On Distributed Online Classification in the Midst of ConcBypifts

Zaid J. Towfié, Jianshu Cheh Ali H. Sayed”

aElectrical Engineering Department
University of California
Los Angeles, CA 90095, USA

o™
— Abstract

© In this work, we analyze the generalization ability of distited online learning algorithms under stationary and-stationary

environments. We derive bounds for the excess-risk atfaineeach node in a connected network of learners and study the
c performance advantage thaffdsion strategies have over individual non-cooperativegssing. We conduct extensive simulations
(D toillustrate the results.
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U 1. Introduction regret to excess-risk is not tight, and it has been showrothat
_ _ _ _ _line learning algorithms that utilize diminishing stezes$ can
o Stochastic gradient algorithms provide powerful and iera achjeve better performance than dictated by the indiregk an
+— live techniques for the solution of optimization problefiks [n ysis [5]. In this article, we study the excess-risk directyd
(O ‘many situations of interest, the objective functionis iaform o, constantstep-sizes in order to cope with non-stationary en-
E of the expectation of a convex loss function over the digtrib \jronments. Among other results, we establish that a cansta
—tion of the input data. Such situations arise in machineniear step-sizalistributedalgorithm of the difusion type can achieve
applications, where the input data are features to a clasaifd  grpjtrarily small excess-risk for appropriately chosepssizes
> their associated class labels. For example, the goal ofayin j, stationary environments.
i< classifier is to predict the labek() given a vector of features Distributed stochastic learning seeks to leverage coepera
<+ that describes an observation (or, equivalently, to Sépa%  jon between nodes over a network in order to optimize the
classes based on their feature vector descriptions). & cl gyerall network risk without the need for coordination of su
sifier achieves this goal by learning a classification rulgela pervision from a central entity that has access to the eddite
= 'on a cost function that penalizes incorrect classificatmoed- (like features and labels) from all nodes. Such distribstete-
ing to some criterion. The cost function is usually refert@d  mes are particularly useful when the data sampled by thesnode
vy aS therisk [2, p. 20], and it measures the generalization ermorzannot be shared broadly due to privacy or communication con
that is achieved by the classifier (that is, it measures holv Wegiraints. In [6], an algorithm is developed that requiresmtial
. a classifier is able to predict the labels associated wittufea gde or server to poll the optimization estimates from a# th
— vectors that have not yet been observed). Bkeess-risks  nodes at the end of a time horizon. This approach is not fully
defined as the dierence between the risk achieved by the clasyistriputed and is not able to track changes in the geneyelt
« sifier given its classification rule and the smallest riski@eh  tripution without restarting the algorithm. One fully disuted
able by the classifier over all possible classification rulegs learning algorithm appears inl [7] where the global cost is-ch
critical to study the excess-risk performance of a classifie gen a5 the aggregate regret over the network of learners. The
order to understand how the classifier will perform on futuregcheme of [7] consists of a single consensus-type iteration
data compared to the best possible classifier. the form [20) further ahead and is similar to the schemes pro-
Several works in the literature study excess-irgtirectly posed in[B] for distributed optimization; the analysis/&] [s
by deriving regret bounds and then relating these bounds tfmjted to the noise-free case. In the estimation literatuef-
excess-riskl[3,14]. This two-step procedurdfsts from two  grences|[d, 1d, 11] proposed distributed schemes that rely o
drawbacks: 1) the procedure is targeted at algorithms tivat u gjfysion rather than consensus iterationsffiuion strategies
lize diminishing step-sizes, which are not useful for n@&-s gjiow for information to difuse more readily through the net-
tionary environments, and 2) the second step that relages thyork, and they enhance stability, convergence, and robestn
in comparison to consensus strategies [12ffu3ion strategies
~Corresponding author consist_ of two steps: a combination step that averages the es
Email addressesztowt iceee . ucla. edu (Zaid J. Towfic), mates in the local neighborhood of an agent, and an adaptatio
jshchen@ee.ucla.edu (Jianshu Chenkayed@ee.ucla.edu step that incorporates new information into the local eatim
(Ali H. Sayed) tor of each agent. The net result is that information tfudied
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across the network adaptively and in real-time. Th&udion
approach was generalized In_[13] for general strongly cenve
cost functions and constant step-sizes.

In comparison to the earlier work onfflision adaptation
[9,110,.14], we study in this work the excess-risk perforneanc
of general strongly-convex risk functions as opposed tormea
square error performance. This level of generality allog/$ou
study the excess-risk performance for regularized lagisi
gression in addition to the delta rule (square loss). In com-
parison to|[13| 15], we study thieacking performance of the
distributed classifiers when the optimizer is time-varyifitpe Figure 1: A connected network. The shaded region repreentseighborhood
effective tracking of a drifting concept is only possible when®'"°d€
the algorithm utilizes a constant step-size as opposedrimdi
ishing step-sizes as used|in[7, 15]. Even for stationarjrenv In order to assess and compare the performance of algo-
ments, we show that the proposed algorithms obtain better pefithms that are used to minimizel (1), we adopt the exce&s-ris
formance than the non-cooperative solution for any stypngl (ER) measure, which is defined as follows:
convex ris_k function when some mild assumptions hold regard ER() 2 E{J(Wi_1) — JW°)} (excess-risk) 3)
ing the noise process.

One of the main objectives of this work is therefore to studywherew® is the optimizer of[{IL) over allvin the feasible space:
the g_eneralization ability of ﬁ‘u_sion §trategie§ when the dis- WP 2 arg min J(w) (4)
tribution from which the data arisestisne-varying When the w
statistics of the input to the classifier change, the classifust  andw_; is the estimator fow® availableat timei — 1. The rea-
adjust its classification rule in order to accurately cligstie  son why the excess-risk is evaluated usmg is that excess-
data arising from the new distribution — see Hig. 3 furtherrisk measures the generalization ability of a classifieruare
ahead. In the context of machine learning, this change in thelatabeforeobserving the data. The estimatg as we will see
best possible classification rule for the non-stationatg dare-  in Alg.[I], would incorporate data from timeThe variablen;_;
ferred to asoncept drif16,117, 18]. We desire to answer one is generally a random quantity since it will be influenced by
key question: is it possible to obtain convergence resaitde  randomness in the data arising from the gradient vectomappr
distributed learning algorithms to show tracking of a ciagg imations that are used during the development of stochgistic
optimal classification rule? We discover that the answen s i dient procedures; the gradient approximations are reféoras

the dfirmative under some assumptions. instantaneous approximations in the adaptive litera@eZ1],
and are also sometimes called the gradient oracle in theimeach
2. Problem Formulation and Algorithm learning literature (see, e.g./ [5./22]). The expectatro@@) is
taken over the distribution afi_;.
Itis assumed that a classifier receives samgjeser time Considerable research has focused on deriving bounds for

i arising from some underlying statistical distribution. @s$  the excess-risk in gradient descent procedures for stiamd-a
functionQ(w, x;) is associated with; and dependsonafix1  classifiers. In this work, we pursue two extensions to these r
parameter vectow. The classifier wishes to minimize the risk sults. First, we assume that we have a networkidéarners
function ovew, which is defined as the expected lass [2, p. 20]:connected by means of some topology. The only requirement
. : is that the network be connected, meaning that there is a path
J(w) = Ex{Q(w, Xj)}  (risk function) () connecting any two arbitrary agents in the(‘::J network; thi$1pgt
Itis usually assumed that the dagaare independent and identi- May be through a sequence of other agents. Figure 1 illestrat
cally distributed (i.i.d.). Itis also assumed that the fiskction ~ One such network. The nodes in the shaded region represent th
J(w) is strongly convex. Obviously, when the data are stationn€ighborhood of node 1 (denoted b). Second, we allow the
ary, then the riski(w) will not depend on time. Observe that Statistical distribution of the data to change with time. This
we are denoting random quantities by usingltiokeiface nota- ~ change causes the optimizef to drift.

tion, which will be our convention in this article. One exdemp e associate with each agéxin the network an individual
that fits into this formulation is logistic regression/[19,517] 0SS functionQ«(w, x«;) evaluated at the corresponding feature
where the cost function is defined as: vector,xyi. The corresponding strongly-convexrisk function is
P generally time-varying and given by:
Iw éE..{— 2 410 1+e*YihiTW} 2
( ) {yi.hi} 2”\N” g( ) ( ) \]k,i(W) A EXkTi{Qk(W» Xk,i)} (5)

wherex; in (@) is now defined as the aggregate datahi}  We further consider a global network risk, which is defined as
wherey; denotes the scalar label for feature vedtpre RM.  the average of the individual risks over all nodes:

Moreover,p is a positive scalar regularization parameter. We N

will utilize logistic regression in the simulation sectitmillus- 3990 2 1 Z Jei(w)  (networkrisk function)  (6)
trate our analysis. ' N&



The excess-risk at nodés defined as: Algorithm 1: Diffusion strategy for risk optimization

N A Y T (e i Consider the problem of optimizing the network risk funatif@)
ER((1) SE{Ji(Wi-1) = Ji(W))} (excess-risk atnodg (7) in a distributed manner. For each ndddet N denote the set of

while the network excess-risk is defined as: its neighbors, namely, all nodes with which nddean share in-
N formation (including nodé itself). Select non-negative cfiients
ERD) 2 = > ER() (1.4, (Cad, and{ag o] that satisfy
N
k=1
N ax= XNCw= 2 u=1
1 glob . LeNk LeNk teNk (11)
=E NZ‘]"*i(W"*i‘l) — J9°wP) } (network excess-risk) Auk = Ci = o = O,when ¢ A
k=1
(8) Each nodek starts with an initial weight estimats and repeats
. overi > 1:
where in both cases
N
. .glob
w £ arg mmJigo (W) 9) Pri-1 = Z ag kWe,i-1 (12)
w =1
When the distribution is stationary amdl = 1 (i.e., a network NG
with a single node), we see that our formulation collapses to Yii = Pri-1 _NZCIKVJI,i—1(¢k,i—l) (13)
the one described bi(1) arid (3). We assume that the optimizer y =1
w2 in (19) is also the optimizer of the component risk functions W = Z Bl (14)
Jki(w), i.e., =1
W = argminJ?®°(w) = argminJ;(w), k=1,2,...,N where VJ,;_y(-) is an approximation for the true gradient vector
w w VJ;i-1(-), andu is a positive step-size parameter.

(10)
This condition is satisfied when the nodes are sampling data
arising from a time-varying distribution defined by the s&®8€ | ejther the ATC or CTA versions, we can further &t .

of parameters. That is, when the data do not reflect locat pref, this case, the adaptation step would rely only on the gradi
erences, theil (10) is usually satisfied. When the envirohi®ien yector at nodé, e.g.,

stationary and\® is therefore constant, referencel[13] derived

the distributed algorithm listed in the table below for tidus Ui = Wit — 49 Jic1(Wiei-1)
tion of (3). One of the objectives of this work is to show that N (ATC) (17)
this same algorithm can also be used to track drifting cotscep Wei = Za[kl//f,i
wP. We will evaluate how well it performs in this case. =1
In Alg. [, each nodd interacts with its one-hop neighbors N
and updates its parameter estimate using approximatiotiesfo Pki-1 = Zafkwf,i—l (CTA) (18)
true gradient vector. The cfigientsay «, Ci, andag are =1 _
non-negative scalars corresponding to thé&) entries ofN x N Wii = dki-1 — uVdki-1(dki-1)

matricesA;, C, and A, respectively. In view of the require-
ment [11), the matrice8; andA; are left-stochastic while the
matrix C is right-stochastic. DBferent choices fofAg, Ay, C}
lead to ditferent variations of the algorithm. For example, set-
ting A; = | andA; = Aleads to an Adapt-then-Combine (ATC)
strategy where the first step is an adaptation step, folldwed

Likewise, settingA; = A, =C = Iy leads to the non-cooperative
mode of operation where each node optimizes its risk individ
ally and independently of the other nodes:

Wii = Wij—1 — ;ﬁ\]k,i,l(wk,i,l) (no cooperation)  (19)

combination: It is important to note that éiusion strategies areféirent in a
NG fundamental way from the algorithm presented.in [7, 8], Whic
Ui = Wii-1— U ZCKkVJ[,i—l(Wk,i—l) has the form:
N =1 (ATC) (15) .
Wi = Zafk'ﬁ&i Wi = Z anWei-1 — 1V i1 (Wiii-1) (20)
=) teNk
On the other hand, setting; = AandA; = | leads to a For instance, comparing with (IL8), we see that one critiifal d
Combine-then-Adapt (CTA) strategy where adaptation fedlo  ference is that the gradient vector used[in (20) is evaluated
combination: Wi -1, Whereas it is evaluated ag;_; in (I8). In this way, in-
N formation beyond the immediate neighborhood of nbd#lu-
dri-1 = Zagkwg,i_l ences the updateskamore dfectively in the difusion casd (18).
=1 " (CTA) (16)  Thisorder of the computations has an important implication
oo = dur ZC AN (beie) the dynamics of the resulting algorithm. For example, it can
ki i1~ 2 YV Jei-1(Pki-1 be verified that even if all individual learners are stablé¢hie



. 1 1
mean-square sense, a hetwork of Iegrners using an update o_ft VNVE' ¢ VZJki(wi"—s t\TvE.)dsd VNVE'
form (20) can become unstable, while the same network using NJo Jo ' g 4

the difusion update$ (17)-(18) will always be stable regardless © 1,1

of the choice of the matriA—see[12]. In the next section, we = E{\TVET [f thZJk,i(WiO_S tVNVk,i)deﬂ NEJ}
establish a relationship between excess-risk and meaaresqu N o 0o

error (MSE) and provide the main assumptions for the rest of = E(IN; I, ) (24)
the manuscript. (2) Amax

-2

EINv, 112 (25)
3. Excessrisk, Weighted M SE, and Main Assumptions where

Introduce the prediction and filtering weighted mean-sguar \Tin 2 W0 - Wyjg (26)

errors (MSEs):
( ) Steps (a) and (b) in the sequence of calculations that |62 (

IE||v”v|fi||$ £ Ewe - Wk,i—l||'|2' (21)  are a consequence of the following mean-value theorem from

. [1, p. 24]:
E|Ny (13 2 EIW — wiill? (22)

where||x|3 = X"Tx for any positive semi-definite weighting

matrix T. When the environment is stationary (i.e., whvéh= ) o
( v Step (c) is a consequence of the fact tWatoptimizesJy;(w)

wP for all i), we notice that there isfiectively no diference s )
in the filtering and prediction MSE in steady-state. The reaSC thatVli(wf)=0. Step (d) is due td (23), where we defined

son why we need to introduce the two errors is that the exces&€ Weighting matrix as:
risk (8) requires that a previous estimate (prior to obseytihe 1 1
current data) is used to evaluate the performance of theiclas Tei & f tf VAW - s tWE,i)de% (28)
fier. We will see shortly that under the non-stationary meekel o Jo
adopt in this work, the prediction and filtering MSEs aretetla It follows from (28) that if the MSE at all nodes is uniformly
to each other. To proceed, we introduce the following assumpbounded over time, then the network excess-fisk (8) will be
tion regarding the Hessian matrices of the functidnw). bounded by the same bound scaledihy,/2. For this reason, it

is justified that we examine the mean-square-error perfocma

(Assumption 1) The Hessian matrices of the individual risk of the difusion strategy[{12J-(14) under stationary and non-
functions {;(w) are uniformly bounded from below and from stationary conditions, and then use these results to bdund t

1
f(a+b)=f(a)+f Vi@+t-b)Tdt-b  (27)
0

above for all ke {1,...,N} and time i network excess-risk by using the relation:
Aminlm < V2Jki(W) < Amaxd m (23) 1Y 3 )
min i max ER() = N E{”WIEl“'ZI'k.} = E{||W|p||2‘r,} (29)
where0 < Amin < Amax < ©o. O k=1

Assumptior ]l essentially states that the risk function®ene \yhere
tered for all times and at all nodes can be upper and lower-
bounded by a quadratic cost. The lower-bound on the Hes- WP £ coliiy;, W, . .., Wy ;) (30)
sians in[(2B) translates into saying that the functidnéw) are
strongly-convex!|1, pp. 9-10]. For example, the risk fuooti
(@) for regularized logistic regression satisfies Assuomiil. 1 .

We may note that in_[5, 23, 4], the risk functions are as- 7= Nd'angJ’ S TN (31)

sumed to have bounded gradient vectors (as opposed to knbundp?k . here is that th K it
Hessian matrices). Clearly, there are cost functions (sisch ey point o stress here Is that the network excessisiske

quadratic cost functions) where the gradient is not bounde)ﬁ’e'ght‘ad network MSE when the weighting matrix is set to th_e
while the Hessian is; for this reason, our Assumpfibn 1 ezsbl above7 ;. In order to perform the mean-square-error analysis

the subsequent analysis to be applicable to a larger clagskof of the network, we negd to mtroduge SOme as_,sumptlons., First
functions. we introduce a modeling assumption regarding the perturbed

Now consider the excess-riskfBered at iteratiom at node gradient vectors used by the algorithm.
k. It can be expressed as:

collects the prediction weight error vectors across alespdnd

(Assumption 2) We model the perturbed gradient vector as:

ERD = ElJi(Whi-1) = Jailof) T = Ty I0) + (W) (32)
1 :
(@) ~ ~
2 E{—ﬁ Vi -t WE,i)TdtWEi} where, conditioned on the past history of the estimafos}
1 for j <i — 1and all k, the gradient noise;(w) satisfies:
(b) Tt 7P
= E<— VI3i(Wo) dt WP,
{ fo i (W) LW+ E{vi(W)[Hi-1} =0 (33)



E{lvii(WI?) < @ - Elwf —wi? + o (34) Ellvii (W)|I? < 4E {(amax(Rh,k ~ hii h[i))z} -EIw° - wi*+

for somea > 0, 02 > 0, and whereH;_; £ {wij © k = 4Tr(Rh,k)o-§ (42)
1,...,Nandj <i-1}. O ) _
Assumptiori2 models the perturbed gradient vector as tiee trf0r @l W € Hi_1 whereomay(A) denotes the maximum singular
gradient plus some noise. This noise consists of two pagts: r  Value of its matrix argumerd. Therefore theADALINE algo-
tive noise and absolute noise. The variance of the relatiigen  'ithm satisfies Assumptidr 2 undér{37). Note that both noise
component depends on the distance between the estimate dms (relative and absolute) appear on the right hand dide o
the optimum at timeé (w°). On the other hand, the variance of @2). O

the absolute noise term is represented by the facfon (34). We shall distinguish between two scenarios in our analysis.
As the quality of the weight estimate by the node improvesy, ihe first case, we assume the optimizérdoes not change
the power of the relative noise component decreases. The Sggith time (i.e., we assume stationarity). In the second case

ond part of the noise bound i (34) refers to absolute noisg;ssyme the optimizev° varies slowly with time according to a
this component does not depend on the current weight egtimat;nqom walk model.

and is bounded by2. The absolute noise guarantees that there

will always remain some perturbation on the estimated gratdi (Assumption 3) The data process; is stationary. This implies

vectors even when the gradient is evaluated at the optimum  ihat the risk functionsJ(w) defined inf5) are time-invariant:
We may remark that, in contrast to Assumption 2, most earlier

references |5, 23, 24] in the literature assumed only the-pre Jki(w) = J(w), foralli (43)
ence of the absolute noise term and ignored relative noise. T
following example is from[[13]. In addition, this implies that the optimizefwf the network risk

_ function and all individual risk functions is constant) w w°
Example 1. ConsiderADALINE [19, p. 103], [25]. Let the foralli. 0
binary class label at nodeand timei be denoted byki €  \When the environment is non-stationary, we shall assume in-
{-1,+1}. Let the feature vector at noleand timei be denoted stead a random-walk model for the minimize.
by hy; € RM. ADALINE optimizes the quadratic loss:

(Assumption 4) In the non-stationary case, the time-varying

2

QW ki hici) £ |yii — hgw] (35)  optimal vectom? is modeled as a random walk:

The risk function is then the expectation of the losg1d (35): WA WP + g (44)
2
J(w) £ E|yki - hgw (36)  where the zero-mean sequengéias covarianc&{gq'}) = Q
. . . and is independent of the quantitigg(w ), g;} for all j < i.
Let the data satisfy the linear model: The mean of® is set toEW?)} = we. O
Yii 2 hiw+ (i) (37) Observe that the time-varying optimize? is now denoted

by a boldface letter due to the addition of the random noise
where the feature vectofy;} are assumed to be zero-mean componenty; furthermore, the expectation in the definition of
with a constant covariance matix = E{hy; hL}. The noise  excess-risk[{8) will now operate over this randomness abk wel
sequencédz(i)} is assumed to be zero-mean and white within machine learning, this random-walk model was used in [18]
constant variancerik. The optimal solutiom? that minimizes  to describe the concept drift of a classifier with a moving hy-

(39) satisfies the normal equations: perplane. This model is also commonly used to evaluate the
tracking performance of adaptive filters [21, pp. 271-272].
Mhyk = Ruiw? (38) Assumptiori models the desired set of paramet@ras a

N , non-stationary first-order autoregressive (AR(1)) prec&sich
whererny = E{hiiyiil. The feature vectors and noise are AR(1) processes are commonly used to model non-stationary
assumed to b(_a md_ependent over_nodes and_t|me. One NSt@N{Rh avior in various contexts such as adaptive filtering 2]
neous approximation for the gradient vector is: financial data modelind [26, pp. 142—14€]./[27, pp. 72-73].
= T Similar models have been used in other contexts such as web
VIW) = ~2i(Yii = M) (39) searching. For example, the original PageRank algorittsexi u
Using [37)439) and(32), we have that the gradient noise-sat by the Google search engine, uses a naive “random surfer” tha
fies: models an average user that traverses a random walk over the
. graph of Internet webpages [28]. Although the model is sim-
Vi (W) = V(W) — VIk(w) plistic in terms of modeling the shifts of a user’s interéstias
= 2(Rok — hiihl )W — W) — 2h z(i)  (40) been demonstrated to achieve excellent page sorting dipabi
’ Given Assumptiofl4, we can relate the prediction and filter-
We then have that: ing errors introduced in(21)-(22):

E{vici|H; -1} = 0 (41) EINU; 17 = EIW — wii-allF



= EIW; — Wij—1 + all? We now appeal to results from [13] (Theorem 1, Equations (67)
= EIWe, — Wil + EllGil2 ;n;[ (72)) where it is shown that far satisfying [47) it holds

= Bl lif + Tr(QT) (45) )

(o

lim SUpEw| Wi i_1]* < = kei{l,...,N 51
This means thatin order to show that the prediction eEfigif . ||2 im0 PEulhei-1ll” < 2 €id-. M) 1)
remains bounded for thefilision algorithm, it is sfiicient to , i ) )
analyze the filtering errdE||v”v|ii||$ and show that it is bounded. Therefore, if we define as in [49) and further boung (50) using

We will further introduce an assumption to be used later inM)’ we obtain((48). -
the article to derive relationships between the perforreasfc Result [GD) implies that when the environment is station-
the algorithms described by (15)-{19). ary, meaning the optimizes? is actually fixed for all time,

(Assumption 5) The risk functions across the nodes are identi-then the excess-risk attained at each node in the network wil
cal: be bounded by an arbitrarily small quantity that is promovl

to the step-siz@ when [4Y) is satisfied. As we will see in the
next section, this arbitrary reduction of the MSE is not galig
possible for non-stationary environments.

Assumptioris states that all nodes have the same risk functio N @ddition to Theorerfil1, it is possible to approximate the
but this does not mean that the nodes will receive the statee ~ €XCess-risk at node(and also the network excess-risk) at steady
realizations Assumptiorib is satisfied when the nodes utilizeState for séiciently small..

the same loss functioQ(;, -) and receive data arising indepen- Theorem 2 (Steady-state approximation for excess-risk)

Jk,i(W) = Ji(W), ke{l,...,N} (46)

dently from the same distribution. Let AssumptioriS[}3 hold. For small step-sizes that safighy
the steady-state network excess-risk ff@®) for Alg.[1 can be
4. Stationary Environments approximated by:
In this section, we focus on obtaining convergence results  |im ER() ~ ,uzvec(y(;R\T,ﬂz)T (I — F) Lvect) (52)
for the excess-risk for the distributedfidision strategy[{12)- 1o

(@4) under stationary conditions. First, we show that tHfe di \where
fusion algorithm can achieve arbitrarily small excesg&-gsen

appropriately chosen step-sizes. FL28 08" (53)
T T
Theorem 1 (Excess-risk for stationary environment£i&u)). B = Ay(Iun — D) A (54)
Let Ass_umptior@E]-S hold. Given a small constant stepgsize A2 A ® Iy (55)
that satisfies: A 2 A Iy (56)
. 2/1max 2/1min N .
0<p <min , 47 e 2
H {/llgnax Pl a} (47) D ; diag{cr1, ..., Con} ® VI (W) (57)
Then, Algorithmi 11 achieves arbitrarily small excess-riskach T = idiag{vz\]l(vvo)’ o VZJN(\A,O)} (58)
node k, i.e.: 2N
limsupER(i) < € (48)  and the symbab denotes the Kronecker product operation|[29,
_ ) e p. 139] and ve€) refers to the operation that stacks the columns
wheree is defined as: of its matrix argument on top of each other[29, p. 145]. Fur-
2 ) thermore, the matrixR, in (52) is defined as the covariance
¢ 2 9y Amax U (49)  matrix of the vectog;:
4 Amin
N
and is directly proportional to the step-sige Since each node g 2 Z col{CaaVei(WP), . . ., ConVei (WP)} (59)
can achieve an arbitrarily small excess-risk, the netwowdess- =) ’ ’

risk in () can also be made arbitrarily small.

_ _ . _Thatis,R, £ E{gig .
Proof. Given Assumptiori]3, we have that the risk functions

Ji(w) are time-invariant J«j(w) = J(w)) and the optimizer Proof. From [Z29), we notice that the excess-risk can be evalu-
is constant\(® = wP°) for all time i. Furthermore, we have ated as the weighted mean-square-error with weight marix
from (28) that the excess-risk at noklis bounded by the scaled defined in[(31) and(28). When the environment is stationary
mean-square-error: andw?® = wP is constant, the weight matrik; in (28) becomes:

/lmx ~ 1 1
EulIWii-1) - kW) < Bl al? (50) Tk,iA[ f { f Vka(V\P—stv“vk,il)dsd% (60)
0 0



Furthermore, due to Theordm 1, we have that the mean-squagleubly-stochastic, meaning thaf A= 1 and Al = 1. When
value ofwi;-1 is small for small step-sizg and largei. This  Assumptiorils holds, the weighting matfix in (62) has the

implies that we can approximate the weight maifrix by form7 = %IN ® V2J(W°). Under these conditions, the steady-
Lo state network excess-risk satisfies:
1
Tk~ Tk = t | V2iw)dsdf = =V2J(W°) (small
k.i k [ﬁ \f(; k,l( ) i 2 k( ) ( /J) ERATC < ERCTA < ERind (67)
(61)

whereERarc is the steady-state excess-risk whenARE al-
for largei and small:. In other words, the matriXy; becomes  gorithm is executed&Rc1a is the steady-state excess-risk when
approximately deterministic and is given By at steady-state. the CTA algorithm is executed, andR;,q steady-state excess-
Therefore, the matrig; defined in[(31L) can, in steady-state, be risk when the nodes do not cooperate with each other.
approximated by the deterministic matrix:

Proof. Sed Appendix_A. O
1.
Ti~T =(diagiTe, ..., Tn} (62) From Theorerfil3, we observe that the Adapt-then-Combine

(ATC) algorithm outperforms the Combine-then-Adapt (CTA)
We can now utilize results from [113] to approximate the exees strategy, which in turn outperforms the non-cooperativatst
risk at steady-state. Using (103) from[13] we can write: egy for any doubly-stochastic combination mattix The rea-
. ~ son ATC outperforms CTA is because adaptation precedes com-
iIero]o E”W”@%Tw ~ Tr(yzﬂg‘RIﬂzZ) (63) bination in ATC so that improved weight estimates are aggre-
: . . e . gated in the combination step. Nevertheless, as the stepesi
whereX is an arbitrary positive semi-definite matrix that we arepecomes smaller, then the gap between the ATC and CTA algo-
free to choose. Assume we choassuch that rithms also becomes smaller (see Eig[4k-4d further ahead).
S _BISB - T (64) In the next section, we study the performance of tHeudi
sion strategy[(1I2):(14) when the optimizgt is changing ac-
for some7", which could be equal t¢_{62) or some other choicecording to Assumptiofl4. We will establish that the excésk-r
(see Tabl€l1). If we stack the columns®fnto a vectoro =  is bounded even under this scenario.
vecE), then the above equality implies thatis chosen as

o = (I - F) tvectn) (65) 5. Non-Stationary Environments

In the previous section, we showed that if we use a con-
stant step-size, the mean-square-error and network ers&ss
for Alg. [l can be made arbitrarily small by choosing the step-
(66) s.ize.to be sfiiciently sm_all. However, rgduction of the excess-

risk is not always possible in non-stationary environmeits
order to arrive at meaningful bounds for the tracking perfor
mance of the algorithm, we will utilize the random-walk mbde
from Assumptioi¥.

The matrix ( — F) is invertible for sdficiently small step-sizes
(see App. Cinl[13]). Therefore, we conclude frdml(63) that

lim B 2 ~ 1vec( AFRLA)' (1 - ) vectr)

Different choices foF™ are possible il (86). For example, if we
select7 as in [62), then[(86) would approximate the network
excess-risk[{8) at steady-state. Tdble 1 lists other chdime

T. U Theorem 4 (Asymptotic ER bound for non-stationary data)
Let AssumptionSI}2 ard 4 hold, and choose a constant step-

Different metrics can be evaluated by choosingppropri- size that satisfies, as.b co:

ately. For instance, in order to evaluate the mean-squaoe-e

at nodek, we let7 = Eyx whereEy is the zero matrix with 2AminC.

a single 1 in thek-th diagonal element. On the other hand, in O<pu< ICP o+ @) (68)
order to evaluate the excess-risk at nbagee let7 = Ex ® Tk 1hmax

whereTy = %Vka(Wo)- where||C||; represents the maximum absolute column sum of

Itis possible to compare the performance of Alg. 1 againsthe matrix C, while Crepresents the miminum absolute column
that of non-cooperative processiilg(19) when the nodesiact i sum of the matrix C. The asymptotic excess-risk at node k then
dividually and do not cooperate with each other. The nonsgatisfies:

cooperative cas€ (1L9) is a special case of Alg. 1 when the ma-
trices{Aq, Az, C} are all set equal to the identity matrix. _
{A1, Az, C} q y ERd(i) <

”C”io'\zl/lmax N Tr(Q)Amax _1  MAmax

L + —2"TH(Q) (69)
Theorem 3 (Cooperation versus no-cooperation) AuinC. AuinC. 2

Let AssumptionSI}F3 hold. In addition, let Assumpfibn 5 hold Steady-state term  Tracking term

so that all nodes have the same risk function. Assume the ste%r alk = 1 N. Since all nodes satisfy this bound, the
size satisfies conditioff7). Consider the ATC, CTA, and the network excess-risiER(), is also asympotically bounded by

non-cooperative algorithm@7)-(19) with C = I. Assume the e i
combination matrix A in the ATC and CTA cases is chosen to bg1e right-hand-side o&3).

7




Table 1: Choice of” for the evaluation of dferent performance metricEy indicates the all zero matrix with a single 1 in tk¢h diagonal element.

N N
Metric | By {Jk(Wieo) — Jk(W°)} % Z B { k(Wi oo) = (W)} | Ew {IIWk,mllz} % Z Euw {IIWk,mllz}
k=1 k=1

| 7 ] Exk ® Tk | TdiagTy, ..., Tn} | Exx | Zlun |

Proof. To show that the asymptotic excess-risk at néde  To bound the filtering erroE||\7viii||2, from [Appendix B, we
bounded, we observe that the excess-risk is asymptotiaplly have the scalar recursidn (B]29):
proximated by the weighted mean-square-efrdr (21) witlyintei

matrix Ty given in [61): S

Wills < BlIWollo + (ICIEo2 +THQ) Y1 (73)
N o~ TGP 12— TRINP 112 i=0
ERA) ~ BN IR, = BV Bz, o (70) !
) ) ) ) where||X||.. denotes the maximum absolute entry of a veator
Using [453), we see that the excess-risk can be written ingerm, 4

of the filtering error:

i) < EIW Wi £ [l P, ... NGy 1] (74)
ER(i) < EIN 13 02 5 ey + THQTH) - Li ol 2
1 >0 5 VindkW ﬂ =1- Zﬂ/lminc* +u (/lmax-l— a)”C”l (75)
< 2RI |2 + Tr(QT, 71
-2 Wl QM 1) Notice that when the constant step-sizeatisfies[(6B), we have

¢ ) o thatg < 1. Therefore, we can evaluate the limit of the geometric
wherew, . £ wP —w; and the inequality is a result of Assump- ine
ki i ki series in the second term ¢f{73) as

tion[d. We can use Assumptiéh 1 to verify that Qi) is also

bounded since: L ICIRodd + THQ)
- lim (ICIEedu® + Tr(Q) ) ! = =1 (76)
Tr(QTk) = Z Z anTk,mn =0
m=1n=1 Additionally, the limit of the first term on the right-handtis of
@ M M M M (Z3) will be zero sincg < 1. Therefore, we have that
2 2
[Z 2, an] (Z 2,7 ”“”] ICIEoE2 + Tr(Q)
m=1n=1 m=1n=1 |imSUp||Wi||m < 1 \;L ﬂ
= JTr(@)Tr(T2 o B
o (@)r(T) ~ ICIIFodu . Tr(Q)
= \/TI‘(U Q2UT)Tr(VIT2VT) 2minC. — ,U(/l%ax'f'a')”(:”i 2udminCs _ﬂz(/l%ax'*'a')”(:”i
M M (77)
— 2 2
- (mzl wm) [;1 ”m) For suficiently small step-sizes, the denominator of the first and

second terms of (T7) can be respectively approximated by

2

M 2/ ™
J (Z wm] (Z nm] 20minC. — (A + QICIE ~ 24, (78)

m=1 m=1 26AminC. — 12 (Aray + NICIE ~ 2udminC. (79)

P
N

= (T Q)2 (Tr(TW)?
(T(Q)" (Tr(T) Therefore, we conclude that{77) can be approximated foisma
‘2 MATmaXTr(Q) step-sizes by
2.2
where stepd) is due the Cauchy-Schwarz inequality, stepi$ lim sup[[Wille < ICIh 7y u Q) ut (80)
due to the introduction of the eigenvalue decompositiQns i—o0 2AminC. 2AminCs

UQUT and Ty = VIIV', whereQ = diagws,...,ww} and
IT = diagni,...,mw} are the non-negative eigenvalues of the
symmetric matrice® and Ty, respectively. Stepc] is due to

Noting the relationship between excess-risk and the masareq
error in [72), we have that the excess-risk at nbdebounded

) . ) ; b
Q andTy being non-negative definite, and stel) i6 due to As- y
sumptior 1. This means that the excess-risk at ho@d) can ICI2o2A THO M
be upper-bounded by ER(i) < 4j .VCmaX# 459 Cmax 4 %TV(Q) (81)
min’s min\—s
ER(i) < ’l’;axE||\,~viii||2 + M’lzmaXTr(Q) (72)  andtherefore tr_\e network.excess—risk BRétisfies this bound
as well for stfficiently largei and smalj. O



6. Simulation Results

Steady-state term (69) 6.1. Stationary Environments
Upper-bound . . L .
- - = Tracking term (69) \ In this section, we test the distributedfdsion strategy (12)-
n - : .
o= Upper-bound (69) e (@34) on three stationary datasets:
\ e

N PR e The ‘alpha’ dataset [30].
=%\ . IR
= R - e The ‘a9a’ dataset [31].
=) \ Steady-state
term e The ‘webspam’ (unigram) dataset [31].

Each set deals with a binary classification problem. Thesgata
properties are compiled in Tadlé 2. We split the data evenly
across the nodes with the step-size chosen so that it is-possi
: ble to observe the steady-state behavior. Unfortunatilges
A " some of the datasets are relatively small (once divided ineer
nodes), this means that the step-size chosen needs to be rela
tively large. The analysis we have for the approximate stead
Figure 2: Trade-fi between tracking performance and steady-state excéss-ris SFate expression in Theordih 2 assumes the use of small step-
The scalap® indicates the optimal choice for the step-size in order toimize sizes, so we expect to see a better match between theory and
the bound on the excess-risk. simulation if the data sets were larger and the step-sizes we
smaller—see FigE. fic-d further ahead. Better matchesuwill
. cur when smaller step-sizes are used [13, 14]. We perform
Consider the_case whef@ = Iy. We observe from(89) regularized logistic regressiohl (2) on the dataset in tie@-
mzt;ilgtg?ﬁﬁj z)r?;tisbterz\cliekienngtggr?(t)?;dayr;cs:’(taateTrr)\irng,?; iir?:fj‘nd evaluate the network excess-risk defined’n (8) using the
. ) . "ATC, CTA, and the non-cooperative algorithms described by
sists of_ the sum c_>f the steady state excess-fisk (48) derive ), (I8), and[(19), respectively. For the ATC and CTA algo-
for stationary environments and a term that dependgdn rithms, we set the gradient combination ma@he Iy so that

a_ndTWZ'Ch arlsesthas Eti redsulttoI the random-wallg mo?je: NOISHe nodes do not exchange their gradient vectors. In additio
Gi. 10 decrease the sieady-siate error, we would need 1o us compare the performance of our algorithm to the central-

smaller step—sae, Wh'Chﬂ@CtS the tracking perfor_manceoad— ized full gradient (CFG) algorithm that has access to aladat
yer_sely. Flguré]? |IIustra.tes this tradé:o “.1 th.e figure . . samples from alN nodes at every iteration:

indicates the optimal choice for the step-size in order to-mi
imize the bound on the right-hand-side ¢f1(69). The figure

gives insight into the fact that a small step-size will imyzo WcrGi = WeFGi-1 —
the steady-state performance when the environment i9stati

ary, but will harm the tracking ability of the algorithm whére . .
environmentis non-stationary. We conclude that the asgtitpt The CFG a!gonthm averages the.gradl_ents.from all nodes and
moves against the average gradient direction. We also com-

network excess-risk18) remains upper-bounded by a cofstan

even when the optimizer changes according to a random-walR2"€ againstthe seml—d|_str|but¢d algorithm from [6] w ﬁ.‘?h
. : n[ode executes stochastic gradient descent up to some tiine ho
That is, even as the variance of the random process generat-

ing W grows indefinitely, the excess-risk at each node remain§®"! andthen the nodes transnj|tthe|r.est|maW@,sto acentral
bounded. processor that averages all estimates:

-
- -
-
- -

Tracking term

Zl=

N
Z Vudk(Werai-1) (CFG) (82)
=1

In order to illustrate the application of the result in the€o 1N
text of machine learning, we consider a linear binary cfassi WrHAKI = — ZW'“ (time-horizon averaging)  (83)
cation problem where the task is to find a hyper-plane (thnoug N &

the origin) that best separates features from two classes@c . , , L
ing to some cost function (such as the logistic regressian co Notice thatl[88) requires some time horizoto be known and

in ). Since the hyper-plane is fixed at the origin, the taskreq_uire_s either some central server to average the estraatke
is to find the best rotation of the hyper-plane to separate thEedistribute the averagg {83) back to the nodes or the use of

data. Consider now that the distribution from which the fea-S°me iterative consensus scheme [32]. In order to compare ou

ture vectors arise is time varying and as a result the optimg}9°rithm to that ofl[6], we assume that the averaging occurs
hyper-plane must rotate accordingly — see Eig. 3. Our anal@t €Very step of the algorithm (we only evaluat(_a the excisks-r
ysis shows that the fiusion algorithm can track the random- at the central processor, and do not communicate the average
walk rotating hyper-plane proposed in [18] and remain withi back to the nodes since the nodes’ iterations do not depend on

a constant excess-fisk on average for any strongly-corngx ¢ € averag_sd estimates). Finally, we also simulate algarit
function used that satisfies Assumptidn 1. (20) from [7] using a constant step-size. The same step-size
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Figure 3: A rotating hyper-plane in 2D that adjusts to sefeadiata from two classds-1, —1}. w? indicates the optimal normal vector of the hyper-plane.

Table 2: Properties of datasets used for performance ei@iuand the problem parameters associated with the dataset

| Dataset | Instances| Attributes M) | p | u | N [ Experiments|
alpha 500000 500 5 0.0001 20 20
a%a 32561 123 5 0.02 8 100
webspam | 350000 254 5| 0.00250.001 | 40 50

is used for all algorithms. For the combination mattixwe  (20) from [7] when the same constant step-size is used. We als

utilize the Metropolis rule [10] to generate the fioeents: observe from Fig§.4c andKd that as the step-size decrélases,
excess-risk also decreases. This fact is in agreement with o
min(ﬁ, W) teNt#k analysis in Theorerl 1. We notice that the time-horizon aver-

ak=41- Zﬂil Ajks =Kk (84) aging algorithm from|[6] is close in performance to the ATC

0, otherwise diffusion algorithm. The algorithm from|[6], however, requires

global communication at every iteration and is not a digtekl
The Metropolis weighting matriA generated usin§ (84) is dou- solution as is the case withftlision strategies.

bly stochastic. The loss function that each node utilizehes In order to evaluate the performance of the actual classifier
regularized log-loss: output by the algorithms, we plot the receiver operatingcha
. acteristic (ROC) curves in Fig] 5. The classifier for eachhef t
Q(w, hi, y;) & §||w||2 +log(1+ eYilw) (85) algorithms is computed using:
whereh; indicates the feature vector adindicates the true $i = sign(fw — b) (87)

label @1). In this case, the data; in (5) are defined azy; £ . . _ - o
{hwi, Yki). The risk function is the expectation @) over the Y Sweeping the bias. In Fig.[3, Po indicates the probability
inputsh; andy;. In each experiment, a numbirof nodes are of d_etectlon whilePga indicates the pr()_bab|!|ty of false alarm.
used to distribute the classifier learning task as listeciig2. ~ Notice thatthe curve for the ATC algorithm is very close tatth
A batch optimization, where all samples from the full datase of the_ CFG, aIgorlthm "_ind the algorithm froln [6] while the ATC
are available to the learner, was used in order to comptite algorithm isfully distributed. The CTA and consensus algo-

This optimization was conducted using theBLINEAR [33] li- rithm from [4] perform worse than the ATC algorithm. We also_
brary. The theoretical curves are computed using the siiegli S€€ & clear performance improvement over the non-coogerati
expressions derived ih [14.115]: algorithm. Finally, as the step-size decreases for thespain’

dataset, we see that thefdision algorithm tends to improve in
performance and get closer to the centralized batch primgess
solution. The batch processing curve is computed by usthg
as the separating hyperplane[inl(87).

ﬂTr(Rv,k)

ER(i) ~ aN

(86)
whereRx 2 E{vii(WP)wi(wW°)"}. Fig.[4 shows the excess-
risk learning curves for the fierent algorithms and fierent
datasets. We observe that the ATC algorithm outperforms the
CTA algorithm and the non-cooperative algorithm (as estab-
lished by Theorerhl3) as well as the consensus-type algorithm

10
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Figure 4: Excess-risk learning curves foffdient stationary datasets (continued on the next page).
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Figure 4: Excess-risk learning curves foffdient stationary datasets (continued from the previous)pag
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Figure 5: ROC curves for fierent stationary datasets.
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6.2. Non-Stationary Environments carried out using th&@ IBLINEAR library [33]. A step-size of

6.2.1. Random Walk Rotating Hyperplane - Gradual Concept = 0.25 was used to simulate the constant step-size algorithms
Drift (ATC, CTA, non-cooperative[ (20). (B2), and [6]). In additj
In this section, we simulate a scenario whefeis a ran- weAsimulgte tr_]e algorithm from [7]_With a diminishing stgipes
dom walk. We do so to illustrate the analysis in Theofgm 44 = K/ \/'— to illustrate the necessity of constant step-sizes for
and to simulate the behavior of the algorithms under gradudlon-stationary environments. Figdré 7a shows the exdslss-r
concept drifts. In the next section, we will simulate ingteon- ~ Performance of the dierent algorithms on th6TAGGER con-
cept drifts. In order to clarify the presentation of the fesu  CEP!S: The constant step-size algorithms continuousi tiee

we concentrate in this section on the ATC algorithm and the alchanging target concept while the diminishing step-sige-al
gorithm from [7] only since we have already established @ th rithm from [7] fails to do so due to the diminishing learning

last section that the ATC algorithm outperforms CTA and nonJate. Observe that the algorithm from [6] would not know when

cooperation. We study the algorithm frol [7] when the steph® concept changed and it would have to implement a change
size decays with time. This allows us to highlight the impor_detector in order to allow the central node to poll the infarm

tance of utilizing constant step-sizes in non-stationasjren- tion from all the nodes (or to initiate consensus iteratjolige
ments. We generate data for two clasisels —1} with Gaussian also evaluate the ROC curves usihgl(87) associated with the
distributionsA(m, 1) and N (—m, 1) respectively whereny is classifier at the last itferat_ion of the target concept. Th@RO
the mean of the-1 distribution at time. We letm be a random curves are illustrated in Fig. ¥b. The diminishing stepesit:

walk with increments that are Gaussian with zero mean and c@Orithm is not helpful in detecting the second concept since

variance (D1l,. We compute? at every iteration based on all 'S below the chance liné = Pr). In addition, we sitill notice
the data in the network using th&BLINEAR library [33]. Each  that the ATC algorithm outperforms the other fully distribd

of theN = 200 nodes receives one sample per iteration. Th@PProaches (non-cooperative, CTA, dnd (20)) and is clotiesto

Metropolis weights[{84) are used to combine the estimates fd*atch solution. Metropolis weights (84) are used for the com
the ATC algorithm and the algorithm fror [7]. An amount of Pination matrix for the distributed algorithms.

10% label noise was also added to the dataset. We set the step-

size tou = 0.005 andp = 0.01 for the loss function in(85). 7. General Discussion

We use the classifier il (B7) to obtain the classifier accuiracy ) ) -
Fig.[6a, which is defined as: We saw in Sed.]3 that the excess-risk of a classifier can

be written as a weighted mean-square-error with a weight ma-
Number of correctly classified samples( 8) trix chosen according to Taklé 1 when the step-gize small.
Total number of samples This formulation of the excess-risk allows us to study the pe
formance of distributed algorithms and explain their bédwav
In addition, we plot the excess-risk in Fig.l6b. We obsere th \when the environment is stationary (for example, when the
as the targew changes, the diminishing step-size algorithmjearners are sampling from a fixed distribution), we saw that
from [7] does not cope with non-stationarity. Onthe otherha the ATC and CTA difusion algorithms can achieve an excess-
and as predicted by Theoréin 4, the constant step-sizetigori yisk performance proportional fa In addition, we established

Accuracy=

can track these changes. that the ATC algorithm will outperform the CTA algorithm and
) non-cooperative processing when the combination matrix
6.2.2. STAGGER Concepts - Instantaneous Concept Drift doubly-stochastic. This generalizes previous resultsahy

In addition to the gradual concept drift simulation in thetla  applied when the loss function used in the learning process i
section, we also simulate our algorithm on a dataset witams  quadratic/[11].
taneous concept drift. We use tBBAGGER dataset [34, 35] for When the environment is non-stationary, we modeled the
this purpose. We simulate a network with= 125 nodes. Al gptimizerw® to be a random walk with i.i.d. increments. This
the nodes experience the concept change simultaneously. Asodel allows us to study the performance of théusion al-
in [35], we define the target concept to be changing over 12@orithm when tracking a non-stationary random process. We

iterations, in intervals of 40 iterations for each target@ept:  obtained (in Theorefd 4) a bound on the excess-risk that is com
prised of three terms: a constant term that depends on the co-
(hip=1)and fiz=0), 1<i<40 variance matrix of the increments of the random walk pracess
Yi ={(hi1=0)or(i>=05), 41<i<80 (89) a term that is proportional tp, and a term that is inversely
(hiz=05)or(hiz=1), 8l<i<120 proportional tou. This result is intuitive since we expect the

diffusion algorithm to be able to track a fixed optimizer, or a rel-
The labels are then mapped fr¢@+1} to {—1, +1}. The above atively slow optimizer. As the optimizer evolves more quyck
rule can be seen as a numerical representation of the coldrpwever, the algorithm must increase the step-size in doder
shape, and size attributes through the definitions in Tdble 3 become more agile. The trad@-tor the tracking ability of the
An amount of 10% label noise was also added to the dataseliffusion algorithm is summarized in F[g. 2.

at each experiment. The simulation results were averagedd ov  The simulation results illustrated that the steady-statess-
100 experiments. A regularization factor@f= 0.1 was used risk performance of the ffusion algorithm is proportional to

to optimize the log-loss il (85). The batch optimization wasthe step-sizg (see Figl_4¢-4d). Furthermore, we showed through
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Figure 6: Results for Markov random walk simulation.

Table 3: Numerical Representation of STAGGER concepts

Attribute | Color (x.1) | Shape X; 2) | Size (i 3)
Value Green | Blue | Red | Triangle | Circle | Rectangle| Small | Medium | Large
Numerical Representation 0 0.5 1 0 0.5 1 0 0.5 1
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Figure 7: Results frorS8TAGGER simulation.
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extensive simulations that the ATC algorithm outperforimes t
consensus-based algorithm proposediin [7] when consgpt st
sizes are employed. It can be observed from Elig. 5 that the
area under the ROC curve of the ATC algorithm is larger than
that of the non-cooperative, consensus-based, and CTA algo :
rithms. Furthermore, the performance of the ATC algoritem i
seen to approach that of batch processing, especially fall sm
step-sizes. In Figl. &b, we see that a constant step-sizethlgo »

i
can track a changing optimizer, unlike a diminishing stee-s : N
algorithm such as the one describedin [7]. When Assumptiof]5 holds, we have the weighting maffix

has the forn7 = Iy ® S whereS £ = V2J(w°). We can then
simplify the above as:

= vec{)' i(ﬁ%j ® Bl)vecy)
=0

vec() 'vec®B V(81"

Ms

T
o

W78 Y(8)") (A.6)

Me

Il
o

8. Conclusion o ' '
Eldliy ~ )" Tr((Ine S)BY(B)) (A7)

We analyzed the generalization ability of distributed oeli =

learning algorithms by showing that constant step-size-alg
rithms can have bounded network excess-risk in non-statjon
environments. We provided closed-form expressions for thé/ ,
asymptotic excess-risk and showed the advantage of cooperyrther write:

In addition, with Assumptiohl5, we haw® = Iy ® D° for some
x M matrix D° that is the same for all nodes, then we can

tion over networks. B=A ®(Iy—uD° (A.8)
We define the excess-risk for CTA and non-cooperative pro-
9. Acknowledgments cessing as:
Partial support for this project was received from the Naio A 2 N i Tj
Science Foundation grants CCF-1011918 and CCF-0942936. ERna = 1 % T((In ® S)B10 B (A-9)
Appendix A. Comparing Diffusion and Non-Cooper ative ERcTa £ 1 Z Tr((In ® S)BL Y B (A.10)
Strategies =0

whereBcta andBjg are defined as:
Bing = In® (I — uD°) (A.11)
Beta = A® (Im — uD°) (A.12)

Noticing thatV is the same for CTA and the individual process-
ing case, we compute theffirence in the excess-risk as:

Appendix A.1. CTA vs. Non-Cooperative Processing
We confine our discussion to the followindfitision models

C=In, AL=A A=Iy (CTA) (A1)
C=Iy, Ar=In, A=A (ATC) (A2)

The case of non-cooperating nodes corresponds to the shoice ER,,y — ERcta =

C= e Ai=l Ax=ly (10N~ COOPEIaN POCESSIG) 12 Ti( & )5l - Berall @ 1B (AL3)
L)

Our objective is to compare the network excess-risk achieveWe substitute[{A.JI1):-(A.12) int¢_(A.13), and get:

by the difusion strategies and the excess-risk achieved when ERng — ERcra =

there is no cooperation between the nodes. We will condect th :o

analysis for constant step-sizes in stationary environséro Jr Z Tr(((In = AATT) ® (I — uD°)IS(Iy - uD°))Y)

begin, we start fron{(32) and rewrite it as: =

Bl 12 ~ vec)'(1 - 7) veor)  (A4) (A.14)
SinceS £ -V2J(WP) is positive-definite, we conclude that
where (Im —uD®)iS(Im —uD®)! > 0. Finally, since we assumed thft
Y2 2R, (A.5) is doubly-stochastic, theAl is also doubly-stochastic, as well
asAlAIT. Therefore, the matrid ¢ AJAT) > 0 and its eigenval-
We now perform the series expansion bi(#) ™! to get ues are in the range [Q] [11]. Finally, combining these facts

with the knowledge tha¥ > 0, we conclude that:

EIWG_1]12 ~ vecY)" > Fivec() ERcra < ERng | (smally, largei, C = Iy, 1TA= 17, Al = 1)

i=0 (A.15)
— vec)" Z(gfi)TveC(y) A similar conclusion holds for ATC. Actually, ATC outper-
00 forms CTA as well, as we show next.
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Appendix A.2. ATCvs. CTA Pii 2 W — oy (B.2)

In order to compare ATC to CTA, we continue our assump- Y Wii (B.3)
tion that the matrixA is doubly stochastic, but we generalize ki ' |
our model for CTA and ATC fron[{Al1) and{A.2) to: We subtract(12) fromv , and [I3)4{14) fronw? using [32) to
et
C A=A As=Iy (CTA) A16) O
C. Av=In, A2=A  (ATC A.17 . N N
1 N 2 ( ) ( ) Pri-1 = Z al»ka;,i—l (B.4)
where we have modified the model to allow for an arbitrary =1

right-stochastic matrixc. We continue from[(AJ6) and rewrite - - N
the network excess-risk at steady-state for both CTA and ATC ~ ¥ki = $ki-1+ i + 1 Z Cok [VIrica(Pri-1) + Ve(dri-1)]
as: =1

(B.5)
ERcta = » . THT " BLaYera(BL:)") (A.18) o, -
% CTA CTA Wlii = Z A ke (B.6)
co =1
ERarc = Z THT " BprcYarc(Bire)") (A.19)  Using the mean-value-theorem for real vectbrs (27), we gan e
i=0 press the gradiemJy;_1(éxi-1) in terms of¢y_1:
where 1
Bern 2 [y — uD]AT (A.20) Vdri-1(éxi-1) =VJ€,i1(\/\’?1)—[fOVZJf,i1(V\/i01—t¢k,i1)dt b1
Batc = ﬂT[lMN —,uZ)] (AZ].) = _Hf,k,i¢k,i—1 (B7)
Yera = PRy (A-22)  where we are defining
Yarc 2 PA RA (A.23)

1
. . : : : Heki 2 | V2IioaWP , — tehyio1)dt B.8
Like the previous section, we assume the same risk funaion f ek fo ri-1(W2q — tri-1) (B.8)

all nodes (i.e., Assumptidd 5 holds) so tifat= Iy ® D° and

that the weighting matrig has the forn7 = Iy ® S where Notice thatVJy;-1(w? ) = 0 since the minimizer at time- 1

S £ 5LV2J(wP). With the first assumption, we have: is wf.,. Substituting[(B.Y) intol(BJ5), we get
_ AT B o . N . N
Beta = Bare = A" @ (Iw -~ uD?) (A.24) Yei= |l —p Z kaHé’,k,il} i1+ u Z CokVe(Pki-1) + G
We compute the dierence between the excess-risks: =1 =1 (B.9)
ERcta—ERarc . .
- Appendix B.1. Local MSE Recursions
= ZTr ((Ai(l —AAT)AjT)g((I m—uD®)S(Iy —,uDo)j)pZRV) We now derive the mean-square-error (MSE) recursions by
=0 noting that the squared norw||> £ x"x is a convex function
We can verify that the aboveftigrence is non-negative by not- Z;)(;' @The)rs\tgre,eipplymg Jensen's inequality|[36, p.77[d]B.
ing thatR, > 0 and (w — uD°)!S(Im — uD°)! is positive-semi- get
definite. MoreoverAl(I — AAT)AIT > 0 [11]. Therefore, we 3 N
have established, under our assumptions, that El|yi_1]* < Z alygk]EHva;’ileZ, k=1,....N (B.10)
=1

ERarc < ERcTA (A.25)

Therefore, combining this result with the result from the-pr
vious appendix we conclude that for smalllargei, C = Iy,
1"TA=1T, andAL = 1 From [B.9) and using Assumpti@h 2, we obtain

‘ ERatc < ERcTA < ERipg ‘ (A.26)

N
N2 < ) aonBldeil?,  k=1...N  (B.11)
=1

2

N
Ellrill? = Elgwi-ald, + Ellcl? + 4°E|| > cave(i)
Appendix B. Mean-Square-Error Analysis =t (B.12)

We follow the approach of [13] and extend it to handle non-
stationary environments as well. We define the error veetbrs
nodek at timei as:

where we are introducing the weighting matrix:

N 2
i = (lM —ﬂz CekH&k,i] (B.13)
=

Pri 2 W — gy (B.1)
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The matriceZy; are positive semi-definite and bounded by:

0< i <¥ilm (B.14)
where
N N
Yk £ max{ 1- ,U/lmaxz Cek|» |1 = pAmin Z Cek } (B-15)
=1 =1
Now note that the square gf from (B-I8) can be upper-bounded Wil
by:
N 2
)/E =max{1l- zﬂ/lmaxz Cek + ,uz/l,%nax[z Cgk] s
=1 t=1
N 2
1 - 2uldmin Z Cek + ﬂz/lrznin (Z C[k)
=1 t=1

< 1— 2udminC. + pPA34,ICII2 (B.16)

whereC, denotes the minimum absolute column sum of the

matrix C. In order to simplify the notation in the following
analysis, we introduce the upper-bound
B2 1 - 2ulminC. + 12’ (B.17)

where
A2 (Ve

+a)|[CI (B.18)

anda is defined in Assumptio 2. Also, note that by Lemma 3

from [13], we have:
2
< ICIE [eElgxi-ll® + o

E (B.19)

N
Z CokVe(Pki-1)
=1

Combining [B.I1#), [(B.19), and_(B.1L.2), we obtain for &ll=
1,....N:
Ellgill” < BElgri-al® + 12IClI5es + Tr(Q)  (B.20)

Appendix B.2. Network MSE Recursions

We now combine the MSE values at each node into network(8]

MSE vectors as follows:

Wi £ [EINy |12, Iy, 17" (B.21)
Xi 2 [Eliguil? ..., EllgnillP]" (B.22)
Yi 2 (Bl ... Ellgnil?]" (B.23)
We can then rewrité (B.10), (B.R0), and (Bl 11) as:
Xiig < AfWig (B.24)
Yi < BXi_1 + (ICIIo5 + Tr(Q))In (B.25)
Wi < ALY, (B.26)

wherex < yindicates that each element of the vectas less
than or equal to the correspondent element of vegtdvore-
over, the notatior \y denotes the vector with all entries equal to

18

one. Using the fact that X < y thenBx < Byfor any matrixB
with non-negative entries, we can combine the above indgual
recursions into a single recursion fé¥; and get:

Wi < BASATWi_1 + (12IIClI302 + Tr(Q)) 1y (B.27)

We now upper-bound the>-norm (maximum absolute value)
of the vectorW; in order to obtain the scalar-recursion:

< IBASAT Wil + 12IIClI302 + Tr(Q)

< B 1IA Il - ALl - IWicalleo + 2lICIIE 0 + TH(Q)
where||All. denotes the maximum absolute row sum of matrix

A. Noting that the matrice$y and A, are left-stochastic, we
have that|/Al|l., = 1 and||A]|| = 1. Therefore,

[Willeo < Bl Wiztlleo + ICIZ0ou® + Tr(Q) (B.28)
Unrolling (B.28), we get
IWille < B Wolleo + (ICIEo2? + T(Q) D 8! | (B.29)
j=0
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