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This paper introduces a signal classification framework that can be used for brain-computer interface design. The actual 

classification is performed on sparse autoregressive features. It can use any well-known classification algorithm, such as 

discriminant analysis, linear logistic regression and support vector machines. The autoregressive coefficients of all signals 

and channels are simultaneously estimated by the group lasso, and the estimation is guided by the classification 

performance. Thanks to the variable selection capability of the group lasso, the framework can drop individual autoregressive 

coefficients that are useless in the prediction stage. Also, the framework is relatively insensitive to the chosen autoregressive 

order. W e devise an efficient algorithm to solve this problem. W e test our approach on Keirn and Aunon's data, used for 

binary classification of electroencephalogram signals, achieving promising results. 

1. Introduction 

Brain-computer interfaces (BCIs) establish a direct c o m m u ­
nication between the brain and some external device, where brain 
activity is decoded to control the device. This is a very promising 
application of machine learning techniques that, for example, can 
help to greatly improve the quality of life of disabled people. 

Of BCI technologies, non-invasive BCIs, which use neuroima-
ging inputs collected without entering the body, are of particular 
interest. Some of the possible data sources are electroencephalo­
graphy (EEC) data, magnetoencephalography (MEG) data and 
functional magnetic resonance imaging (fMRI) data. In this paper, 
w e focus on binary classification with EEC inputs. Therefore, data 
usually consist of a set of signals, each collected from a specific 
location on the scalp (called a channel). For a general review of 
EEC-based classification, see, for example, [1|. 

Usually, some feature extraction procedure is used to assemble 
the classifying predictors from the raw signals. To number a few 
possibilities, w e have time-frequency features [2], power spectral 
density values [3] or the fitted autoregressive (AR) coefficients [4|. 
W e focus on AR coefficients. 

W e assume that each instance of the data set is constituted by 
a signal or a simultaneously recorded set of signals (each corre­
sponding to a different channel). Typically, a vector of AR linear 
coefficients is estimated separately for each single signal by, for 

example, least squares or Burg's algorithm [5|. These coefficients 
would be the inputs for the subsequent classifier. W h e n more than 
one channel is available, the AR coefficients for all channels are 
concatenated to build a single instance. Hence, if ap-order AR model 
is fitted for each signal, w e have p predictors per channel. Alter­
natively, the signal can be divided into various segments so that a 
p-order AR model is fitted for each segment. In this case, w e would 
have a number of predictors equal to p multiplied by the number of 
segments, multiplied by the number of channels. This is done 
separately for each instance. 

Huan and Palaniappan [6] compare these two methods, 
estimating the AR coefficients using both the least squares 
method and Burg's algorithm. All their estimates are of sixth-
order AR coefficients, which have been reported in the literature 
to empirically produce good results. They use either linear 
discriminant analysis or a multilayer perceptron for the binary 
classification step, concluding that the best feature extraction 
approach is the simplest least squares method of fitting AR 
models for entire signals. No variable selection is performed. 
Unfortunately, this type of methods entails two major drawbacks. 
First, the order of the AR models is fixed beforehand, without 
considering the data. Also, the same order is used for all channels. 
Second, the AR coefficients are estimated by exclusively minimiz­
ing the AR prediction error, regardless of the classification 
performance. 

This paper aims to overcome these pitfalls by choosing an 
initial arbitrarily high AR order and then looking for a sparse AR 
solution. This way, there is no need for specifying an exact AR 
order and the relevant predictors in the autoregressive model are 
automatically selected in a flexible way. The lasso [7] is a popular 



method for simultaneous regression and variable selection. Hsu 
et al. [8] apply the lasso to AR models. 

The novelty of our approach is that, instead of making a 
separate AR estimate for each signal, w e estimate the AR coeffi­
cients for all signals altogether. The objective is to discard (or 
select) the same variables for all signals. The selected variables 
can be different for each channel. W e use the group lasso [9], 
which can discard or select entire groups by means of a block 
I:-penalization, to generate a sparse solution. 

There are efficient algorithms to solve the group lasso, either 
finding the whole regularization path [9] or computing the 
solution for a grid of different regularization parameter values 
[10]. In this paper, w e devise an efficient LARS-type algorithm 
[9,111 based on multiresponse linear regression that provides 
computational advantages for this particular problem. Whatever 
algorithm w e use, w e select the group lasso solution that max­
imizes some classifier-related measure. Since the classifier some­
h o w guides the AR coefficient estimation, it is with the second 
aforementioned issue that w e are concerned here. 

Our method can be deemed a wrapper method. Wrapper 
methods are often computationally expensive. In this case, 
though, the number of predictors (selected AR coefficients) is 
moderate, so the computational cost is affordable. 

The rest of the paper is organized as follows. Section 2 
introduces the spirit of the methodology. Section 3 details the 
simplest case, when there is only one channel. Section 4 extends 
the method to the multiple channel scenario. Section 5 introduces 
a LARS-type algorithm to efficiently approximate the solution of 
the proposed problem. Section 6 deals with some computational 
details. Section 7 describes the set of experiments used to test the 
algorithm. Finally, Section 8 sums up the paper. 

2. Basic methodology 

W e consider N signals z¡ = (%,...,ẑ /, i e {!,...,N}, each 
labeled as c¡ e {0,1}. Let us denote the class vector as ce {0,1}^. 
W e want to obtain a classifier that assigns any future signal z¡, 
i > N , to a class in {0,1}. 

The autoregressive p-order model presumes, for each signal z¡, 
that 

0) 4=Ao+^]Atz<o-t)+%' ;e{p+i,...,n, 

where 6, is Gaussian white noise. Given some estimator 
A = (Ao3ii' - - - 'A,/' the squared sum of autoregressive errors is 
defined for z, as 

(2) 

Now, let us consider a classifier i/f and a function/^(,), which 
returns some classifier-related fitness measure, and whose argu­
ments are, respectively, a set of inputs and a set of responses. Let 
the N x p matrix B = [/̂ ,...,/y stack the N sparse vectors of 
autoregressive coefficients, and let J() be some function mono-
tonic on the complexity of B 

Given a sufficiently high order p, w e can formulate a multi-
criterion problem to jointly estimate B, whose criteria are the 
classifier accuracy, the autoregressive SSE and the complexity of 
B. For some Á ^ 0 , which denotes a componentwise inequality, a 
scalarized version of this problem is given by 

B = argmin-Á^(B,c)+Á2 ¿SSE(&,z,)+,W(B). (3) 

By choosing J Q to promote sparsity, w e will expect to discard 
those coefficients that are useless for the estimation. The dis­
carded coefficients should be the same for all vectors /),, 
ie{l,...,N}. 

Solving for all Á^=0 w e obtain all the Pareto optimal solutions 
to the multicriterion problem (and also some non-optimal solu­
tions). From the Pareto optimal set of solutions, that forms the 
optimal trade-off surface, w e would select, for example, the 
solution that maximizes the classification accuracy over some 
separated (validation) data set. So, B is the input of the classifier 
and is chosen to optimize the expected classification accuracy. 

For ̂  > 0, the scalarized problem (3) is in general non-convex. 
In addition, w e need to evaluate it for a 2D grid of values of ̂  
(note that the relative magnitudes of the components of A are all 
that matters). This approach is computationally unaffordable. 
Instead, w e resort to the more restricted problem 

B = argmin ^ ] SSE(f ,,zJ+Áf(B), (4) 

where w e let /li = 0 and ̂  = ̂ 3/^2. From the set of solutions 
corresponding to different values /l>0, w e will select the best 
solution according to/^(B,c). With this approach, w e only need to 
search in a one-dimensional grid of /I hyperparameters, and, also, 
the problem is convex for a proper choice of J(). 

Note that, even when the set of Pareto optimal solutions given 
by problem (4) is only a subset of the set of Pareto optimal 
solutions given by problem (3), this approach, unlike state-of-the-
art methods, still considers /^(,) for the estimation of B. 
Although in this paper w e do not follow this road, a complete 
search on the optimal trade-off surface given by problem (3) 
could be conducted for moderate size problems and specific 
choices of the classifier i/f that preserve convexity. For further 
details about multicriterion optimization, see, e.g., [12]. 

In what follows, w e give the specifics about the proposed 
method, including the choice of J(). 

3. Single channel classification 

Let us define the following elements: 
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where vector /T is the concatenation of the elements of B. 
Therefore, if w e include the intercept as an additional predictor 
for each signal, w e have y e R"*, X e ̂ " ^ ( P + D and /T e R " » + % 
where q = 7-p. Otherwise, w e have y e ^ , XeHa'*'*"? and 
/P e R^f. In this paper, w e choose to include the intercept. 

Assuming that the N signals are independent, w e can establish 
the linear relation 

,=x/r+g, 

,&1T, ,¿N(p+i), - - -,Cffr) 

(5) 

Gaussian where e = (¿i(p+i) 
white noise. 

W e can impose an i^-penalty that would drive some AR coeffi­
cients to zero (depending on some regularization parameter Á). 



However, since we are interested in discarding the same coefficients 
for each signal, w e use a group lasso penalty instead. The proposed 
formulation allows us to define p groups 0% = (/%%,...,/%%/, 
ke {!,... ,p}, to estimate p* as the minimizer of 

iiy-x/ri^+;¿ii0kii2, (6) 

where J() is given by a sum of fa-norms, and, thus, provides sparsity 
at a group level driving some groups 0% to exactly zero for all their 
components [9|. The intercepts (p\„,...,p\%,) are not penalized. 

This is a usual group lasso problem [9], and the complete exact 
regularization path can be obtained by group LARS [9,11| if X is 
orthogonal. Otherwise, the group LARS provides an approxima­
tion, which serves our purposes. From this approximated regular-
ization path, w e will select the solution /) that minimizes the 
estimated expected error with regard to i/f. 

However, even though group LARS is a very efficient method, 
X can become a huge matrix and computation can be expensive 
unless w e exploit its sparse structure. Similar arguments have 
been followed in the multiresponse regression literature. Below, 
w e introduce a forward selection approach that considers this 
structure. This algorithm is based on group LARS and the mufti-
response sparse regression algorithm [13]. 

Linear discriminant analysis (LDA) logistic regression (LR) or 
support vector machines (SVMs) are the options that w e consider 
for the classifier i/r; see [14] for a general review. LDA and LR are 
linear in the most basic version, whereas SVM reaches nonlinear-
ity by constructing a linear boundary in a transformed version of 
the feature space. 

For LDA, /^(B,c) is naturally denned as the log-likelihood 
function 

//B,c) = ̂  (^#É-\ + l#É-%+logaA (7) 

where /! is the mean of those vectors /?¡ whose class is c„ É is the 
c o m m o n covariance matrix of B and Ac, is the estimated a priori 
probability of class c,. W e can estimate %% as N^/N, where Nq is 
the number of instances whose class is c,. To compute (7), w e 
remove the coefficients that correspond to dropped groups (since 
p\ is sparse by groups). Note that this is necessary to compute É. 
Otherwise, matrix B has columns with all elements equal to zero 
and is not full rank. 

For LR,/^(B,c) can also be the log-likelihood function, deñned 
as 

//B,c) = ^](c^f,-log(l+e^')), (8) 

where ive%? is the estimated vector of logistic regression 
coefficients, computed by the iteratively reweighted least squares 
(IRLS) algorithm. 

In order to avoid overñtting, w e select the solution of Eq. (6) 
that minimizes a penalized version of/^(B,c). In particular, since 
Eqs. (7) and (8) are loglikelihood functions, w e can employ the 
Akoike information criterion [15| 

/UC = - ^ ( B , c ) + 2 ^ , (9) 

where df is the number of columns of A with non-zero 
coefficients. 

Finally, for SVM, /^(B,c) can be deñned as some margin 
maximizing loss function. For convenience, w e redefine the class 
to be in {-1,1}. One possible formulation of the SVM estimates 
the separating hyperplane parameters w e Rf^ as the minimizer 

(l-c*k(A/w)^+allwl|2, (10) 

where ( ) ^ indicates the positive part, h() is some mapping 
function, p+ is the dimension of the expanded feature space 
and % > 0 is the regularization cost parameter. Hence, function 
h() gives the nonlinear power to the SVM. Typically, a kernel 
function that computes the distance between any two points in 
the expanded feature space deñned by h() is all w e need for an 
efñcient computation. In this paper, w e use a radial basis function 
kernel, whose corresponding feature space is a Hubert space of 
inñnite dimensions. 

The entire regularization path for Eq. (10) can be computed 
with a small multiple of the computational cost of ñtting an SVM 
model for a single % parameter [16]. From this regularization path, 
w e select the model that minimizes the K-fold cross-validated 
error. Here, /^(B,c) can be the value of the left term of Eq. (10) 
that corresponds to the selected model. Since w e use a cross-
validated estimation of the loss function, w e do not need to use a 
penalization such as AIC in Eq. (9). 

Whereas the LDA formulation can be used for multiclass 
classification, the LR and SVM expressions are for binary classi-
ñcation but can be easily generalized. See [17|, for example, for 
details about the multiclass SVM. 

4. Multiple channel classification 

An instance is usually deñned as a group of signals instead of 
just one signal. For instance, an EEC instance is usually a set of 
signals recorded from different points on the scalp, that is, from 
different channels. Here, it makes sense to consider that the same 
AR coefficients are perhaps not appropriate for all channels. 

Let us modify the above notation to accommodate this 
problem. W e consider N sets of signals, each with M channels, 
and labeled as ce {0,1}^ as before. Now, each signal is denoted as 
Zu = (Zm, - - ,Zur), i e {1,... ,N}, 1 e {1,... ,M}. W e define 

y = (Zl1(p + 1), - - - ,Znn - - - ,Z|M(p + 1), - - - ,ZlMT, - - - ,-%M(p+1), - - - ,4vMr) , 
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where y E R™*, X„ E R**P+\ X e 0%™"%™»+,) and /T E R"N(p+i). 
As before, o = T-p. The same linear relation as Eq. (5) can be 
applied here. 

Now, w e have two choices to deñne the groups. W e can either 
deñne p groups as 

% = (Ait, - - - 'A m , - - - 'Ant' - - - 'Aviwk) ' ke {!,...,p}, (11) 

or M p groups as 

%t = (AK,-..,Aw/, fe{l,...,M}, te{l,...,p}. (12) 

Eq. (11) defines the same AR coefficients for all the channels, 
whereas Eq. (12) defines adaptive AR coefficients for each chan­
nel. The group lasso formulation in Eq. (6) is unchanged in the 



first case. In the second case, it becomes 

iif-x/riiz+a^E""*";. (̂ ) 

The solutions can be used as inputs for the classiher i/f as before, 
and the solution /) that maximizes/^(B,c) is selected. B is denned 

as ̂ ,... , ^ ] , where /»* = %io,^n, - - ,Aip, - - -,Awo,Awi, - - ,#&#/, 
i e {!,...,N}. 

Since there is no reason to assume that all the channels 
contribute equally, w e prefer the second grouping approach. 

5. An efñcient LARS-type algorithm 

In this section, we briefly describe the group LARS [111 and the 
multiresponse sparse regression algorithm [13]. W e then intro­
duce an efñcient algorithm to find an approximate regularization 
path for Eqs. (6) and (13). Although w e define the method for Eq. 
(13), it can be straightforwardly adapted to Eq. (6). W e assume 
centered data (no intercepts) for notation simplicity. 

The group LARS algorithm is an iterative procedure that adds a 
set of predictors, or group, to the model at each step. The group 
LARS starts with no groups. Firstly, it adds the group that is most 
correlated with the response to the active set of groups A The 
response is regressed on this group, moving the coefficients of 
this group towards the least squares solution until a new group 
reaches the same correlation with the vector of residuals as the 
active set. This new group is added to the active set .4. Now, the 
vector of residuals is regressed on the groups in .4, moving their 
coefficients towards the joint least squares solution until a new 
group reaches the same correlation with that vector of residuals 
as the active set. W h e n the number of instances is greater than 
the number of predictors, this procedure is repeated until all 
predictors are in the model. With a small modification, the group 
LARS can find the entire regularization path of a group lasso 
problem if the design matrix is orthogonal. Otherwise, it provides 
an approximate solution. 

The multiresponse sparse regression algorithm extends the 
(group) LARS algorithm to multiresponse linear regression by 
modifying the correlation criterion between the predictors and 
the current residual, which depends on multiple outputs. 

In this paper, w e derive an algorithm based on group LARS and 
multiresponse sparse regression for efficiently computing an 
approximate set of solutions of Eqs. (6) and (13). In the sequel, 
w e will use the notation X¡,, i e {!,... ,N}, i e {1,... ,M}, deñned in 
Section 4. Groups are deñned in Eq. (12). The active set .4 is thus 
deñned by a set of pairs (i,k), !e{l M}, ke{l p}. W e also 

define fu = (z#+1), - - - ,z*nY and &, = (&,,...,&%/-
The algorithm follows the group LARS steps described by Yuan 

and Lin [9], with some modifications. First, w e devise a new 
correlation measure. W e define the correlation of the ik-th group 
with the current residual as 

where X ^ is the k-th column of X, and r¡, e R"" is the current 
residual for the i-th signal and the i-th channel, deñned as 

r„ = ? * , - , % . (15) 

Second, the joint least squares solution d¡, e H^ is computed 
separately for the i-th signal and the i-th channel. Setting to zero 
the elements of d¡, that are not in A w e compute the remainder as 

< = (Xfxf)-^r„, (16) 

where X¡p denotes the columns of X¡, indexed by the active set .4. 
Hence, the regression coefficients for the i-th signal and the i-th 
channel are updated at each step as 

A, = fu+ydu, (17) 

where the y e [0,1] constant is computed as 

y = min s.t. 

N N 

E í 4 T (ru-y%*u4)f = ^[Xgf) (r„-y,*d<f)f. (18) 

Here, (f,i/) are a pair of indexes arbitrarily chosen from A Basic 
algebraic manipulations lead to 

-i/ + i/ + yi/2 + i/2_2i/i/-4ub + 4u'f/ 
?"= = 2(Ü=¡F) ' ^ 

where we define 

N N 

u = ^ ( X * X„du)2, u' = ^(Xgf) X„ 4, f, 

N N 

„ = 2 ̂ ( ^ ruXX* X„du), y = 2 ̂ ( ^ r„ )(Xgf) X ^ ) , 

b=E(<W, t^E^W-
Thus, the indexes (i,k)^ that minimize Eq. (18) correspond to 

the group that is added to the active set in the next iteration. As 
with group LARS, we now update the residual 

ru = ? „ - ? % Vü- (20) 

This procedure is repeated until y = 1. 
It turns out that the group LARS solution is the same yielded 

for the multiresponse sparse regression algorithm. The same 
connection holds for the algorithm that we propose. Unlike group 
LARS, however, we do not need to store an N M q x N M ( p + l ) 
matrix in memory (in the multiple channel case), speeding up the 
computations. Since X is not an orthogonal matrix, this solution is 
only approximated. At the cost of storing the entire matrix X in 
memory, an exact group lasso regularization path can be com­
puted following the algorithm described in recent work by 
Friedman et al. [18]. In this paper, however, we do not follow 
this approach. 

6. Further computational issues 

Sometimes a fast algorithm is needed to run in a real-time 
(online) environment with very limited computational resources 
available. Some BCI applications are of this type. Such an 
approach can be hard to apply in the high-dimensional setting. 
However, offline (previously stored) data can be used to simplify 
the online task. Offline data are usually available in the BCI held, 
where the device has to be trained for each subject prior to its real 
use. For instance, w e can run the algorithm on the offline data set 
so as to select which channels and AR coefficient indexes are 
relevant. Afterwards, in the online phase, w e can use least squares 
to estimate the AR coefficients that correspond to the previously 
selected channels and AR coefficient indexes. 

This two-step procedure follows the spirit of the relaxed 
lasso [19]. The relaxed lasso firstly discovers the sparsity pattern 
by lasso. Then, either least squares or the lasso, with a small 
penalty (i.e., with no variable selection), is used just on the 
selected variables. Among other nice theoretical properties, the 
relaxed lasso is less biased than the original lasso. 



7. Experiments 

To test the proposed framework, w e use the EEC data recorded 
by Zak Keirn at Purdue University [20]. The data is a collection of 
experiments on seven different subjects. Each subject is told to 
perform five different mental activities, say: stay relaxed, solve a 
mathematics problem, write a letter, mentally rotate a geometric 
figure and count a series of made-up numbers. Each subject 
repeats each task for a number of trials. Specifically, subjects 1, 
3, 4 and 6 perform ten trials, subjects 2 and 7 perform five trials 
and subject 5 performs fifteen trials. Each trial lasts ten seconds 
with a sampling frequency of 250 Hz, that is, it has a total of 2500 
sample points per channel. EEC signals were recorded from seven 
channels, from positions C3, C4, P3, P4, 01, 02 and EOG. The 
positions are defined by the 10-20 system of electrode place­
ment. Recordings were made with reference to electrically linked 
mastoids Al and A2. Keirn and Aunon [20] describe the collection 
procedure in more detail. 

W e use these data to test our signal classifier on the 10 
possible pairwise activity combinations, that is, on ten binary 
classification problems. The ten pairwise combinations are listed 
in the first column of Table 1. Binary classification was performed 
on these data for example by Keirn and Aunon [20| and Huan and 
Palaniappan [6|. In both papers, the trials are divided into 
subperiods that make up the instances for classification. Keirn 
and Aunon [20| use two-second subperiods and train a unique 
model for all subjects. Huan and Palaniappan [6], instead, use 
half-second subperiods, and have 20 available instances for each 
subject, trial and activity, with 2500/20= 125 sample points per 
channel. Huan and Palaniappan [6] estimate individual models for 
each subject, using ten trials. Subjects performing only five trials 
are ignored, as are the last five trials of the subject w h o performs 
fifteen trials. 

In this paper, like [6], w e train individual models for each 
subject. To be able to use all available data in equilibrated 
conditions, w e consider each group of five trials as a different 
data set. Thus, there are thirteen five-trials sets: two for subjects 
1,3, 4 and 6, one for subjects 2 and 7 and three for subject 5. W e 
omitted one set (from subject 4) due to missing data. Therefore, 
for each pair of activities (each binary classification problem), w e 
obtain twelve different, individual models. 

W e divide each trial into ten one-second subperiods of 250 
sample points. This way, w e have ten instances per trial. Since w e 
have five trials for each of two activities, w e have 100 instances 
for training and testing for each experiment. W e use a m a x i m u m 
AR order of 15. Using the notation from previous sections, w e 
have 7=250, N=100, M = 7 , p = 1 5 and q = T-p = 235. In this 
setting, w e test the basic methodology explained in Section 4, 
using Eq. (13), and the algorithm devised in Section 5. W e 
compare our approach (using also this setting) with the best 
feature extraction method reported by [6], that is, the sixth-order 
AR coefficients computed by least squares. For the classification 
methods, w e use LDA, LR and SVM. 

On the one hand, Table 1 shows the mean classification 
accuracy for each method and each combination of activities, 
averaging across all thirteen five-trials sets. These results give an 
idea of the global performance of each method for each binary 
classification problem. On the other hand, Table 2 gives the best 
accuracy for each five-trials set, reporting which pairwise combi­
nation of activities and classification algorithm produced this 
result. The left columns show the best of our methods, and the 
right columns show the best of Huan and Palaniappan's methods. 
In a practical scenario, the pairwise combination of activities and 
the algorithm that best discriminate for a given subject would be 
chosen to implement the customized BCI device for this subject. 
All results are obtained by 5-fold cross-validation. 

Table 1 
Summary of the classification accuracy for each combination of activities and methods. 

Activities Accuracy + std. deviation 

sLDA SLR sSVM LDA LR SVM 

Relax,maths 
Relax,letter 
Relax,rotate 
Relax,count 
Maths.letter 
Maths.rotate 
Maths.count 
Letter.rotate 
Letter.count 
Rotate.count 

0.70 + 0.07 
0.62 ± 0.08 
0.71 + 0.10 
0.64 + 0.12 
0.65 + 0.10 
0.69 ±0.07 
0.67 ±0.08 
0.75 + 0.12 
0.66 ± 0.08 
0.65 + 0.10 

0.73 + 0.06 
0.63 ± 0.09 
0.74 + 0.06 
0.65 + 0.05 
0.66 ±0.07 
0.69 ± 0.09 
0.68 ± 0.09 
0.74 + 0.10 
0.70 + 0.10 
0.65 + 0.10 

0.73 + 0.10 
0.68 + 0.10 
0.78 + 0.10* 
0.71 + 0.10 
0.73 + 0.10 
0.73 + 0.08 
0.70 + 0.10 
0.83 + 0.12* 
0.73 + 0.12 
0.71 +0.10 

0.70 + 0.06 
0.63 + 0.07 
0.70 + 0.09 
0.66 ± 0.09 
0.71 +0.06 
0.70 + 0.06 
0.66 ± 0.09 
0.74 + 0.10 
0.65 + 0.07 
0.67 + 0.11 

0.69 ± 0.05 
0.59 + 0.07 
0.67 + 0.07 
0.65 + 0.07 
0.67 + 0.05 
0.65 + 0.04 
0.64 + 0.10 
0.70 + 0.10 
0.61 + 0.07 
0.64 ±0.08 

0.73 + 0.08 
0.68 + 0.08 
0.73 + 0.10 
0.70 + 0.08 
0.73 + 0.07 
0.73 + 0.10 
0.69 ± 0.08 
0.77 + 0.14 
0.71 + 0.08 
0.72 + 0.10 

Table 2 
Accuracy of the best combination of activities for each ñve-trials set. 

Subject Accuracy Method Activities Accuracy Method Activities 

la 
lb 
2a 
3a 
3b 
4a 
5a 
5b 
5c 
6a 
6b 
7a 

0.93 + 0.05 
0.85 + 0.06 
0.92 + 0.08 
0.86 + 0.05* 
0.93 + 0.12* 
0.94 + 0.20* 
0.99 + 0.02* 
0.81 + 0.06* 
0.75 + 0.60 
0.88 + 0.10 
0.96 + 0.20 
0.92 + 0.02 

sSVM 
sSVM 
sSVM 
sSVM 
sSVM 
sLR 
sSVM 
sLDA 
sLR 
sSVM 
sLDA 
sSVM 

Maths.rotate 
Relax.ro tate 
Relax,rotate 
Letter.rotate 
Letter.rotate 
Relax,maths 
Letter.rotate 
Letter.rotate 
Maths.count 
Relax.ro tate 
Relax,rotate 
Relax,rotate 

0.85 + 0.06 
0.89 + 0.05 
0.92 + 0.06 
0.71 + 0.11 
0.82 ± 0.08 
0.87 + 0.09 
0.86 + 0.10 
0.73 + 0.09 
0.77 + 0.08 
0.95 + 0.04* 
0.9 + 0.04 
0.9 + 0.08 

LDA 
LR 
SVM 
LR 
SVM 
SVM 
SVM 
LDA 
SVM 
SVM 
SVM 
SVM 

Relax,count 
Relax,maths 
Letter.rotate 
Relax,maths 
Letter.rotate 
Relax.ro tate 
Letter.rotate 
Maths.letter 
Relax.ro tate 
Letter.rotate 
Relax.ro tate 
Letter.rotate 

http://Relax.ro
http://Relax.ro
http://Relax.ro
http://Relax.ro
http://Relax.ro


In both tables, the methods related to our approach are 
referred to as sparse LDA (sLDA), sparse logistic regression (sLR) 
and sparse S V M (sSVM). The methods related to the A R coeffi­
cients feature extraction approach are referred to as LDA, LR and 
SVM. Best results are highlighted. Statistical significance is 
checked by means of the t-test, so that the symbol * is added 
when the difference between the best and the second best 
method is statistically significant with a significance level of 
0.05. In Table 2, each five-trials set is identified by a number 
indicating the subject (1 7) and a letter (a, b) indicating the 
five-trials set within this subject. 

As observed, the devised method outperforms the best method 
reported by [6] in most experiments. The biggest differences can 
be observed in Table 2, where the best pair of activities and 
method is selected for each five-trials set. Interestingly, the S V M 
classifier offers the best results, possibly indicating that, in this 
scenario, the classification can be enhanced by appropriate non­
linear modeling and variable (channel) interaction. 

8. Discussion 

In this paper, w e have proposed a new feature extraction 
method based on sparse autoregressive features for multiple 
signal classification. W e have applied the method, together with 
different classification algorithms, to an EEC signal classification 
problem, and compared its performance to a state-of-the-art AR 
feature extraction approach. 

The performance benefits from the fact that model selection is 
guided by some classification-related measure. Moreover, w e do 
not need to previously estimate the order of the AR models, 
because, starting from a high enough order, model selection is 
completely data driven. Finally, thanks to regularizaron, our 
approach is applicable to data sets with few instances, whereas 
other methods might suffer from overhtting in the same scenario. 

Note that the proposed approach can be classed in the semi-
supervised classification paradigm. In semisupervised classifica­
tion, there is typically a considerable amount of data, but only a 
portion is labeled. To make the most of the data, it is beneficial to 
also use the information provided by the unlabeled data. In our 
particular case, if w e have a collection of unlabeled EEC signals, 
they can be included in the group lasso estimation of the AR 
coefficients (Eqs. (6) and (13)), even though the posterior model 
selection relies on a fully supervised classification algorithm, that 
is, only on the labeled data. 
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