeESN-R and TreeESN-M.

The efficiency of TreeESNs, already discussed theoretically in Section 3.4,
is concretely shown by reporting the times required for training and testing
the model on the different tasks. In practice, such timings were found to be
almost the same for TreeESNs using root and mean state mappings, hence
the reported values were averaged over the choice of the state mapping.

35

4.2.1. Aggregation Functions

The aggregation function experiments allow us to have a direct compari-
son with respect to the class of recursive neural networks models, for which
TreeESN represent an architectural baseline. Such set of benchmarks have
been used to asses the capability of GNN and RelNN models in grasping
basic relational dependencies on tree structured data.

An aggregation function is a function applied to a bag of tuples (i.e. a
set of multi-dimensional values), returning an output which is related to a
particular property of the tuples in the bag. We considered 5 artificial aggre-
gation functions datasets, constructed analogously to [31], in correspondence
of the following 5 aggregation functions: count, sum, maximum, average and
median. Each tuple contained 5 real values from a symmetric interval, where
each bag contained a number of tuples between 5 and 10. Each aggregation
function allowed for the definition of a regression task, such that for each
bag the target is defined as the output of the aggregation function applied
to the first field of each tuple in the bag. For instance, for the max func-
tion, the target associated to a bag of tuples is the maximum value among
the first fields in each tuple of the bag. An exception to this is represented
by the count function, in which case the target for each bag is assigned to
the number of tuples in the bag. The artificial datasets were obtained by
sampling targets values for the aggregation functions and then generating
the values in the tuples in an appropriate range as in [31]. Bags of tuples
were represented as rooted trees, where the leaf nodes stand for the tuples
and the root stands for the bag. Zero labels were assigned to root nodes,
while a 5-dimensional real label was associated to each leaf node, containing
the values in the corresponding tuple (see Figure 17). In line with [31], each
dataset contained 500 trees, split in training, validation and test sets with
300, 100 and 100 trees, respectively.

We used TreeESNs with NR ∈ {10, 50, 100} units4, while all other ex-
perimental conditions were set as described in Section 4.2. As in [31], each
bag was considered correctly predicted if the absolute difference between the
target and the output of the TreeESN was not greater than 0.1. In the case
of the count function, the output of the TreeESN was rounded to the closest

4Preliminary experiments on these datasets pointed out that a parameter search for
model selection, considering reservoirs with dimension in the range 10-100, was sufficient
for the characteristics of the tasks.

36

tuple1 tuple2 tuple3 tuple4 tuple5

bag

[0.5 −0.1 ... 0.5] [0.5 0.6 ... −0.1] [−0.1 0.1 ... 0.8] [0.7 −0.5 ... −0.6][−0.8 0.3 ... −0.1]

label [0 0 ... 0]

bag label [0 0 ... 0]

tuple1

[0.1 −0.1 ... 0.6]

tuple2

[0.1 −0.2 ... 0.2]

tuple4

[−0.5 0.1 ... 0.1]

tuple5

[−0.1 0.6 ... −0.8]

tuple6

[0.3 0.1 ... 0.4]

tuple3

[−0.4 −0.4 ... 0.6]

Figure 17: Two examples of tree representations of bag of tuples in the aggregation func-
tions datasets.

integer. Reservoir hyper-parametrization and readout regularization were
chosen on the validation set for each of the 5 tasks.

Results achieved by TreeESNs, in correspondence of root and mean state
mappings, are reported in Tables 2, 3, 4, 5 and 6 for the count, sum, max,
average and median aggregation functions tasks, respectively. In the same
tables, the performance obtained by GNNs and RelNNs is presented as well.
In particular, the performance of GNN is averaged over different represen-
tations of the input structures, while the performance of RelNN is averaged
over possible architectural variants of the model (see [31] for details). In ad-
dition, for a further baseline comparison, the performance of the null model
is reported as well.

In general, despite the fact that TreeESNs represent an architectural base-
line for the more complex neural networks models with trained recursive
dynamics considered, TreeESNs results on the aggregation functions tasks
are comparable with those obtained by GNNs and RelNNs. Such compar-
ison is particularly favorable, for instance, for the max and for the median
aggregation functions (see Tables 4 and 6).

The results achieved by TreeESN-R and TreeESN-M on the aggregation
functions tasks can further point out some interesting characteristics of the
model in relation to the choice of the state mapping function. For instance,
for the count task (see Table 2), the state computed for the root node of each

37

Model Test Accuracy (%)
TreeESN-R 100.0
TreeESN-M 94.9

GNN
mean 83.5
min-max 17.7-100.0

RelNN
mean 99.3
min-max 99.0-99.9

null 17.0

Table 2: Average test accuracy (in %) on the count aggregation function task for TreeESNs,
GNNs and RelNNs.

Model Test Accuracy (%)
TreeESN-R 100.0
TreeESN-M 98.5

GNN
mean 98.1
min-max 90.7-100.0

RelNN
mean 99.8
min-max 99.7-99.8

null 16.0

Table 3: Average test accuracy (in %) on the sum aggregation function task for TreeESNs,
GNNs and RelNNs.

tree is strongly related to the number of leaf nodes in the tree. Accordingly,
TreeESNs with root state mapping are able to learn this task with 100% of
test accuracy. On the other hand, the use of a mean state mapping has the
effect of mixing together the state information computed in correspondence
of the different nodes in the tree, reducing the influence of the state of the
root on the final output and resulting in worse accuracy results.

The efficiency of the TreeESN approach is shown by reporting in Table 7 a
comparison on training and test timings for TreeESN, GNN and RelNN [31],
averaged over the different aggregation functions tasks. Although experi-
ments on GNNs and RelNNs were conducted using PCs with more powerful
processors (see [31] for details), Table 7 clearly shows the computational
advantage of the TreeESN approach. Indeed, while test times were almost
the same, training a TreeESN required only ≈ 0.3 seconds, which is 2 and
3 orders of magnitude faster than training a RelNN and a GNN, respec-
tively, on the same tasks. This evident advantage is due to the fact that in

38

Model Test Accuracy (%)
TreeESN-R 84.6
TreeESN-M 65.1

GNN
mean 57.2
min-max 48.3-71.0

RelNN
mean 60.3
min-max 45.1-78.1

null 11.0

Table 4: Average test accuracy (in %) on the max aggregation function task for TreeESNs,
GNNs and RelNNs.

Model Test Accuracy (%)
TreeESN-R 100.0
TreeESN-M 100.0

GNN
mean 99.3
min-max 97.0-100.0

RelNN
mean 98.3
min-max 96.0-99.8

null 19.0

Table 5: Average test accuracy (in %) on the average aggregation function task for
TreeESNs, GNNs and RelNNs.

TreeESNs only the feed-forward linear readout part is trained, while in GNNs
and RelNNs also the weight values on the recurrent connections undergo an
iterative training procedure.

4.2.2. INEX2006 Task

INEX2006 is a real-world challenging multi-classification task coming
from the INEX 2006 international competition [60]. The dataset consid-
ered [52, 40] is derived from the IEEE structure only corpus describing the
hierarchical tree structure of XML formatted documents from 18 different
journals5. The journal corresponding to each document is used as target

5The INEX 2006 competition [60] comprised also other document classification tasks: a
task based a richer version of the dataset considered in this paper, i.e. the IEEE structure

and content corpus (see [61, 5]), containing also the textual content for each document,
and two classification tasks based respectively on Wikipedia structure only and Wikipedia

39

Model Test Accuracy (%)
TreeESN-R 100.0
TreeESN-M 100.0

GNN
mean 82.5
min-max 78.3-87.0

RelNN
mean 81.0
min-max 75.7-86.4

null 31.0

Table 6: Average test accuracy (in %) on the median aggregation function task for
TreeESNs, GNNs and RelNNs.

Model Time (secs)
Training Test

TreeESN 0.35 0.08
GNN 101.80 0.05
RelNN 34.70 0.10

Table 7: Training and test timings (in seconds) required by TreeESN on the aggregation
function tasks (averaged over the 5 tasks). Experiments on TreeESNs were run on a PC
with an AMD Athlon 3000+ processor. For comparison, the timings required by GNNs
and RelNNs (taken from [31]) are reported as well.

classification for the task.
The task is characterized by a large dataset containing the tree repre-

sentations of 12107 documents, where each tree is obtained according to the
XML structure of the corresponding document (for details see e.g. [40, 52]
and references therein). The degree of the set of trees is k = 66 and the num-
ber of nodes in each tree varies from 3 to 115. Node labels are composed of
65 bits, only one of which is set to 1, identifying the XML tag corresponding
to the node. An example of tree representation of an XML document in the
INEX2006 dataset is shown in Figure 18. The INEX2006 task is a 18-class
multi-classification task, accordingly the target output for each input tree is
an 18-dimensional binary vector, where the unique bit equal to 1 identifies
the correct classification.

structure and content datasets (see [62]). In this paper, we limit our consideration to the
IEEE structure only corpus. For further details the reader is referred to [60].

40

<tagID2>

<tagID41>

<tagID5>
<tagID10>

<tagID121>

<tagID121>

XML Representation

<tagID2>

<tagID121>

<tagID121>

<tagID5> <tagID10>

<tagID41>

Tree Representation

label [1000...000]

[0000...0001]

[00..010..00][000000010...0]

[00...010...00]

[0000...0001]

Figure 18: Example of tree representation of XML documents in the INEX2006 dataset.

The INEX2006 task has been approached by a variety of learning models,
and represents a task characterized by a large number of possible output
classes (with respect to other tasks considered in the paper), on which the
base misclassification error achieved by a random classifier is 94.44%. This
task is particularly meaningful because it allows us a performance comparison
with a RecNN model extending the Self-Organizing Map (SOM) [63], called
the SOM for structured data (SOM-SD) [46], whose performance in the INEX
2006 competition, although on a different version of the task, turned out to be
very competitive with respect to the other approaches proposed [60, 64], and a
comparison with state-of-the-art kernel models related to the same approach.
Details on the application of SOM-SD to the INEX2006 classification task can
be found in [52, 53]. We also take into consideration kernels for trees based
on SOM-SD, namely the AM [52] and the AMπ kernel [53]. The application
to the same task of other state-of-the-art kernels for tree domains, such as
the PT kernel (PT) [37], the ST kernel [38], the SST kernel [39] and the
Route kernel [40], is considered as well for a further significant comparison
on the performance.

For experiments on TreeESN, based on the common setting described in
Section 4.2, the multi-classification task was approached by training an 18-
dimensional linear readout, with the output classification for a given input
tree corresponding to the index of the readout unit with the largest acti-
vation. Training, validation and test sets contained 4237, 1816 and 6054
documents, respectively, as in [52, 40]. The TreeESN hyper-parametrization
yielding the minimum classification error on the validation set was selected,
trained on the union of the training and validation sets and tested on the
test set. Table 8 shows the classification test error of TreeESNs in correspon-

41

dence of the selected hyper-parametrization. In the same table the errors
obtained by the SOM-SD and the kernels are presented for comparison (as
obtained from the literature). Classification errors for SOM-SD, AM and
AMπ correspond to different settings of the SOM-SD map (see [53]), while
the errors reported for the Route kernel correspond to alternative definitions
for the kernel function (see [40]).

The reservoir hyper-parametrization selected was NR = 500, σ = 1, and
scalein = 1, for TreeESN-R, and NR = 500, σ = 3, and scalein = 0.1, for
TreeESN-M. For both root and mean state mapping, the readout regulariza-
tion selected corresponded to pseudo-inverse training (see eq. 18).

Model Test Error %
TreeESN-R 57.93
TreeESN-M 57.38

SOM-SD
mean 64.02
min-max 60.77-67.66

AM
mean 61.178
min-max 59.93-61.77

AMπ
mean 60.06
min-max 59.26-61.73

PT 58.87
ST 67.98
SST 59.56

Route
mean 59.02
min-max 58.09-59.94

Table 8: Classification error on the test set for TreeESNs, SOM-SD and kernels for trees
on the INEX2006 task.

Results show that TreeESNs outperform all the state-of-the-art neural
and kernel-based approaches considered on this INEX2006 task for both the
choices of the state mapping function. TreeESN achieved a classification error
of 57.93% with standard deviation (among the guesses) of 0.20 for TreeESN-R
and 57.38% with standard deviation of 0.11 for TreeESN-M. What is really
noteworthy is that such performance is obtained by an extremely efficient
model, whose computational cost (linear in the input size) compares well with
the other approaches considered here (see Section 3.4), which include training
of the recursive connections (SOM-SD), a super-linear kernel computation
and the training of a SVM. For the INEX2006 task, roughly 4 minutes were

42

required both for training and testing of TreeESN, on a PC with AMD Athlon
3200+ processor at 2.2 GHz.

TreeESNs results shown in Table 8 were obtained by using the mis-
classification error as evaluation measure, in order to allow a direct compar-
ison with literature results for kernel methods on the same task. However,
due to the imbalancing of the dataset [60, 61], a more expressive evaluation
of the results can be obtained by considering macro and micro F1 scores,
which were used as evaluation metrics for the INEX competition [60]. For
a direct comparison, we refer to the work in [61], that considers a sub-set
of the IEEE structure only corpus, which represent a further opportunity of
comparison between TreeESNs and GNNs6. Such dataset, comprising the
6053 training samples in the original dataset, and referred to as the reduced
INEX2006 dataset in the following, was organized in training, validation and
test sets through a 80%-10%-10% stratified splitting (as in [61]).

We run another set of experiments on the reduced INEX2006 task con-
sidering the same range of TreeESN hyper-parametrizations used for the
INEX2006 task, and adopting a balancing procedure consisting in weighting
the training data with respect to the size of the target classes, analogously
to [61]. Note that both the F1 scores are meaningful to evaluate the test
performance, as the F1 scores were averaged over the 18 target classes with
equal weights (macro-F1) and with weights dependent on class dimensions
(micro-F1). TreeESN performances were obtained by model selection on
macro-F1.

TreeESN-R achieved macro-F1 and micro-F1 scores of 0.3679 (with stan-
dard deviation of 0.0065) and of 0.4092 (with standard deviation of 0.0056),
respectively. TreeESN-M obtained a macro-F1 of 0.3698 (with standard devi-
ation of 0.0066) and a micro-F1 of 0.4086 (with standard deviation of 0.0061).
Results obtained by GNN in [61] report a macro-F1 score of 0.48 and a micro-
F1 score of 0.34. In general, it can be seen that TreeESN performance is
inferior to GNN for the macro-F1 value, and superior for the micro-F1 value.
Altogether, such results are interesting in particular by virtue of the extreme
efficiency of the TreeESN approach. Indeed, while experiments on GNN re-
quired about 12 hours [61], training and testing a TreeESN on the reduced
INEX2006 dataset required respectively ≈ 11 minutes and ≈ 1 minute (under

6Results achieved by GNNs [61] on the reduced dataset from the IEEE structure only
corpus were the only results submitted for this task at the INEX 2006 competition.

43

the same conditions considered for the INEX2006 task, although networks
with larger reservoirs were chosen by the model selection procedure).

4.2.3. Glycans Tasks

The analysis of the relationships between the molecular structure of gly-
cans and their biological functions represents a challenging subject of study
in the field of computational biology and an interesting area of application for
Machine Learning models for structured domains [49]. In particular, several
kernel methods for trees have been applied to these tasks, allowing a com-
parison of the TreeESN performance with state-of-the-art kernel methods
for tree domains, some of which specifically tailored for the classification of
glycans. In particular, we take into consideration the application to glycans
classification of the Yamanishi kernel (see [50]), the ST and Subpath kernels
(see [51]), baseline Kailing kernel [65], q-gram and weighted q-gram Linkage
(LK), KCaM (KM), Linkage KCam (LKM) kernels (see [49]).

Glycans are carbohydrate chains supposed to take important roles in
several cellular processes. Glycan molecules have complex structures that can
be represented as rooted trees, where nodes stand for mono-saccharides and
bonds between nodes stand for sugar bonds (see Figure 19). Roots are chosen
according to the biological meaning (see [66, 67]). In this paper we consider

GalNAc

GalNAc.lb6 GalNAc.lb3

GalNAc.lb4 Fuc.la2

Fuc.la2

GalNAc.lb6

GalNAc.lb4

Fuc.la2

$

GalNAc.lb3

Fuc.la2

$

GalNAc

Molecule Representation Tree Representation

label [0...0010...0]

[0...01000...0][00...00010...0]

[0010...0] [0...010...0]

[0...010...0] [010...0]

[010...0]

Figure 19: Example of tree representation of molecules in the Glycan datasets.

two datasets of Glycans coming from the KEGG/Glycan database [66, 67],
and denoted as Leukemia and Cystic. The two datasets comprise 442 and

44

160 molecules, respectively. Two binary classification tasks are defined, by
assigning a +1 target to molecules reported as leukemic or cystic fibrosis,
respectively for the two datasets, and a −1 target to all the other glycan
molecules. Node labels are 1-of-m encodings of the corresponding mono-
saccharide description, leading to a label dimension of 57 and 29 for the
leukemia and cystic task, respectively. The maximum number of nodes in a
tree is 23 for leukemia and 15 for cystic. For both the tasks, the maximum
degree is k = 3.

Results were obtained by a stratified 10-fold cross validation procedure,
with reservoir hyper-parametrization and readout regularization chosen on a
validation set by an extra level of stratified 3-fold cross validation.

Tables 9 and 10 report the area under the curve (AUC) on the test set
obtained by TreeESN-R and TreeESN-M on the Leukemia and Cystic tasks,
respectively. In the same tables, the mean, maximum and minimum per-

Model Test AUC
TreeESN-R 0.9493
TreeESN-M 0.9710

Yamanishi
mean 0.9201
min-max 0.8970-0.9460

q-gram
mean 0.9340
min-max 0.8906-0.9578

KM
mean 0.9352
min-max 0.8889-0.9608

LKM
mean 0.9355
min-max 0.8875-0.9623

LK
mean 0.9627
min-max 0.9606-0.9647

Subpath
mean 0.9710
min-max 0.9680-0.9730

ST
mean 0.9607
min-max 0.9520-0.9740

Kailing
mean 0.9277
min-max 0.9020-0.9530

Table 9: AUC on the test set for TreeESNs and Yamanishi, q-gram, KM, LKM, LK,
Subpath, ST and Kailing kernels for trees on the Leukemia task.

45

Model Test AUC
TreeESN-R 0.7719
TreeESN-M 0.7513

q-gram
mean 0.6991
min-max 0.4794-0.8220

KM
mean 0.7082
min-max 0.4980-0.8225

LKM
mean 0.6996
min-max 0.4922-0.8034

LK
mean 0.7754
min-max 0.7684-0.7823

Subpath
mean 0.8500
min-max 0.8430-0.8560

ST
mean 0.7983
min-max 0.7780-0.8090

Kailing
mean 0.7137
min-max 0.6390-0.7940

Table 10: AUC on the test set for TreeESNs and q-gram, KM, LKM, LK, Subpath, ST
and Kailing kernels for trees on the Cystic task.

formances of the considered kernels for glycan classification are reported for
comparison, in correspondence of alternative definitions and parametriza-
tions of the kernel functions used (for details see [50, 51, 49]).

It can be seen that the performances of TreeESNs on the two glycan
classification tasks are very good and comparable to state-of-the-art results
for both the choices of the state mapping function. For the Leukemia task,
TreeESN-R and TreeESN-M achieved a test AUC of 0.9493 (with standard
deviation of 0.0069) and of 0.9710 (with standard deviation of 0.0083), re-
spectively. The result obtained by TreeESN-M is particularly noteworthy on
this task, reaching the same performance as the Subpath kernel and outper-
forming those of all the other kernels considered. For the Cystic task, the
test AUC obtained by TreeESN-R and TreeESN-M were respectively 0.7719
(with standard deviation of 0.0305), and 0.7513 (with standard deviation of
0.0403), which is in the range of performances of the state-of-the-art results
(although inferior to the results of the Subpath and ST kernels).

Note that TreeESN results particularly efficient in comparison to the ker-
nel methods considered in Tables 9 and 10. Indeed, as described in Sec-

46

tion 3.4, such kernels generally involve a super-linear time complexity. An
exception is the Kailing kernel which consist in the computation of simple
features over the tree structures, but that shows the worsts results. On the
other hand and the LK kernel that can even require an exponential time
for glycan classification tasks [49]. Training and testing a TreeESN on the
leukemia task approximatively required for each fold 36.84 and 3.88 seconds
on average, respectively, on a PC with AMD Athlon 3000+ processor at 2
GHz. Computational times for the cystic task were of 5.98 and 0.58 sec-
onds for training and test, respectively, on a PC with AMD Athlon 3200+
processor at 2.2 GHz.

5. Conclusions

We have presented a generalization of the RC approach to tree struc-
tured data processing, named the TreeESN model. The presented analysis
would characterize the proposed RC approach in the area of neurocomput-
ing for tree structured domains learning. TreeESNs effectively exploit the
Markovian nature of contractive RecNN state dynamics, being able to dis-
criminate among different input trees in a suffix-based fashion without any
adaptation of the recurrent connections. As such, TreeESNs represent both
an architectural and experimental baseline for RecNN models with trained
state dynamics, and a very efficient model able to compete with more com-
plex approaches, particularly when Markovian conditions are met in the task
at hand.

For tree-to-element transductions, a fixed state mapping function is used
to map the tree structured state computed by the reservoir into a vectorial
feature representation that feeds the readout. In this regard, we proposed
two possible choices, namely a root state mapping and a mean state map-
ping, which have strict relations with the Markovian properties. The effects
of such relationship have been investigated through experiments on artifi-
cial ad-hoc designed tasks and on a real-world task from chemical domain,
with different grade of Markovianity of the target function. In particular,
the TreeESN-R, which preserves the Markovian organization of the reservoir
dynamics, was effectively found to achieve a performance proportional to the
degree of Markovianity of the task. More interestingly, TreeESN-M achieved
promising results on complementary tasks with non-Markovian characteriza-
tion: in particular, the anti-Markovian and the Alkanes tasks. TreeESN-M
revealed to be a useful tool for such cases and for real-world tasks without a

47

clear Markovian characterization. In this sense, mean state mapping can be
a proper choice as an alternative to root state mapping function for recursive
approaches, which was the only state mapping function used up to now for
RecNN.

The evaluation of the performance, with particular emphasis on the effi-
ciency, was investigated first in comparison to recursive neural network mod-
els, for which TreeESN is an architectural baseline, and then with respect
to the wider class of kernel methods for tree data. The results confirmed a
dramatic reduction of the training and test time, whenever it was possible
to compare with literature results. More in general the cost of the model
well compares with model including a training phase for the encoding pro-
cess and with the super-linear kernel approaches. Concerning the predictive
performance, the global result obtained over a variegate set of tasks in the
fields of relational learning, document processing and computational biology
(and using different evaluation measures) is that such efficient approach can
achieve results that are comparable to those of more complex state-of-the-art
neural and kernel approaches.

The issue addressed in this paper would stimulate further research in
the study of effective and efficient models for learning in structured domain,
and of their critical theoretical characterization. In particular, the study of
TreeESN-R and TreeESN-M would open further research directions aimed
at the proper extraction of state information (state mapping functions) from
RC models. However, especially due to their simplicity and efficiency, the
proposed models already reveal to be useful tools to approach real-world
problems with complex data.

Acknowledgements

The authors would like to thank Alessandro Sperduti and Markus Ha-
genbuchner for providing the INEX2006 dataset.

References

[1] L. Getoor, B. Taskar, Introduction to Statistical Relational Learning
(Adaptive Computation and Machine Learning), The MIT Press, 2007.

[2] L. D. Raedt, Statistical relational learning: An inductive logic pro-
gramming perspective, in: Springer (Ed.), PKDD, Lecture Notes in
Computer Science 3721, pp. 3–5.

48

[3] S. Džeroski, N. Lavrač, Relational Data Mining, Springer-Verlag, Berlin,
2001.

[4] P. Bille, A survey on tree edit distance and related problems, Theoretical
Computer Science 337 (2005) 217–239.

[5] G. Xing, J. Guo, Z. Xia, Classifying xml documents based on struc-
ture/content similarity, in: N. Fuhr, M. Lalmas, A. Trotman (Eds.),
Comparative Evaluation of XML Information Retrieval Systems INEX
2006, volume 4518 of Lecture Notes in Computer Science, Springer
Berlin / Heidelberg, 2007, pp. 444–457.

[6] T. Akutsu, D. Fukagawa, A. Takasu, T. Tamura, Exact algorithms for
computing the tree edit distance between unordered trees, Theoretical
Computer Science 412 (2011) 352–364.

[7] P. Frasconi, M. Gori, A. Sperduti, A general framework for adaptive
processing of data structures, IEEE Transactions on Neural Networks 9
(1998) 768–786.

[8] M. Diligenti, P. Frasconi, M. Gori, Hidden tree markov models for
document image classification, IEEE Transactions on Pattern Analysis
and Machine Intelligence 25 (2003) 519–523.

[9] N. Gianniotis, P. Tino, Visualization of Tree-Structured Data Through
Generative Topographic Mapping, IEEE Transactions on Neural Net-
works 19 (2008) 1468–1493.

[10] D. Bacciu, A. Micheli, A. Sperduti, Bottom-up generative modeling of
tree-structured data, in: Proceedings of the International Conference
on Neural Information Processing (ICONIP) 2010, Springer, 2010, pp.
660–668.

[11] D. Bacciu, A. Micheli, A. Sperduti, Compositional generative mapping
of structured data, in: Proceedings of the International Joint Conference
on Neural Networks (IJCNN) 2010, IEEE, pp. 1–8.

[12] B. Hammer, B. Jain, Neural methods for non-standard data, in: Pro-
ceedings of the European Symposium on Artificial Neural Networks,
Computational Intelligence and Machine Learning, ESANN 2004, d-side,
2004, pp. 281–292.

49

[13] D. Verstraeten, B. Schrauwen, M. D’Haene, D. Stroobandt, An exper-
imental unification of reservoir computing methods, Neural Netw. 20
(2007) 391–403.

[14] M. Lukoševičius, H. Jaeger, Reservoir computing approaches to recur-
rent neural network training, Computer Science Review 3 (2009) 127 –
149.

[15] H. Jaeger, The ”echo state” approach to analysing and training recur-
rent neural networks, 2001. Tech.Rep. 148, GMD - German National
Research Institute for Computer Science, 2001.

[16] H. Jaeger, H. Haas, Harnessing nonlinearity: Predicting chaotic systems
and saving energy in wireless communication, Science 304 (2004) 78–80.

[17] B. Hammer, P. Tiňo, Recurrent neural networks with small weights
implement definite memory machines, Neural Computation 15 (2003)
1897–1929.

[18] P. Tiňo, M. Cernanský, L. Benusková, Markovian architectural bias of
recurrent neural networks, IEEE Transactions on Neural Networks 15
(2004) 6–15.

[19] P. Tiňo, B. Hammer, M. Bodén, Markovian bias of neural-based archi-
tectures with feedback connections, in: Perspectives of Neural-Symbolic
Integration, Springer-Verlag, 2007, pp. 95–133.

[20] C. Gallicchio, A. Micheli, Architectural and markovian factors of echo
state networks, Neural Networks 24 (2011) 440 – 456.

[21] A. Sperduti, A. Starita, Supervised neural networks for the classification
of structures, IEEE Transactions on Neural Networks 8 (1997) 714–735.

[22] B. Hammer, Learning with recurrent neural networks, in: Lecture Notes
in Control and Information Sciences, volume 254, Springer-Verlag, 2000.

[23] B. Hammer, A. Micheli, A. Sperduti, Adaptive contextual processing of
structured data by recursive neural networks: A survey of computational
properties, in: Perspectives of Neural-Symbolic Integration, volume
77/2007, Springer Berlin / Heidelberg, 2007, pp. 67–94.

50

[24] E. Francesconi, P. Frasconi, M. Gori, S. Marinai, J. Q. Sheng, G. Soda,
A. Sperduti, Logo recognition by recursive neural networks, in: Sec-
ond international workshop on graphics recognition, GREC’97, Springer,
1997, pp. 104–117.

[25] A. Bianucci, A. Micheli, A. Sperduti, A. Starita, Application of cascade
correlation networks for structures to chemistry, Applied Intelligence 12
(2000) 117–146.

[26] F. Costa, P. Frasconi, V. Lombardo, G. Soda, Towards incremental
parsing of natural language using recursive neural networks, Applied
Intelligence 19 (2003) 9–25.

[27] C. De Mauro, M. Diligenti, M. Gori, M. Maggini, Similarity learning
for graph-based image representations, Pattern Recognition Letters 24
(2003) 1115 – 1122.

[28] P. Sturt, F. Costa, V. Lombardo, P. Frasconi, Learning first-pass struc-
tural attachment preferences with dynamic grammars and recursive neu-
ral networks, Cognition 88 (2003) 133–169.

[29] C. Duce, A. Micheli, A. Starita, M. Tiné, R. Solaro, Prediction of
polymer properties from their structure by recursive neural networks,
Macromolecular Rapid Communications 27 (2006) 711–715.

[30] W. Uwents, H. Blockeel, Classifying relational data with neural net-
works, in: Lecture notes in computer science, Proceedings of the 15th
international conference on inductive logic programming, ILP 2005,
Springer, 2005, pp. 384–396.

[31] W. Uwents, G. Monfardini, H. Blockeel, M. Gori, F. Scarselli, Neural
networks for relational learning: an experimental comparison, Machine
Learning 82 (2011) 315–349.

[32] F. Scarselli, M. Gori, A. Tsoi, M. Hagenbuchner, G. Monfardini, The
graph neural network model, IEEE Transactions on Neural Networks
20 (2009) 61–80.

[33] B. Hammer, J. Steil, Tutorial: Perspective on learning with rnns, in:
Proceedings of the European Symposium on Artificial Neural Networks,

51

Computational Intelligence and Machine Learning, ESANN 2002, d-side,
2002, pp. 357–368.

[34] B. Hammer, P. Tiňo, A. Micheli, A Mathematical Characterization of
the Architectural Bias of Recursive Models, Technical Report 252, Uni-
versitat Osnabruck, Germany, 2004.

[35] T. Gärtner, A survey of kernels for structured data, ACM SIGKDD
Explorations Newsletter 5 (2003) 49–58.

[36] D. Haussler, Convolution kernels on discrete structures, Technical Re-
port UCSC-CRL-99-10, University of California, Santa Cruz, 1999.

[37] A. Moschitti, Efficient convolution kernels for dependency and con-
stituent syntactic trees, in: J. Fürnkranz, T. Scheffer, M. Spiliopoulou
(Eds.), Machine Learning: ECML 2006, volume 4212 of Lecture Notes
in Computer Science, Springer Berlin / Heidelberg, 2006, pp. 318–329.

[38] S. Viswanathan, A. J. Smola, Fast kernels for string and tree matching,
in: Advances in Neural Information Processing Systems 15, MIT Press,
Cambridge, MA, 2003, pp. 569–576.

[39] M. Collins, N. Duffy, New ranking algorithms for parsing and tagging:
kernels over discrete structures, and the voted perceptron, in: Proceed-
ings of the Annual Meeting on Association for Computational Linguis-
tics, ACL 2002, Association for Computational Linguistics, 2002, pp.
263–270.

[40] F. Aiolli, G. D. S. Martino, A. Sperduti, Route kernels for trees, in: Pro-
ceedings of the Annual International Conference on Machine Learning,
ICML 2009, ACM, 2009, pp. 17–24.

[41] C. Gallicchio, A. Micheli, TreeESN: a preliminary experimental anal-
ysis, in: Proceedings of the European Symposium on Artificial Neural
Networks, Computational Intelligence and Machine Learning, ESANN
2010, d-side, 2010, pp. 333–338.

[42] B. Hammer, A. Micheli, A. Sperduti, M. Strickert, A general framework
for unsupervised processing of structured data, Neurocomputing 57
(2004) 3 – 35.

52

[43] B. Hammer, A. Micheli, A. Sperduti, M. Strickert, Recursive self-
organizing network models, Neural Networks 17 (2004) 1061–1085.

[44] J. Hopcroft, R. Motwani, J. Ullman, Introduction to Automata Theory,
Languages, and Computation (3rd Edition), Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2006.

[45] A. Micheli, D. Sona, A. Sperduti, Contextual processing of structured
data by recursive cascade correlation, IEEE Transactions on Neural
Networks 15 (2004) 1396–1410.

[46] A. M. Hagenbuchner, Sperduti, A. Tsoi, A self-organizing map for adap-
tive processing of structured data, IEEE Transactions on Neural Net-
works 14 (2003) 491 – 505.

[47] Y. Bengio, P. Frasconi, P. Simard, The problem of learning long-term
dependencies in recurrent networks, IEEE International Conference on
Neural Networks 3 (1993) 1183–1188.

[48] J. Kolen, S. Kremer (Eds.), A Field Guide to Dynamical Recurrent
Networks, IEEE Press, 2001.

[49] L. Li, W. Ching, T. Yamaguchi, K. F. Aoki-Kinoshita, A weighted q-
gram method for glycan structure classification, BMC Bioinformatics
11 (2010) 33–38.

[50] Y. Yamanishi, F. Bach, J. Vert, Glycan classification with tree kernels,
Bioinformatics 23 (207) 1211–1216.

[51] D. Kimura, T. Kuboyama, T. Shibuya, H. Kashima, A subpath ker-
nel for rooted unordered trees, in: Advances in Knowledge Discovery
and Data Mining, volume 6634 of Lecture Notes in Computer Science,
Springer Berlin / Heidelberg, 2011, pp. 62–74.

[52] F. Aiolli, G. D. S. Martino, M. Hagenbuchner, A. Sperduti, Learning
nonsparse kernels by self-organizing maps for structured data, IEEE
Transactions on Neural Networks 20 (2009) 1938–1949.

[53] F. Aiolli, G. D. S. Martino, A. Sperduti, A new tree kernel based on
som-sd, in: Proceedings of the International Conference on Articial
Neural Networks, ICANN 2010, Part II, Springer, 2010, pp. 49–58.

53

[54] P. Tiňo, B. Hammer, Architectural bias in recurrent neural networks:
Fractal analysis, Neural Computation 15 (2003) 1931–1957.

[55] A. Micheli, Neural network for graphs: A contextual constructive ap-
proach, IEEE Transactions on Neural Networks 20 (2009) 498–511.

[56] A. Micheli, F. Portera, A. Sperduti, A preliminary empirical comparison
of recursive neural networks and tree kernel methods on regression tasks
for tree structured domains, Neurocomputing 64 (2005) 73–92.

[57] G. K. Venayagamoorthy, B. Shishir, Effects of spectral radius and set-
tling time in the performance of echo state networks, Neural Networks
22 (2009) 861 – 863.

[58] H. Jaeger, Reservoir riddles: suggestions for echo state network research,
in: Proceedings of the IEEE International Joint Conference on Neural
Networks, IJCNN 2005, volume 3, IEEE, 2005, pp. 1460–1462.

[59] D. Verstraeten, J. Dambre, X. Dutoit, B. Schrauwen, Memory versus
non-linearity in reservoirs, in: Proceedings of the IEEE International
Joint Conference on Neural Networks, IJCNN 2010, IEEE, 2010, pp.
2669 – 2676.

[60] L. Denoyer, P. Gallinari, Report on the xml mining track at inex 2005
and inex 2006: categorization and clustering of xml documents, SIGIR
Forum 41 (2007) 79–90.

[61] S. Yong, M. Hagenbuchner, A. Tsoi, F. Scarselli, M. Gori, Xml document
mining using graph neural network, in: N. Fuhr, M. Lalmas, A. Trotman
(Eds.), Comparative Evaluation of XML Information Retrieval Systems,
INEX 2006, volume 4518 of Lecture Notes in Computer Science, Springer
Berlin / Heidelberg, 2007, pp. 458–472.

[62] J. D. Knijf, Fat-cat: Frequent attributes tree based classification, in:
N. Fuhr, M. Lalmas, A. Trotman (Eds.), Comparative Evaluation of
XML Information Retrieval Systems INEX 2006, volume 4518 of Lecture
Notes in Computer Science, Springer Berlin / Heidelberg, 2007, pp. 485–
496.

[63] T. Kohonen, Self-Organizing Maps, Springer-Verlag, 2001.

54

[64] M. Kc, M. Hagenbuchner, A. Tsoi, F. Scarselli, A. Sperduti, M. Gori,
Xml document mining using contextual self-organizing maps for struc-
tures, in: N. Fuhr, M. Lalmas, A. Trotman (Eds.), Comparative Eval-
uation of XML Information Retrieval Systems, volume 4518 of Lecture
Notes in Computer Science, Springer Berlin / Heidelberg, 2007, pp.
510–524.

[65] K. Kailing, H. Kriegel, S. Schonauer, T. Seidl, Efficient similarity search
for hierarchical data in large databases, in: Advances in Database Tech-
nology, EDBT 2004, volume 2992 of Lecture Notes in Computer Science,
Springer Berlin / Heidelberg, 2004, pp. 643–644.

[66] K. Hashimoto, S. Goto, S. Kawano, K. Aoki-Kinoshita, N. Ueda,
M. H. T. Kawasaki, M. Kanehisa, Kegg as a glycome informatics re-
source, Glycobiology 16 (2006) 63–70.

[67] M. Kanehisa, S. Goto, S. Kawashima, Y. Okuno, M. Hattori, The kegg
resource for deciphering the genome, Nucleic Acids Res. 32 (2004) 277–
280.

55

