
ar
X

iv
:1

30
1.

00
47

v1
 [

m
at

h.
O

C
]

1
Ja

n
20

13

On Distributed Online Classification in the Midst of ConceptDrifts

Zaid J. Towfica, Jianshu Chena, Ali H. Sayeda,∗

aElectrical Engineering Department
University of California

Los Angeles, CA 90095, USA

Abstract

In this work, we analyze the generalization ability of distributed online learning algorithms under stationary and non-stationary
environments. We derive bounds for the excess-risk attained by each node in a connected network of learners and study the
performance advantage that diffusion strategies have over individual non-cooperative processing. We conduct extensive simulations
to illustrate the results.

Keywords: distributed stochastic optimization, diffusion adaptation, non-stationary data, tracking, classification, risk function,
loss function, excess risk.

1. Introduction

Stochastic gradient algorithms provide powerful and itera-
tive techniques for the solution of optimization problems [1]. In
many situations of interest, the objective function is in the form
of the expectation of a convex loss function over the distribu-
tion of the input data. Such situations arise in machine learning
applications, where the input data are features to a classifier and
their associated class labels. For example, the goal of a binary
classifier is to predict the label (±1) given a vector of features
that describes an observation (or, equivalently, to separate two
classes based on their feature vector descriptions). The clas-
sifier achieves this goal by learning a classification rule based
on a cost function that penalizes incorrect classification accord-
ing to some criterion. The cost function is usually referredto
as therisk [2, p. 20], and it measures the generalization error
that is achieved by the classifier (that is, it measures how well
a classifier is able to predict the labels associated with feature
vectors that have not yet been observed). Theexcess-riskis
defined as the difference between the risk achieved by the clas-
sifier given its classification rule and the smallest risk achiev-
able by the classifier over all possible classification rules. It is
critical to study the excess-risk performance of a classifier in
order to understand how the classifier will perform on future
data compared to the best possible classifier.

Several works in the literature study excess-riskindirectly
by deriving regret bounds and then relating these bounds to
excess-risk [3, 4]. This two-step procedure suffers from two
drawbacks: 1) the procedure is targeted at algorithms that uti-
lize diminishing step-sizes, which are not useful for non-sta-
tionary environments, and 2) the second step that relates the

∗Corresponding author
Email addresses:ztowfic@ee.ucla.edu (Zaid J. Towfic),

jshchen@ee.ucla.edu (Jianshu Chen),sayed@ee.ucla.edu
(Ali H. Sayed)

regret to excess-risk is not tight, and it has been shown thaton-
line learning algorithms that utilize diminishing step-sizes can
achieve better performance than dictated by the indirect anal-
ysis [5]. In this article, we study the excess-risk directlyand
for constantstep-sizes in order to cope with non-stationary en-
vironments. Among other results, we establish that a constant
step-sizedistributedalgorithm of the diffusion type can achieve
arbitrarily small excess-risk for appropriately chosen step-sizes
in stationary environments.

Distributed stochastic learning seeks to leverage coopera-
tion between nodes over a network in order to optimize the
overall network risk without the need for coordination or su-
pervision from a central entity that has access to the entiredata
(like features and labels) from all nodes. Such distributedsche-
mes are particularly useful when the data sampled by the nodes
cannot be shared broadly due to privacy or communication con-
straints. In [6], an algorithm is developed that requires a central
node or server to poll the optimization estimates from all the
nodes at the end of a time horizon. This approach is not fully
distributed and is not able to track changes in the generating dis-
tribution without restarting the algorithm. One fully distributed
learning algorithm appears in [7] where the global cost is cho-
sen as the aggregate regret over the network of learners. The
scheme of [7] consists of a single consensus-type iterationof
the form (20) further ahead and is similar to the schemes pro-
posed in [8] for distributed optimization; the analysis in [8] is
limited to the noise-free case. In the estimation literature, ref-
erences [9, 10, 11] proposed distributed schemes that rely on
diffusion rather than consensus iterations. Diffusion strategies
allow for information to diffuse more readily through the net-
work, and they enhance stability, convergence, and robustness
in comparison to consensus strategies [12]. Diffusion strategies
consist of two steps: a combination step that averages the esti-
mates in the local neighborhood of an agent, and an adaptation
step that incorporates new information into the local estima-
tor of each agent. The net result is that information is diffused

Preprint submitted to Neurocomputing October 29, 2018

http://arxiv.org/abs/1301.0047v1

across the network adaptively and in real-time. The diffusion
approach was generalized in [13] for general strongly convex
cost functions and constant step-sizes.

In comparison to the earlier work on diffusion adaptation
[9, 10, 14], we study in this work the excess-risk performance
of general strongly-convex risk functions as opposed to mean-
square error performance. This level of generality allows us to
study the excess-risk performance for regularized logistic re-
gression in addition to the delta rule (square loss). In com-
parison to [13, 15], we study thetracking performance of the
distributed classifiers when the optimizer is time-varying. The
effective tracking of a drifting concept is only possible when
the algorithm utilizes a constant step-size as opposed to dimin-
ishing step-sizes as used in [7, 15]. Even for stationary environ-
ments, we show that the proposed algorithms obtain better per-
formance than the non-cooperative solution for any strongly-
convex risk function when some mild assumptions hold regard-
ing the noise process.

One of the main objectives of this work is therefore to study
the generalization ability of diffusion strategies when the dis-
tribution from which the data arises istime-varying. When the
statistics of the input to the classifier change, the classifier must
adjust its classification rule in order to accurately classify the
data arising from the new distribution — see Fig. 3 further
ahead. In the context of machine learning, this change in the
best possible classification rule for the non-stationary data is re-
ferred to asconcept drift[16, 17, 18]. We desire to answer one
key question: is it possible to obtain convergence results for the
distributed learning algorithms to show tracking of a changing
optimal classification rule? We discover that the answer is in
the affirmative under some assumptions.

2. Problem Formulation and Algorithm

It is assumed that a classifier receives samplesxi over time
i arising from some underlying statistical distribution. A loss
functionQ(w, xi) is associated withxi and depends on anM×1
parameter vectorw. The classifier wishes to minimize the risk
function overw, which is defined as the expected loss [2, p. 20]:

J(w) = Exi {Q(w, xi)} (risk function) (1)

It is usually assumed that the dataxi are independent and identi-
cally distributed (i.i.d.). It is also assumed that the riskfunction
J(w) is strongly convex. Obviously, when the data are station-
ary, then the riskJ(w) will not depend on time. Observe that
we are denoting random quantities by using theboldface nota-
tion, which will be our convention in this article. One example
that fits into this formulation is logistic regression [19, p. 117]
where the cost function is defined as:

J(w) , E{yi ,hi }

{
ρ

2
‖w‖2 + log(1+ e−yi hT

i w)
}

(2)

where xi in (1) is now defined as the aggregate data{yi , hi}
whereyi denotes the scalar label for feature vectorhi ∈ R

M.
Moreover,ρ is a positive scalar regularization parameter. We
will utilize logistic regression in the simulation sectionto illus-
trate our analysis.

Figure 1: A connected network. The shaded region representsthe neighborhood
of node 1.

In order to assess and compare the performance of algo-
rithms that are used to minimize (1), we adopt the excess-risk
(ER) measure, which is defined as follows:

ER(i) , E{J(wi−1) − J(wo)} (excess-risk) (3)

wherewo is the optimizer of (1) over allw in the feasible space:

wo , arg min
w

J(w) (4)

andwi−1 is the estimator forwo availableat timei − 1. The rea-
son why the excess-risk is evaluated usingwi−1 is that excess-
risk measures the generalization ability of a classifier on future
databeforeobserving the data. The estimatewi , as we will see
in Alg. 1, would incorporate data from timei. The variablewi−1

is generally a random quantity since it will be influenced by
randomness in the data arising from the gradient vector approx-
imations that are used during the development of stochasticgra-
dient procedures; the gradient approximations are referred to as
instantaneous approximations in the adaptive literature [20, 21],
and are also sometimes called the gradient oracle in the machine
learning literature (see, e.g., [5, 22]). The expectation in (3) is
taken over the distribution ofwi−1.

Considerable research has focused on deriving bounds for
the excess-risk in gradient descent procedures for stand-alone
classifiers. In this work, we pursue two extensions to these re-
sults. First, we assume that we have a network ofN learners
connected by means of some topology. The only requirement
is that the network be connected, meaning that there is a path
connecting any two arbitrary agents in the network; this path
may be through a sequence of other agents. Figure 1 illustrates
one such network. The nodes in the shaded region represent the
neighborhood of node 1 (denoted byN1). Second, we allow the
statistical distribution of the dataxi to change with time. This
change causes the optimizerwo to drift.

We associate with each agentk in the network an individual
loss functionQk(w, xk,i) evaluated at the corresponding feature
vector,xk,i. The corresponding strongly-convex risk function is
generally time-varying and given by:

Jk,i(w) , Exk,i {Qk(w, xk,i)} (5)

We further consider a global network risk, which is defined as
the average of the individual risks over all nodes:

Jglob
i (w) ,

1
N

N∑

k=1

Jk,i(w) (network risk function) (6)

2

The excess-risk at nodek is defined as:

ERk(i) ,E
{
Jk,i(wk,i−1) − Jk,i(wo

i)
}

(excess-risk at nodek) (7)

while the network excess-risk is defined as:

ER(i) ,
1
N

N∑

k=1

ERk(i)

=E


1
N

N∑

k=1

Jk,i(wk,i−1) − Jglob
i (wo

i)

 (network excess-risk)

(8)

where in both cases

wo
i , arg min

w
Jglob

i (w) (9)

When the distribution is stationary andN = 1 (i.e., a network
with a single node), we see that our formulation collapses to
the one described by (1) and (3). We assume that the optimizer
wo

i in (9) is also the optimizer of the component risk functions
Jk,i(w), i.e.,

wo
i = arg min

w
Jglob

i (w) = arg min
w

Jk,i(w), k = 1, 2, . . . ,N

(10)
This condition is satisfied when the nodes are sampling data
arising from a time-varying distribution defined by the sameset
of parameters. That is, when the data do not reflect local pref-
erences, then (10) is usually satisfied. When the environment is
stationary andwo is therefore constant, reference [13] derived
the distributed algorithm listed in the table below for the solu-
tion of (9). One of the objectives of this work is to show that
this same algorithm can also be used to track drifting concepts
wo

i . We will evaluate how well it performs in this case.
In Alg. 1, each nodek interacts with its one-hop neighbors

and updates its parameter estimate using approximations for the
true gradient vector. The coefficientsa1,ℓk, cℓk, anda2,ℓk are
non-negative scalars corresponding to the (ℓ, k) entries ofN×N
matricesA1, C, andA2, respectively. In view of the require-
ment (11), the matricesA1 andA2 are left-stochastic while the
matrix C is right-stochastic. Different choices for{A1,A2,C}
lead to different variations of the algorithm. For example, set-
ting A1 = I andA2 = A leads to an Adapt-then-Combine (ATC)
strategy where the first step is an adaptation step, followedby
combination:


ψk,i = wk,i−1 − µ
N∑

ℓ=1

cℓk∇̂Jℓ,i−1(wk,i−1)

wk,i =

N∑

ℓ=1

aℓkψℓ,i

(ATC) (15)

On the other hand, settingA1 = A and A2 = I leads to a
Combine-then-Adapt (CTA) strategy where adaptation follows
combination:


φk,i−1 =

N∑

ℓ=1

aℓkwℓ,i−1

wk,i = φk,i−1 − µ
N∑

ℓ=1

cℓk∇̂Jℓ,i−1(φk,i−1)

(CTA) (16)

Algorithm 1: Diffusion strategy for risk optimization
Consider the problem of optimizing the network risk function (6)
in a distributed manner. For each nodek, letNk denote the set of
its neighbors, namely, all nodes with which nodek can share in-
formation (including nodek itself). Select non-negative coefficients
{a1,ℓk}, {cℓk}, and{a2,ℓk} that satisfy



∑
ℓ∈Nk

a1,ℓk =
∑
ℓ∈Nk

ckℓ =
∑
ℓ∈Nk

a2,ℓk = 1

a1,ℓk = cℓk = a2,ℓk = 0,whenℓ < Nk

(11)

Each nodek starts with an initial weight estimatewk,0 and repeats
over i ≥ 1:

φk,i−1 =

N∑

ℓ=1

a1,ℓkwℓ,i−1 (12)

ψk,i = φk,i−1 − µ
N∑

ℓ=1

cℓk∇̂Jℓ,i−1(φk,i−1) (13)

wk,i =

N∑

ℓ=1

a2,ℓkψℓ,i (14)

where ∇̂Jℓ,i−1(·) is an approximation for the true gradient vector
∇Jℓ,i−1(·), andµ is a positive step-size parameter.

In either the ATC or CTA versions, we can further setC = IN.
In this case, the adaptation step would rely only on the gradient
vector at nodek, e.g.,



ψk,i = wk,i−1 − µ∇̂Jk,i−1(wk,i−1)

wk,i =

N∑

ℓ=1

aℓkψℓ,i
(ATC) (17)



φk,i−1 =

N∑

ℓ=1

aℓkwℓ,i−1

wk,i = φk,i−1 − µ∇̂Jk,i−1(φk,i−1)

(CTA) (18)

Likewise, settingA1=A2=C= IN leads to the non-cooperative
mode of operation where each node optimizes its risk individu-
ally and independently of the other nodes:

wk,i = wk,i−1 − µ∇̂Jk,i−1(wk,i−1) (no cooperation) (19)

It is important to note that diffusion strategies are different in a
fundamental way from the algorithm presented in [7, 8], which
has the form:

wk,i =
∑

ℓ∈Nk

aℓkwℓ,i−1 − µ∇̂Jk,i−1(wk,i−1) (20)

For instance, comparing with (18), we see that one critical dif-
ference is that the gradient vector used in (20) is evaluatedat
wk,i−1, whereas it is evaluated atφk,i−1 in (18). In this way, in-
formation beyond the immediate neighborhood of nodek influ-
ences the updates atk more effectively in the diffusion case (18).
This order of the computations has an important implicationon
the dynamics of the resulting algorithm. For example, it can
be verified that even if all individual learners are stable inthe

3

mean-square sense, a network of learners using an update of the
form (20) can become unstable, while the same network using
the diffusion updates (17)-(18) will always be stable regardless
of the choice of the matrixA—see [12]. In the next section, we
establish a relationship between excess-risk and mean-square-
error (MSE) and provide the main assumptions for the rest of
the manuscript.

3. Excess-risk, Weighted MSE, and Main Assumptions

Introduce the prediction and filtering weighted mean-square-
errors (MSEs):

E‖w̃p
k,i‖

2
T , E‖wo

i − wk,i−1‖2T (21)

E‖w̃ f
k,i‖

2
T , E‖wo

i − wk,i‖2T (22)

where‖x‖2T , xTT x for any positive semi-definite weighting
matrix T. When the environment is stationary (i.e., whenwo

i =

wo for all i), we notice that there is effectively no difference
in the filtering and prediction MSE in steady-state. The rea-
son why we need to introduce the two errors is that the excess-
risk (8) requires that a previous estimate (prior to observing the
current data) is used to evaluate the performance of the classi-
fier. We will see shortly that under the non-stationary modelwe
adopt in this work, the prediction and filtering MSEs are related
to each other. To proceed, we introduce the following assump-
tion regarding the Hessian matrices of the functionsJk,i(w).

(Assumption 1) The Hessian matrices of the individual risk
functions Jk,i(w) are uniformly bounded from below and from
above for all k∈ {1, . . . ,N} and time i:

λminIM ≤ ∇2Jk,i(w) ≤ λmaxIM (23)

where0 < λmin ≤ λmax < ∞.
Assumption 1 essentially states that the risk functions encoun-
tered for all times and at all nodes can be upper and lower-
bounded by a quadratic cost. The lower-bound on the Hes-
sians in (23) translates into saying that the functionsJk,i(w) are
strongly-convex [1, pp. 9-10]. For example, the risk function
(2) for regularized logistic regression satisfies Assumption 1.

We may note that in [5, 23, 24], the risk functions are as-
sumed to have bounded gradient vectors (as opposed to bounded
Hessian matrices). Clearly, there are cost functions (suchas
quadratic cost functions) where the gradient is not bounded
while the Hessian is; for this reason, our Assumption 1 enables
the subsequent analysis to be applicable to a larger class ofrisk
functions.

Now consider the excess-risk suffered at iterationi at node
k. It can be expressed as:

ERk(i) = E{Jk,i(wk,i−1) − Jk,i(wo
i)}

(a)
= E

{
−
∫ 1

0
∇Jk,i(wo

i − t w̃p
k,i)

Tdt w̃p
k,i

}

(b)
= E

{
−
∫ 1

0
∇Jk,i(wo

i)Tdt w̃p
k,i+

w̃pT
k,i

[∫ 1

0
t
∫ 1

0
∇2Jk,i(wo

i −s t w̃p
k,i)dsdt

]
w̃p

k,i

}

(c)
= E

{
w̃pT

k,i

[∫ 1

0
t
∫ 1

0
∇2Jk,i(wo

i −s t w̃k,i)dsdt

]
w̃p

k,i

}

, E{‖w̃p
k,i‖

2
Tk,i
} (24)

(d)
≤ λmax

2
E‖w̃p

k,i‖
2 (25)

where

w̃p
k,i , wo

i − wk,i−1 (26)

Steps (a) and (b) in the sequence of calculations that led to (25)
are a consequence of the following mean-value theorem from
[1, p. 24]:

f (a+ b) = f (a) +
∫ 1

0
∇ f (a+ t · b)T dt · b (27)

Step (c) is a consequence of the fact thatwo
i optimizesJk,i(w)

so that∇Jk,i(wo
i)= 0. Step (d) is due to (23), where we defined

the weighting matrix as:

Tk,i ,

[∫ 1

0
t
∫ 1

0
∇2Jk,i(wo

i − s t w̃p
k,i)dsdt

]
(28)

It follows from (25) that if the MSE at all nodes is uniformly
bounded over time, then the network excess-risk (8) will be
bounded by the same bound scaled byλmax/2. For this reason, it
is justified that we examine the mean-square-error performance
of the diffusion strategy (12)-(14) under stationary and non-
stationary conditions, and then use these results to bound the
network excess-risk by using the relation:

ER(i) =
1
N

N∑

k=1

E

{
‖w̃p

k,i‖
2
Tk,i

}
= E

{
‖w̃p

i ‖
2
T i

}
(29)

where

w̃p
i , col{w̃p

1,i , w̃
p
2,i, . . . , w̃

p
N,i} (30)

collects the prediction weight error vectors across all nodes, and

T i ,
1
N

diag{T1,i , . . . ,TN,i} (31)

A key point to stress here is that the network excess-riskis the
weighted network MSE when the weighting matrix is set to the
aboveT i . In order to perform the mean-square-error analysis
of the network, we need to introduce some assumptions. First,
we introduce a modeling assumption regarding the perturbed
gradient vectors used by the algorithm.

(Assumption 2) We model the perturbed gradient vector as:

∇̂wJ(w) = ∇wJ(w) + vk,i(w) (32)

where, conditioned on the past history of the estimators{wk, j}
for j ≤ i − 1 and all k, the gradient noisevk,i(w) satisfies:

E{vk,i(w)|Hi−1} = 0 (33)

4

E{‖vk,i(w)‖2} ≤ α · E‖wo
i − w‖2 + σ2

v (34)

for someα ≥ 0, σ2
v ≥ 0, and whereHi−1 , {wk, j : k =

1, . . . ,N and j ≤ i − 1}.
Assumption 2 models the perturbed gradient vector as the true
gradient plus some noise. This noise consists of two parts: rela-
tive noise and absolute noise. The variance of the relative noise
component depends on the distance between the estimate and
the optimum at timei (wo

i). On the other hand, the variance of
the absolute noise term is represented by the factorσ2

v in (34).
As the quality of the weight estimate by the node improves,
the power of the relative noise component decreases. The sec-
ond part of the noise bound in (34) refers to absolute noise;
this component does not depend on the current weight estimate
and is bounded byσ2

v. The absolute noise guarantees that there
will always remain some perturbation on the estimated gradient
vectors even when the gradient is evaluated at the optimumwo

i .
We may remark that, in contrast to Assumption 2, most earlier
references [5, 23, 24] in the literature assumed only the pres-
ence of the absolute noise term and ignored relative noise. The
following example is from [13].

Example 1. ConsiderADALINE [19, p. 103], [25]. Let the
binary class label at nodek and timei be denoted byyk,i ∈
{−1,+1}. Let the feature vector at nodek and timei be denoted
by hk,i ∈ RM. ADALINE optimizes the quadratic loss:

Qk(w, yk,i, hk,i) ,
∣∣∣yk,i − hT

k,iw
∣∣∣2 (35)

The risk function is then the expectation of the loss in (35):

Jk(w) , E

∣∣∣yk,i − hT
k,iw
∣∣∣2 (36)

Let the data satisfy the linear model:

yk,i , hT
k,iw+ zk(i) (37)

where the feature vectors{hk,i} are assumed to be zero-mean
with a constant covariance matrixRh,k , E{hk,i hT

k,i}. The noise
sequence{zk(i)} is assumed to be zero-mean and white with
constant varianceσ2

z,k. The optimal solutionwo that minimizes
(36) satisfies the normal equations:

rhy,k = Rh,kw
o (38)

where rhy,k , E{hk,i yk,i}. The feature vectors and noise are
assumed to be independent over nodes and time. One instanta-
neous approximation for the gradient vector is:

∇̂Jk(w) = −2hk,i(yk,i − hT
k,iw) (39)

Using (37)-(39) and (32), we have that the gradient noise satis-
fies:

vk,i(w) = ∇̂Jk(w) − ∇Jk(w)

= 2(Rh,k − hk,i hT
k,i)(w

o − w) − 2hk,i zk(i) (40)

We then have that:

E{vk,i |Hi−1} = 0 (41)

E‖vk,i(w)‖2≤4E
{(
σmax

(
Rh,k − hk,i hT

k,i

))2}
· E‖wo − w‖2+

4Tr(Rh,k)σ2
z (42)

for all w ∈ Hi−1 whereσmax(A) denotes the maximum singular
value of its matrix argumentA. Therefore theADALINE algo-
rithm satisfies Assumption 2 under (37). Note that both noise
terms (relative and absolute) appear on the right hand side of
(42).

We shall distinguish between two scenarios in our analysis.
In the first case, we assume the optimizerwo does not change
with time (i.e., we assume stationarity). In the second case, we
assume the optimizerwo

i varies slowly with time according to a
random walk model.

(Assumption 3) The data processxi is stationary. This implies
that the risk functions Jk,i(w) defined in(5) are time-invariant:

Jk,i(w) = Jk(w), for all i (43)

In addition, this implies that the optimizer wo
i of the network risk

function and all individual risk functions is constant, wo
i = wo

for all i.
When the environment is non-stationary, we shall assume in-
stead a random-walk model for the minimizerwo

i .

(Assumption 4) In the non-stationary case, the time-varying
optimal vectorwo

i is modeled as a random walk:

wo
i , wo

i−1 + qi (44)

where the zero-mean sequenceqi has covarianceE{qi qT
i } = Q

and is independent of the quantities{vk(wk, j), q j} for all j < i.
The mean ofwo

i is set toE{wo
i } = wo.

Observe that the time-varying optimizerwo
i is now denoted

by a boldface letter due to the addition of the random noise
componentqi ; furthermore, the expectation in the definition of
excess-risk (8) will now operate over this randomness as well.
In machine learning, this random-walk model was used in [18]
to describe the concept drift of a classifier with a moving hy-
perplane. This model is also commonly used to evaluate the
tracking performance of adaptive filters [21, pp. 271-272].

Assumption 4 models the desired set of parameterswo
i as a

non-stationary first-order autoregressive (AR(1)) process. Such
AR(1) processes are commonly used to model non-stationary
behavior in various contexts such as adaptive filtering [21]and
financial data modeling [26, pp. 142–146], [27, pp. 72–73].
Similar models have been used in other contexts such as web
searching. For example, the original PageRank algorithm, used
by the Google search engine, uses a naive “random surfer” that
models an average user that traverses a random walk over the
graph of Internet webpages [28]. Although the model is sim-
plistic in terms of modeling the shifts of a user’s interest,it has
been demonstrated to achieve excellent page sorting capability.

Given Assumption 4, we can relate the prediction and filter-
ing errors introduced in (21)-(22):

E‖w̃p
k,i‖

2
T = E‖wo

i − wk,i−1‖2T
5

= E‖wo
i−1 − wk,i−1 + qi‖2T

= E‖wo
i−1 − wk,i−1‖2T + E‖qi‖2T

= E‖w̃ f
k,i‖

2
T + Tr(QT) (45)

This means that in order to show that the prediction errorE‖w̃p
k,i‖2T

remains bounded for the diffusion algorithm, it is sufficient to
analyze the filtering errorE‖w̃ f

k,i‖2T and show that it is bounded.
We will further introduce an assumption to be used later in

the article to derive relationships between the performance of
the algorithms described by (15)-(19).
(Assumption 5) The risk functions across the nodes are identi-
cal:

Jk,i(w) = Ji(w), k ∈ {1, . . . ,N} (46)

Assumption 5 states that all nodes have the same risk function,
but this does not mean that the nodes will receive the samedata
realizations. Assumption 5 is satisfied when the nodes utilize
the same loss functionQ(·, ·) and receive data arising indepen-
dently from the same distribution.

4. Stationary Environments

In this section, we focus on obtaining convergence results
for the excess-risk for the distributed diffusion strategy (12)-
(14) under stationary conditions. First, we show that the dif-
fusion algorithm can achieve arbitrarily small excess-risk given
appropriately chosen step-sizes.

Theorem 1 (Excess-risk for stationary environments isO(µ)).
Let Assumptions 1-3 hold. Given a small constant step-sizeµ

that satisfies:

0 < µ < min


2λmax

λ2
max+ α

,
2λmin

λ2
min + α

 (47)

Then, Algorithm 1 achieves arbitrarily small excess-risk at each
node k, i.e.:

lim sup
i→∞

ERk(i) ≤ ǫ (48)

whereǫ is defined as:

ǫ ,
σ2

v

4
· λmax

λmin
· µ (49)

and is directly proportional to the step-sizeµ. Since each node
can achieve an arbitrarily small excess-risk, the network excess-
risk in (8) can also be made arbitrarily small.

Proof. Given Assumption 3, we have that the risk functions
Jk,i(w) are time-invariant (Jk,i(w) = Jk(w)) and the optimizer
is constant (wo

i = wo) for all time i. Furthermore, we have
from (25) that the excess-risk at nodek is bounded by the scaled
mean-square-error:

Ew{Jk(wk,i−1) − Jk(wo)} ≤ λmax

2
Ew‖w̃k,i−1‖2 (50)

We now appeal to results from [13] (Theorem 1, Equations (67)
and (72)) where it is shown that forµ satisfying (47) it holds
that

lim sup
i→∞

Ew‖w̃k,i−1‖2 ≤
σ2

v

2λmin
µ, k ∈ {1, . . . ,N} (51)

Therefore, if we defineǫ as in (49) and further bound (50) using
(51), we obtain (48).

Result (50) implies that when the environment is station-
ary, meaning the optimizerwo

i is actually fixed for all time,
then the excess-risk attained at each node in the network will
be bounded by an arbitrarily small quantity that is proportional
to the step-sizeµ when (47) is satisfied. As we will see in the
next section, this arbitrary reduction of the MSE is not generally
possible for non-stationary environments.

In addition to Theorem 1, it is possible to approximate the
excess-risk at nodek (and also the network excess-risk) at steady
state for sufficiently smallµ.

Theorem 2 (Steady-state approximation for excess-risk).
Let Assumptions 1-3 hold. For small step-sizes that satisfy(47),
the steady-state network excess-risk from(29) for Alg. 1 can be
approximated by:

lim
i→∞

ER(i) ≈ µ2vec
(
AT

2RT
vA2

)T
(I − F)−1vec(T) (52)

where

F , BT ⊗ BT (53)

B = AT
2(IMN − µD)AT

1 (54)

A1 , A1 ⊗ IM (55)

A2 , A2 ⊗ IM (56)

D ,

N∑

ℓ=1

diag
{
cℓ,1, . . . , cℓ,N

} ⊗ ∇2Jℓ(wo) (57)

T = 1
2N

diag
{
∇2J1(wo), . . . ,∇2JN(wo)

}
(58)

and the symbol⊗ denotes the Kronecker product operation [29,
p. 139] and vec(·) refers to the operation that stacks the columns
of its matrix argument on top of each other [29, p. 145]. Fur-
thermore, the matrixRv in (52) is defined as the covariance
matrix of the vectorgi :

gi ,

N∑

ℓ=1

col{cℓ1vℓ,i(wo), . . . , cℓNvℓ,i(wo)} (59)

That is,Rv , E{gi gT
i }.

Proof. From (29), we notice that the excess-risk can be evalu-
ated as the weighted mean-square-error with weight matrixT i

defined in (31) and (28). When the environment is stationary
andwo

i = wo is constant, the weight matrixTk,i in (28) becomes:

Tk,i ,

[∫ 1

0
t
∫ 1

0
∇2Jk(wo − s t w̃k,i−1)dsdt

]
(60)

6

Furthermore, due to Theorem 1, we have that the mean-square
value ofw̃k,i−1 is small for small step-sizeµ and largei. This
implies that we can approximate the weight matrixTk,i by

Tk,i ≈ Tk =

[∫ 1

0
t
∫ 1

0
∇2Jk,i(wo)ds dt

]
=

1
2
∇2Jk(wo) (smallµ)

(61)

for largei and smallµ. In other words, the matrixTk,i becomes
approximately deterministic and is given byTk at steady-state.
Therefore, the matrixT i defined in (31) can, in steady-state, be
approximated by the deterministic matrix:

T i ≈ T =
1
N

diag{T1, . . . ,TN} (62)

We can now utilize results from [13] to approximate the excess-
risk at steady-state. Using (103) from [13] we can write:

lim
i→∞

E‖w̃i‖2Σ−BTΣB ≈ Tr(µ2AT
2RT

vA2Σ) (63)

whereΣ is an arbitrary positive semi-definite matrix that we are
free to choose. Assume we chooseΣ such that

Σ − BTΣB = T (64)

for someT , which could be equal to (62) or some other choice
(see Table 1). If we stack the columns ofΣ into a vectorσ =
vec(Σ), then the above equality implies thatσ is chosen as

σ = (I − F)−1vec(T) (65)

The matrix (I − F) is invertible for sufficiently small step-sizes
(see App. C in [13]). Therefore, we conclude from (63) that

lim
i→∞

E‖w̃i‖2T ≈ µ2vec
(
AT

2RT
vA2

)T
(I − F)−1vec(T) (66)

Different choices forT are possible in (66). For example, if we
selectT as in (62), then (66) would approximate the network
excess-risk (8) at steady-state. Table 1 lists other choices for
T .

Different metrics can be evaluated by choosingT appropri-
ately. For instance, in order to evaluate the mean-square-error
at nodek, we letT = Ekk whereEkk is the zero matrix with
a single 1 in thek-th diagonal element. On the other hand, in
order to evaluate the excess-risk at nodek, we letT = Ekk⊗ Tk

whereTk =
1
2∇2Jk(wo).

It is possible to compare the performance of Alg. 1 against
that of non-cooperative processing (19) when the nodes act in-
dividually and do not cooperate with each other. The non-
cooperative case (19) is a special case of Alg. 1 when the ma-
trices{A1,A2,C} are all set equal to the identity matrix.

Theorem 3 (Cooperation versus no-cooperation).
Let Assumptions 1-3 hold. In addition, let Assumption 5 hold
so that all nodes have the same risk function. Assume the step-
size satisfies condition(47). Consider the ATC, CTA, and the
non-cooperative algorithms(17)-(19) with C = I. Assume the
combination matrix A in the ATC and CTA cases is chosen to be

doubly-stochastic, meaning that AT
1 = 1 and A1 = 1. When

Assumption 5 holds, the weighting matrixT in (62) has the
formT = 1

2N IN ⊗∇2J(wo). Under these conditions, the steady-
state network excess-risk satisfies:

ERATC ≤ ERCTA ≤ ERind (67)

whereERATC is the steady-state excess-risk when theATC al-
gorithm is executed,ERCTA is the steady-state excess-risk when
theCTA algorithm is executed, andERind steady-state excess-
risk when the nodes do not cooperate with each other.

Proof. See Appendix A.

From Theorem 3, we observe that the Adapt-then-Combine
(ATC) algorithm outperforms the Combine-then-Adapt (CTA)
strategy, which in turn outperforms the non-cooperative strat-
egy for any doubly-stochastic combination matrixA. The rea-
son ATC outperforms CTA is because adaptation precedes com-
bination in ATC so that improved weight estimates are aggre-
gated in the combination step. Nevertheless, as the step-sizeµ
becomes smaller, then the gap between the ATC and CTA algo-
rithms also becomes smaller (see Fig. 4c-4d further ahead).

In the next section, we study the performance of the diffu-
sion strategy (12)-(14) when the optimizerwo

i is changing ac-
cording to Assumption 4. We will establish that the excess-risk
is bounded even under this scenario.

5. Non-Stationary Environments

In the previous section, we showed that if we use a con-
stant step-size, the mean-square-error and network excess-risk
for Alg. 1 can be made arbitrarily small by choosing the step-
size to be sufficiently small. However, reduction of the excess-
risk is not always possible in non-stationary environments. In
order to arrive at meaningful bounds for the tracking perfor-
mance of the algorithm, we will utilize the random-walk model
from Assumption 4.

Theorem 4 (Asymptotic ER bound for non-stationary data).
Let Assumptions 1-2 and 4 hold, and choose a constant step-
size that satisfies, as i→ ∞:

0 < µ <
2λminC∗

‖C‖21(λ2
max+ α)

(68)

where‖C‖1 represents the maximum absolute column sum of
the matrix C, while C∗ represents the miminum absolute column
sum of the matrix C. The asymptotic excess-risk at node k then
satisfies:

ERk(i) ≤
‖C‖21σ2

vλmax

4λminC∗
µ

︸ ︷︷ ︸
Steady-state term

+
Tr(Q)λmax

4λminC∗
µ−1

︸ ︷︷ ︸
Tracking term

+
Mλmax

2
Tr(Q) (69)

for all k = 1, . . . ,N. Since all nodes satisfy this bound, the
network excess-risk,ER(i), is also asymptotically bounded by
the right-hand-side of(69).

7

Table 1: Choice ofT for the evaluation of different performance metrics.Ekk indicates the all zero matrix with a single 1 in thek-th diagonal element.

Metric Ew
{
Jk(wk,∞) − Jk(wo)

} 1
N

N∑

k=1

Ew
{
Jk(wk,∞) − Jk(wo)

}
Ew

{
‖w̃k,∞‖2

} 1
N

N∑

k=1

Ew

{
‖w̃k,∞‖2

}

T Ekk ⊗ Tk
1
N diag{T1, . . . ,TN} Ekk

1
N IMN

Proof. To show that the asymptotic excess-risk at nodek is
bounded, we observe that the excess-risk is asymptoticallyap-
proximated by the weighted mean-square-error (21) with weight
matrixTk given in (61):

ERk(i) ≈ E‖w̃p
k,i‖

2
Tk
= E‖w̃p

k,i‖
2
1
2∇2

wJk(wo
i)

(70)

Using (45), we see that the excess-risk can be written in terms
of the filtering error:

ERk(i) ≤ E‖w̃ f
k,i‖

2
1
2∇2

wJk(wo
i)
+ Tr(QTk)

≤ λmax

2
E‖w̃ f

k,i‖
2 + Tr(QTk) (71)

wherew̃ f
k,i , wo

i −wk,i and the inequality is a result of Assump-
tion 1. We can use Assumption 1 to verify that Tr(QTk) is also
bounded since:

Tr(QTk) =
M∑

m=1

M∑

n=1

QmnTk,mn

(a)
≤

√√√
M∑

m=1

M∑

n=1

Q2
mn




M∑

m=1

M∑

n=1

T2
k,mn



=

√
Tr
(
Q2
)
Tr
(
T2

k

)

(b)
=
√

Tr(UΩ2UT)Tr(VΠ2VT)

=

√√√
M∑

m=1

ω2
m




M∑

m=1

π2
m



(c)
≤

√√√
M∑

m=1

ωm


2 

M∑

m=1

πm


2

=

√
(Tr(Q))2 (Tr(Tk))2

(d)
≤ Mλmax

2
Tr(Q)

where step (a) is due the Cauchy-Schwarz inequality, step (b) is
due to the introduction of the eigenvalue decompositionsQ =
UΩUT and Tk = VΠVT, whereΩ = diag{ω1, . . . , ωM} and
Π = diag{π1, . . . , πM} are the non-negative eigenvalues of the
symmetric matricesQ andTk, respectively. Step (c) is due to
Q andTk being non-negative definite, and step (d) is due to As-
sumption 1. This means that the excess-risk at nodek (71) can
be upper-bounded by

ERk(i) ≤
λmax

2
E‖w̃ f

k,i‖
2 +

Mλmax

2
Tr(Q) (72)

To bound the filtering errorE‖w̃ f
k,i‖2, from Appendix B, we

have the scalar recursion (B.29):

‖Wi‖∞ ≤ βi‖W0‖∞ +
(
‖C‖21σ2

vµ
2 + Tr(Q)

) i−1∑

j=0

β j (73)

where‖x‖∞ denotes the maximum absolute entry of a vectorx
and

Wi ,
[
E‖w̃ f

1,i‖
2, . . . ,E‖w̃ f

N,i‖
2]T (74)

β , 1− 2µλminC∗ + µ
2(λ2

max+ α)‖C‖21 (75)

Notice that when the constant step-sizeµ satisfies (68), we have
thatβ < 1. Therefore, we can evaluate the limit of the geometric
series in the second term of (73) as

lim
i→∞

(
‖C‖21σ2

vµ
2 + Tr(Q)

) i−1∑

j=0

β j =
‖C‖21σ2

vµ
2 + Tr(Q)

1− β (76)

Additionally, the limit of the first term on the right-hand-side of
(73) will be zero sinceβ < 1. Therefore, we have that

lim sup
i→∞

‖Wi‖∞ ≤
‖C‖21σ2

vµ
2 + Tr(Q)

1− β

=
‖C‖21σ2

vµ

2λminC∗ − µ(λ2
max+α)‖C‖21

+
Tr(Q)

2µλminC∗−µ2(λ2
max+α)‖C‖21

(77)

For sufficiently small step-sizes, the denominator of the first and
second terms of (77) can be respectively approximated by

2λminC∗ − µ(λ2
max+ α)‖C‖21 ≈ 2λminC∗ (78)

2µλminC∗ − µ2(λ2
max+ α)‖C‖21 ≈ 2µλminC∗ (79)

Therefore, we conclude that (77) can be approximated for small
step-sizes by

lim sup
i→∞

‖Wi‖∞ ≤
‖C‖21σ2

v

2λminC∗
µ +

Tr(Q)
2λminC∗

µ−1 (80)

Noting the relationship between excess-risk and the mean square
error in (72), we have that the excess-risk at nodek is bounded
by

ERk(i) ≤
‖C‖21σ2

vλmax

4λminC∗
µ +

Tr(Q)λmax

4λminC∗
µ−1 +

Mλmax

2
Tr(Q) (81)

and therefore the network excess-risk ER(i) satisfies this bound
as well for sufficiently largei and smallµ.

8

µ

E
R

(i
)

Steady-state term (69)

Tracking term (69)

Upper-bound (69)

µo

Tracking term

Steady-state
term

Upper-bound

Figure 2: Trade-off between tracking performance and steady-state excess-risk.
The scalarµo indicates the optimal choice for the step-size in order to minimize
the bound on the excess-risk.

Consider the case whereC = IN. We observe from (69)
that a trade-off exists between the steady-state performance of
the algorithm and its tracking performance. The bound con-
sists of the sum of the steady state excess-risk (48) derived
for stationary environments and a term that depends onµ−1

and which arises as a result of the random-walk model noise
qi . To decrease the steady-state error, we would need to use a
smaller step-size, which affects the tracking performance ad-
versely. Figure 2 illustrates this trade-off. In the figure,µo

indicates the optimal choice for the step-size in order to min-
imize the bound on the right-hand-side of (69). The figure
gives insight into the fact that a small step-size will improve
the steady-state performance when the environment is station-
ary, but will harm the tracking ability of the algorithm whenthe
environment is non-stationary. We conclude that the asymptotic
network excess-risk (8) remains upper-bounded by a constant,
even when the optimizer changes according to a random-walk.
That is, even as the variance of the random process generat-
ing wo

i grows indefinitely, the excess-risk at each node remains
bounded.

In order to illustrate the application of the result in the con-
text of machine learning, we consider a linear binary classifi-
cation problem where the task is to find a hyper-plane (through
the origin) that best separates features from two classes accord-
ing to some cost function (such as the logistic regression cost
in (2)). Since the hyper-plane is fixed at the origin, the task
is to find the best rotation of the hyper-plane to separate the
data. Consider now that the distribution from which the fea-
ture vectors arise is time varying and as a result the optimal
hyper-plane must rotate accordingly — see Fig. 3. Our anal-
ysis shows that the diffusion algorithm can track the random-
walk rotating hyper-plane proposed in [18] and remain within
a constant excess-risk on average for any strongly-convex cost
function used that satisfies Assumption 1.

6. Simulation Results

6.1. Stationary Environments

In this section, we test the distributed diffusion strategy (12)-
(14) on three stationary datasets:

• The ‘alpha’ dataset [30].

• The ‘a9a’ dataset [31].

• The ‘webspam’ (unigram) dataset [31].

Each set deals with a binary classification problem. The dataset
properties are compiled in Table 2. We split the data evenly
across the nodes with the step-size chosen so that it is possi-
ble to observe the steady-state behavior. Unfortunately, since
some of the datasets are relatively small (once divided overthe
nodes), this means that the step-size chosen needs to be rela-
tively large. The analysis we have for the approximate steady-
state expression in Theorem 2 assumes the use of small step-
sizes, so we expect to see a better match between theory and
simulation if the data sets were larger and the step-sizes were
smaller—see Figs. 4c-4d further ahead. Better matches willoc-
cur when smaller step-sizes are used [13, 14]. We perform
regularized logistic regression (2) on the dataset in real-time
and evaluate the network excess-risk defined in (8) using the
ATC, CTA, and the non-cooperative algorithms described by
(17), (18), and (19), respectively. For the ATC and CTA algo-
rithms, we set the gradient combination matrixC = IN so that
the nodes do not exchange their gradient vectors. In addition,
we compare the performance of our algorithm to the central-
ized full gradient (CFG) algorithm that has access to all data
samples from allN nodes at every iteration:

wCFG,i = wCFG,i−1 −
µ

N

N∑

k=1

∇̂wJk(wCFG,i−1) (CFG) (82)

The CFG algorithm averages the gradients from all nodes and
moves against the average gradient direction. We also com-
pare against the semi-distributed algorithm from [6] whereeach
node executes stochastic gradient descent up to some time hori-
zoni and then the nodes transmit their estimateswk,i to a central
processor that averages all estimates:

wTHA,k,i ,
1
N

N∑

k=1

wk,i (time-horizon averaging) (83)

Notice that (83) requires some time horizoni to be known and
requires either some central server to average the estimates and
redistribute the average (83) back to the nodes or the use of
some iterative consensus scheme [32]. In order to compare our
algorithm to that of [6], we assume that the averaging occurs
at every step of the algorithm (we only evaluate the excess-risk
at the central processor, and do not communicate the average
back to the nodes since the nodes’ iterations do not depend on
the averaged estimates). Finally, we also simulate algorithm
(20) from [7] using a constant step-size. The same step-size

9

Figure 3: A rotating hyper-plane in 2D that adjusts to separate data from two classes{+1,−1}. wo
i indicates the optimal normal vector of the hyper-plane.

Table 2: Properties of datasets used for performance evaluation and the problem parameters associated with the datasets.

Dataset Instances Attributes (M) ρ µ N Experiments

alpha 500000 500 5 0.0001 20 20
a9a 32561 123 5 0.02 8 100

webspam 350000 254 5 0.0025/0.001 40 50

is used for all algorithms. For the combination matrixA, we
utilize the Metropolis rule [10] to generate the coefficients:

aℓk =



min
(

1
|Nℓ |−1 ,

1
|Nk|−1

)
, ℓ ∈ Nk, ℓ , k

1−∑N
j=1 a jk, ℓ = k

0, otherwise

(84)

The Metropolis weighting matrixA generated using (84) is dou-
bly stochastic. The loss function that each node utilizes isthe
regularized log-loss:

Q(w, hi , yi) ,
ρ

2
‖w‖2 + log(1+ e−yi hT

i w) (85)

wherehi indicates the feature vector andyi indicates the true
label (±1). In this case, the dataxk,i in (5) are defined asxk,i ,

{hk,i , yk,i}. The risk function is the expectation ofQ(·) over the
inputshi andyi . In each experiment, a numberN of nodes are
used to distribute the classifier learning task as listed in Table 2.
A batch optimization, where all samples from the full dataset
are available to the learner, was used in order to computewo.
This optimization was conducted using theLIBLINEAR [33] li-
brary. The theoretical curves are computed using the simplified
expressions derived in [14, 15]:

ERk(i) ≈
µTr(Rv,k)

4N
(86)

whereRv,k , E{vk,i(wo)vk,i(wo)T}. Fig. 4 shows the excess-
risk learning curves for the different algorithms and different
datasets. We observe that the ATC algorithm outperforms the
CTA algorithm and the non-cooperative algorithm (as estab-
lished by Theorem 3) as well as the consensus-type algorithm

(20) from [7] when the same constant step-size is used. We also
observe from Figs. 4c and 4d that as the step-size decreases,the
excess-risk also decreases. This fact is in agreement with our
analysis in Theorem 1. We notice that the time-horizon aver-
aging algorithm from [6] is close in performance to the ATC
diffusion algorithm. The algorithm from [6], however, requires
global communication at every iteration and is not a distributed
solution as is the case with diffusion strategies.

In order to evaluate the performance of the actual classifier
output by the algorithms, we plot the receiver operating char-
acteristic (ROC) curves in Fig. 5. The classifier for each of the
algorithms is computed using:

ŷi , sign(hT
i w− b) (87)

by sweeping the biasb. In Fig. 5,PD indicates the probability
of detection whilePFA indicates the probability of false alarm.
Notice that the curve for the ATC algorithm is very close to that
of the CFG algorithm and the algorithm from [6] while the ATC
algorithm is fully distributed. The CTA and consensus algo-
rithm from [7] perform worse than the ATC algorithm. We also
see a clear performance improvement over the non-cooperative
algorithm. Finally, as the step-size decreases for the ‘webspam’
dataset, we see that the diffusion algorithm tends to improve in
performance and get closer to the centralized batch processing
solution. The batch processing curve is computed by usingwo

as the separating hyperplane in (87).

10

0 0.5 1 1.5 2 2.5

x 10
4

−30

−20

−10

0

10

20

30

40

i

E
R

(i
)

(d
B

)

ATC (17)

CTA (18)

Alg. from [7] (const µ)

Alg. from [6]

CFG (82)

No Cooperation (19)

Theory - No Cooperation (N = 1 in (86))

Theory - Diffusion (86)

(a) Excess-risk for ‘alpha’ dataset

0 500 1000 1500 2000 2500 3000 3500 4000 4500
−28

−26

−24

−22

−20

−18

−16

−14

i

E
R

(i
)

(d
B

)

ATC (17)

CTA (18)

Alg. from [7] (const µ)

Alg. from [6]

CFG (82)

No Cooperation (19)

Theory - No Cooperation (N = 1 in (86))

Theory - Diffusion (86)

(b) Excess-risk for ‘a9a’ dataset

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
−60

−55

−50

−45

−40

−35

−30

−25

i

E
R

(i
)

(d
B

)

ATC (17)

CTA (18)

Alg. from [7] (const µ)

Alg. from [6]

CFG (82)

No Cooperation (19)

Theory - No Cooperation (N = 1 in (86))

Theory - Diffusion (86)

(c) Excess-risk for ‘webspam’ dataset (µ = 0.0025)

Figure 4: Excess-risk learning curves for different stationary datasets (continued on the next page).

11

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
−60

−55

−50

−45

−40

−35

−30

−25

i

E
R

(i
)

(d
B

)

ATC (17)

CTA (18)

Alg. from [7] (const µ)

Alg. from [6]

CFG (82)

No Cooperation (19)

Theory - No Cooperation (N = 1 in (86))

Theory - Diffusion (86)

(d) Excess-risk for ‘webspam’ dataset (µ = 0.001)

Figure 4: Excess-risk learning curves for different stationary datasets (continued from the previous page).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PFA

P
D

Batch (centralized)

CFG (82)

Alg. from [6]

ATC (17)

CTA (18)

Alg. from [7] (const µ)

No Cooperation (19)

(a) ROC curve for ‘alpha’ dataset

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PFA

P
D

Batch (centralized)

CFG (82)

Alg. from [6]

ATC (17)

CTA (18)

Alg. from [7] (const µ)

No Cooperation (19)

(b) ROC curve for ‘a9a’ dataset

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

PFA

P
D

Batch (centralized)

CFG (82)

Alg. from [6]

ATC (17)

CTA (18)

Alg. from [7] (const µ)

No Cooperation (19)

(c) ROC curve for ‘webspam’ dataset (µ = 0.0025)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

PFA

P
D

Batch (centralized)

CFG (82)

Alg. from [6]

ATC (17)

CTA (18)

Alg. from [7] (const µ)

No Cooperation (19)

(d) ROC curve for ‘webspam’ dataset (µ = 0.001)

Figure 5: ROC curves for different stationary datasets.

12

6.2. Non-Stationary Environments

6.2.1. Random Walk Rotating Hyperplane - Gradual Concept
Drift

In this section, we simulate a scenario wherewo
i is a ran-

dom walk. We do so to illustrate the analysis in Theorem 4
and to simulate the behavior of the algorithms under gradual
concept drifts. In the next section, we will simulate instant con-
cept drifts. In order to clarify the presentation of the results,
we concentrate in this section on the ATC algorithm and the al-
gorithm from [7] only since we have already established in the
last section that the ATC algorithm outperforms CTA and non-
cooperation. We study the algorithm from [7] when the step-
size decays with time. This allows us to highlight the impor-
tance of utilizing constant step-sizes in non-stationary environ-
ments. We generate data for two classes{+1,−1}with Gaussian
distributionsN(mi , I2) andN(−mi , I2) respectively wheremi is
the mean of the+1 distribution at timei. We letmi be a random
walk with increments that are Gaussian with zero mean and co-
variance 0.01I2. We computewo

i at every iteration based on all
the data in the network using theLIBLINEAR library [33]. Each
of the N = 200 nodes receives one sample per iteration. The
Metropolis weights (84) are used to combine the estimates for
the ATC algorithm and the algorithm from [7]. An amount of
10% label noise was also added to the dataset. We set the step-
size toµ = 0.005 andρ = 0.01 for the loss function in (85).
We use the classifier in (87) to obtain the classifier accuracyin
Fig. 6a, which is defined as:

Accuracy=
Number of correctly classified samples

Total number of samples
(88)

In addition, we plot the excess-risk in Fig. 6b. We observe that
as the targetwo

i changes, the diminishing step-size algorithm
from [7] does not cope with non-stationarity. On the other hand,
and as predicted by Theorem 4, the constant step-size algorithm
can track these changes.

6.2.2. STAGGER Concepts - Instantaneous Concept Drift
In addition to the gradual concept drift simulation in the last

section, we also simulate our algorithm on a dataset with instan-
taneous concept drift. We use theSTAGGER dataset [34, 35] for
this purpose. We simulate a network withN = 125 nodes. All
the nodes experience the concept change simultaneously. As
in [35], we define the target concept to be changing over 120
iterations, in intervals of 40 iterations for each target concept:

yi ,



(hi,1 = 1) and (hi,3 = 0), 1 ≤ i ≤ 40

(hi,1 = 0) or (hi,2 = 0.5), 41≤ i ≤ 80

(hi,3 = 0.5) or (hi,3 = 1), 81≤ i ≤ 120

(89)

The labels are then mapped from{0,+1} to {−1,+1}. The above
rule can be seen as a numerical representation of the color,
shape, and size attributes through the definitions in Table 3.

An amount of 10% label noise was also added to the dataset
at each experiment. The simulation results were averaged over
100 experiments. A regularization factor ofρ = 0.1 was used
to optimize the log-loss in (85). The batch optimization was

carried out using theLIBLINEAR library [33]. A step-size of
µ = 0.25 was used to simulate the constant step-size algorithms
(ATC, CTA, non-cooperative, (20), (82), and [6]). In addition,
we simulate the algorithm from [7] with a diminishing step-size
µi , µ/

√
i to illustrate the necessity of constant step-sizes for

non-stationary environments. Figure 7a shows the excess-risk
performance of the different algorithms on theSTAGGER con-
cepts. The constant step-size algorithms continuously track the
changing target concept while the diminishing step-size algo-
rithm from [7] fails to do so due to the diminishing learning
rate. Observe that the algorithm from [6] would not know when
the concept changed and it would have to implement a change
detector in order to allow the central node to poll the informa-
tion from all the nodes (or to initiate consensus iterations). We
also evaluate the ROC curves using (87) associated with the
classifier at the last iteration of the target concept. The ROC
curves are illustrated in Fig. 7b. The diminishing step-size al-
gorithm is not helpful in detecting the second concept sinceit
is below the chance line (PD = PFA). In addition, we still notice
that the ATC algorithm outperforms the other fully distributed
approaches (non-cooperative, CTA, and (20)) and is close tothe
batch solution. Metropolis weights (84) are used for the com-
bination matrix for the distributed algorithms.

7. General Discussion

We saw in Sec. 3 that the excess-risk of a classifier can
be written as a weighted mean-square-error with a weight ma-
trix chosen according to Table 1 when the step-sizeµ is small.
This formulation of the excess-risk allows us to study the per-
formance of distributed algorithms and explain their behavior.
When the environment is stationary (for example, when the
learners are sampling from a fixed distribution), we saw that
the ATC and CTA diffusion algorithms can achieve an excess-
risk performance proportional toµ. In addition, we established
that the ATC algorithm will outperform the CTA algorithm and
non-cooperative processing when the combination matrixA is
doubly-stochastic. This generalizes previous results that only
applied when the loss function used in the learning process is
quadratic [11].

When the environment is non-stationary, we modeled the
optimizerwo to be a random walk with i.i.d. increments. This
model allows us to study the performance of the diffusion al-
gorithm when tracking a non-stationary random process. We
obtained (in Theorem 4) a bound on the excess-risk that is com-
prised of three terms: a constant term that depends on the co-
variance matrix of the increments of the random walk process,
a term that is proportional toµ, and a term that is inversely
proportional toµ. This result is intuitive since we expect the
diffusion algorithm to be able to track a fixed optimizer, or a rel-
atively slow optimizer. As the optimizer evolves more quickly,
however, the algorithm must increase the step-size in orderto
become more agile. The trade-off for the tracking ability of the
diffusion algorithm is summarized in Fig. 2.

The simulation results illustrated that the steady-state excess-
risk performance of the diffusion algorithm is proportional to
the step-sizeµ (see Fig. 4c-4d). Furthermore, we showed through

13

0 500 1000 1500 2000 2500 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

i

A
cc

u
ra

cy

ATC (17)

Alg. from [7] (µi = µ/i1/2)

(a) Accuracy for the Markov random walk concept drift acrosstime. Larger values are better.

0 500 1000 1500 2000 2500 3000
−40

−35

−30

−25

−20

−15

−10

−5

0

5

10

i

E
R

(i
)

(d
B

)

ATC (17)

Alg. from [5] (µi = µ/i1/2)

(b) Excess-risk for the Markov random walk concept drift over time. Smaller values are better.

Figure 6: Results for Markov random walk simulation.

Table 3: Numerical Representation of STAGGER concepts
Attribute Color (xi,1) Shape (xi,2) Size (xi,3)

Value Green Blue Red Triangle Circle Rectangle Small Medium Large
Numerical Representation 0 0.5 1 0 0.5 1 0 0.5 1

14

0 20 40 60 80 100 120
−30

−25

−20

−15

−10

−5

0

5

i

E
R

(i
)

(d
B

)

ATC (17)

CTA (18)

Alg. from [7] (const µ)

Alg. from [7] (µi = µ/i1/2)

Alg. from [6]

CFG (82)

No Cooperation (19)

(a) Excess-risk performance of the algorithms on the time-varyingSTAGGER concepts.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

PFA

P
D

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

PFA

P
D

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

PFA

P
D

 Batch (centralized)

CFG (82)

Alg. from [6]

ATC (17)

CTA (18)

Alg. from [7] (const µ)

Alg. from [7] (µi = µ/i1/2)

No Cooperation (19)

1 ≤ i ≤ 40 41 ≤ i ≤ 80

81 ≤ i ≤ 120

(b) ROC curves for the threeSTAGGER concepts.

Figure 7: Results fromSTAGGER simulation.

15

extensive simulations that the ATC algorithm outperforms the
consensus-based algorithm proposed in [7] when constant step-
sizes are employed. It can be observed from Fig. 5 that the
area under the ROC curve of the ATC algorithm is larger than
that of the non-cooperative, consensus-based, and CTA algo-
rithms. Furthermore, the performance of the ATC algorithm is
seen to approach that of batch processing, especially for small
step-sizes. In Fig. 6b, we see that a constant step-size algorithm
can track a changing optimizer, unlike a diminishing step-size
algorithm such as the one described in [7].

8. Conclusion

We analyzed the generalization ability of distributed online
learning algorithms by showing that constant step-size algo-
rithms can have bounded network excess-risk in non-stationary
environments. We provided closed-form expressions for the
asymptotic excess-risk and showed the advantage of coopera-
tion over networks.

9. Acknowledgments

Partial support for this project was received from the National
Science Foundation grants CCF-1011918 and CCF-0942936.

Appendix A. Comparing Diffusion and Non-Cooperative
Strategies

Appendix A.1. CTA vs. Non-Cooperative Processing

We confine our discussion to the following diffusion models

C = IN, A1 = A, A2 = IN (CTA) (A.1)

C = IN, A1 = IN, A2 = A (ATC) (A.2)

The case of non-cooperating nodes corresponds to the choices:

C = IN, A1 = IN, A2 = IN (non− cooperative processing)
(A.3)

Our objective is to compare the network excess-risk achieved
by the diffusion strategies and the excess-risk achieved when
there is no cooperation between the nodes. We will conduct the
analysis for constant step-sizes in stationary environments. To
begin, we start from (52) and rewrite it as:

E‖w̃i−1‖2T ≈ vec(Y)T(I − F)−1vec(T) (A.4)

where

Y , µ2Rv (A.5)

We now perform the series expansion of (I − F)−1 to get

E‖w̃i−1‖2T ≈ vec(Y)T
∞∑

j=0

F jvec(T)

= vec(T)T
∞∑

j=0

(F j)Tvec(Y)

= vec(T)T
∞∑

j=0

(B j ⊗ B j)vec(Y)

=

∞∑

j=0

vec(T)Tvec(B jY(B j)T)

=

∞∑

j=0

Tr(T TB jY(B j)T) (A.6)

When Assumption 5 holds, we have the weighting matrixT
has the formT = IN ⊗ S whereS , 1

2N∇2J(wo). We can then
simplify the above as:

E‖w̃i−1‖2T ≈
∞∑

j=0

Tr((IN ⊗ S)B jY(B j)T) (A.7)

In addition, with Assumption 5, we haveD = IN ⊗Do for some
M × M matrix Do that is the same for all nodes, then we can
further write:

B = AT
1 ⊗ (IM − µDo) (A.8)

We define the excess-risk for CTA and non-cooperative pro-
cessing as:

ERind , µ2
∞∑

j=0

Tr((IN ⊗ S)B j
indYB

T j
ind) (A.9)

ERCTA , µ2
∞∑

j=0

Tr((IN ⊗ S)B j
CTAYB

T j
CTA) (A.10)

whereBCTA andBind are defined as:

Bind , IN ⊗ (IM − µDo) (A.11)

BCTA , A⊗ (IM − µDo) (A.12)

Noticing thatY is the same for CTA and the individual process-
ing case, we compute the difference in the excess-risk as:

ERind − ERCTA =

µ2
∞∑

j=0

Tr((Bind(IN ⊗ S)BT
ind − BCTA(IN ⊗ S)BT

CTA)Y) (A.13)

We substitute (A.11)-(A.12) into (A.13), and get:

ERind − ERCTA =

µ2
∞∑

j=0

Tr(((IN − A jA jT) ⊗ ((IM − µDo) jS(IM − µDo) j))Y)

(A.14)

SinceS , 1
2N∇2J(wo) is positive-definite, we conclude that

(IM −µDo) jS(IM −µDo) j ≥ 0. Finally, since we assumed thatA
is doubly-stochastic, thenA j is also doubly-stochastic, as well
asA jA jT. Therefore, the matrix (I−A jA jT) ≥ 0 and its eigenval-
ues are in the range [0, 1] [11]. Finally, combining these facts
with the knowledge thatY ≥ 0, we conclude that:

ERCTA ≤ ERind (smallµ, largei, C = IN, 1TA = 1T , A1 = 1)

(A.15)

A similar conclusion holds for ATC. Actually, ATC outper-
forms CTA as well, as we show next.

16

Appendix A.2. ATC vs. CTA
In order to compare ATC to CTA, we continue our assump-

tion that the matrixA is doubly stochastic, but we generalize
our model for CTA and ATC from (A.1) and (A.2) to:

C, A1 = A, A2 = IN (CTA) (A.16)

C, A1 = IN, A2 = A (ATC) (A.17)

where we have modified the model to allow for an arbitrary
right-stochastic matrixC. We continue from (A.6) and rewrite
the network excess-risk at steady-state for both CTA and ATC
as:

ERCTA =

∞∑

j=0

Tr(T TB j
CTAYCTA(B j

CTA)T) (A.18)

ERATC =

∞∑

j=0

Tr(T TB j
ATCYATC(B j

ATC)T) (A.19)

where

BCTA , [IMN − µD]AT (A.20)

BATC , AT[IMN − µD] (A.21)

YCTA , µ2Rv (A.22)

YATC , µ2ATRvA (A.23)

Like the previous section, we assume the same risk function for
all nodes (i.e., Assumption 5 holds) so thatD = IN ⊗ Do and
that the weighting matrixT has the formT = IN ⊗ S where
S , 1

2N∇2J(wo). With the first assumption, we have:

BCTA = BATC = AT ⊗ (IM − µDo) (A.24)

We compute the difference between the excess-risks:

ERCTA−ERATC

=

∞∑

j=0

Tr
((

A j(I−AAT)A jT
)
⊗
(
(IM−µDo) jS(IM−µDo) j

)
µ2Rv

)

We can verify that the above difference is non-negative by not-
ing thatRv > 0 and (IM − µDo) jS(IM − µDo) j is positive-semi-
definite. Moreover,A j(I − AAT)A jT ≥ 0 [11]. Therefore, we
have established, under our assumptions, that

ERATC ≤ ERCTA (A.25)

Therefore, combining this result with the result from the pre-
vious appendix we conclude that for smallµ, largei, C = IN,
1

TA = 1T, andA1 = 1

ERATC ≤ ERCTA ≤ ERind (A.26)

Appendix B. Mean-Square-Error Analysis

We follow the approach of [13] and extend it to handle non-
stationary environments as well. We define the error vectorsat
nodek at timei as:

φ̃k,i , wo
i − φk,i (B.1)

ψ̃k,i , wo
i − ψk,i (B.2)

w̃ f
k,i , wo

i − wk,i (B.3)

We subtract (12) fromwo
i−1 and (13)-(14) fromwo

i using (32) to
get

φ̃k,i−1 =

N∑

ℓ=1

a1,ℓkw̃ f
ℓ,i−1 (B.4)

ψ̃k,i = φ̃k,i−1 + qi + µ

N∑

ℓ=1

cℓk
[∇Jℓ,i−1(φk,i−1) + vℓ(φk,i−1)

]

(B.5)

w̃ f
k,i =

N∑

ℓ=1

a2,ℓkψ̃ℓ,i (B.6)

Using the mean-value-theorem for real vectors (27), we can ex-
press the gradient∇Jk,i−1(φk,i−1) in terms ofφ̃k,i−1:

∇Jℓ,i−1(φk,i−1)=∇Jℓ,i−1(wo
i−1)−

[∫ 1

0
∇2Jℓ,i−1(wo

i−1−tφ̃k,i−1)dt

]
φ̃k,i−1

, −Hℓ,k,iφ̃k,i−1 (B.7)

where we are defining

Hℓ,k,i ,

∫ 1

0
∇2Jℓ,i−1(wo

i−1 − tφ̃k,i−1)dt (B.8)

Notice that∇Jℓ,i−1(wo
i−1) = 0 since the minimizer at timei − 1

is wo
i−1. Substituting (B.7) into (B.5), we get

ψ̃k,i =

I − µ
N∑

ℓ=1

cℓkHℓ,k,i−1

 φ̃k,i−1 + µ

N∑

ℓ=1

cℓkvℓ(φk,i−1) + qi

(B.9)

Appendix B.1. Local MSE Recursions

We now derive the mean-square-error (MSE) recursions by
noting that the squared norm‖x‖2 , xTx is a convex function
of x. Therefore, applying Jensen’s inequality [36, p.77] to (B.1)
and (B.3) we get:

E‖φ̃k,i−1‖2 ≤
N∑

ℓ=1

a1,ℓkE‖w̃ f
ℓ,i−1‖

2, k = 1, . . . ,N (B.10)

E‖w̃ f
k,i‖

2 ≤
N∑

ℓ=1

a2,ℓkE‖ψ̃ℓ,i‖2, k = 1, . . . ,N (B.11)

From (B.9) and using Assumption 2, we obtain

E‖ψ̃k,i‖2 = E‖φ̃k,i−1‖2Σk,i
+ E‖qi‖2 + µ2

E

∥∥∥∥∥∥∥

N∑

ℓ=1

cℓkvℓ(φk,i−1)

∥∥∥∥∥∥∥

2

(B.12)

where we are introducing the weighting matrix:

Σk,i ,

IM − µ
N∑

ℓ=1

cℓkHℓ,k,i


2

(B.13)

17

The matricesΣk,i are positive semi-definite and bounded by:

0 ≤ Σk,i ≤ γ2
k IM (B.14)

where

γk , max



∣∣∣∣∣∣∣
1− µλmax

N∑

ℓ=1

cℓk

∣∣∣∣∣∣∣
,

∣∣∣∣∣∣∣
1− µλmin

N∑

ℓ=1

cℓk

∣∣∣∣∣∣∣

 (B.15)

Now note that the square ofγk from (B.15) can be upper-bounded
by:

γ2
k = max


1− 2µλmax

N∑

ℓ=1

cℓk + µ
2λ2

max


N∑

ℓ=1

cℓk


2

,

1− 2µλmin

N∑

ℓ=1

cℓk + µ
2λ2

min


N∑

ℓ=1

cℓk


2

≤ 1− 2µλminC∗ + µ
2λ2

max‖C‖21 (B.16)

whereC∗ denotes the minimum absolute column sum of the
matrix C. In order to simplify the notation in the following
analysis, we introduce the upper-bound

β , 1− 2µλminC∗ + µ
2λ′ (B.17)

where

λ′ , (λ2
max+ α)‖C‖21 (B.18)

andα is defined in Assumption 2. Also, note that by Lemma 3
from [13], we have:

E

∥∥∥∥∥∥∥

N∑

ℓ=1

cℓkvℓ(φk,i−1)

∥∥∥∥∥∥∥

2

≤ ‖C‖21
[
αE‖φ̃k,i−1‖2 + σ2

v

]
(B.19)

Combining (B.14), (B.19), and (B.12), we obtain for allk =
1, . . . ,N:

E‖ψ̃k,i‖2 ≤ βE‖φ̃k,i−1‖2 + µ2‖C‖21σ2
v + Tr(Q) (B.20)

Appendix B.2. Network MSE Recursions

We now combine the MSE values at each node into network
MSE vectors as follows:

Wi ,
[
E‖w̃ f

1,i‖
2, . . . ,E‖w̃ f

N,i‖
2]T (B.21)

Xi ,
[
E‖φ̃1,i‖2, . . . ,E‖φ̃N,i‖2

]T (B.22)

Yi ,
[
E‖ψ̃1,i‖2, . . . ,E‖ψ̃N,i‖2

]T (B.23)

We can then rewrite (B.10), (B.20), and (B.11) as:

Xi−1 � AT
1Wi−1 (B.24)

Yi � βXi−1 + (µ2‖C‖21σ2
v + Tr(Q))1N (B.25)

Wi � AT
2Yi (B.26)

wherex � y indicates that each element of the vectorx is less
than or equal to the correspondent element of vectory. More-
over, the notation1N denotes the vector with all entries equal to

one. Using the fact that ifx � y thenBx� By for any matrixB
with non-negative entries, we can combine the above inequality
recursions into a single recursion forWi and get:

Wi � βAT
2AT

1Wi−1 + (µ2‖C‖21σ2
v + Tr(Q))1N (B.27)

We now upper-bound the∞-norm (maximum absolute value)
of the vectorWi in order to obtain the scalar-recursion:

‖Wi‖∞ ≤ ‖βAT
2AT

1Wi−1‖∞ + µ2‖C‖21σ2
v + Tr(Q)

≤ β · ‖AT
2‖∞ · ‖AT

1‖∞ · ‖Wi−1‖∞ + µ2‖C‖21σ2
v + Tr(Q)

where‖A‖∞ denotes the maximum absolute row sum of matrix
A. Noting that the matricesA1 andA2 are left-stochastic, we
have that‖AT

1‖∞ = 1 and‖AT
1‖∞ = 1. Therefore,

‖Wi‖∞ ≤ β‖Wi−1‖∞ + ‖C‖21σ2
vµ

2 + Tr(Q) (B.28)

Unrolling (B.28), we get

‖Wi‖∞ ≤ βi‖W0‖∞ +
(
‖C‖21σ2

vµ
2 + Tr(Q)

) i−1∑

j=0

β j (B.29)

References

[1] B. T. Polyak, Introduction to Optimization, Optimization Software, NY,
1987.

[2] V. N. Vapnik, The Nature of Statistical Learning Theory,Springer, NY,
2000.

[3] M. Zinkevich, Online convex programming and generalized infinitesimal
gradient ascent, in: Proc. International Conference on Machine Learning
ICML, 2003, pp. 928–936.

[4] S. M. Kakade, A. Tewari, On the generalization ability ofonline strongly
convex programming algorithms, in: Proc. Neural Information Processing
Systems (NIPS), Vancouver, B.C., Canada, 2008, pp. 801–808.

[5] E. Hazan, S. Kale, Beyond the regret minimization barrier: an optimal
algorithm for stochastic strongly-convex optimization, in: Proc. Confer-
ence on Learning Theory (COLT), 2011, pp. 1–12.

[6] M. Zinkevich, M. Weimer, A. Smola, L. Li, Parallelized stochastic gra-
dient descent, Proc. Neural Information Processing Systems (NIPS) 23
(2010) 2595–2603.

[7] F. Yan, S. Sundaram, S. Vishwanathan, Y. Qi, Distributedautonomous
online learning: Regrets and intrinsic privacy-preserving properties, to
appear in IEEE Transactions on Knowledge and Data Engineering. Also
available as arXiv preprint arXiv:1006.4039v3.

[8] A. Nedic, A. Ozdaglar, Distributed subgradient methodsfor multi-agent
optimization, IEEE Transactions on Automatic Control 54 (1) (2009) 48–
61.

[9] C. G. Lopes, A. H. Sayed, Diffusion least-mean squares over adaptive
networks: Formulation and performance analysis, IEEE Transactions on
Signal Processing 56 (7) (2008) 3122–3136.

[10] F. S. Cattivelli, A. H. Sayed, Diffusion LMS strategies for distributed es-
timation, IEEE Transactions on Signal Processing 58 (3) (2010) 1035–
1048.

[11] A. H. Sayed, Diffusion adaptation over networks, to appear inE-
Reference Signal Processing, R. Chellapa and S. Theodoridis, editors,
Elsevier, 2013. Also available asarXiv:1205.4220v1.

[12] S.-Y. Tu, A. H. Sayed, Diffusion networks outperform consensus net-
works, IEEE Transactions on Signal Processing 60 (12) (2012) 6217–
6234.

[13] J. Chen, A. H. Sayed, Diffusion adaptation strategies for distributed op-
timization and learning over networks, IEEE Transactions on Signal Pro-
cessing 60 (8) (2012) 4289–4305.

[14] X. Zhao, A. H. Sayed, Performance limits of distributedestimation over
LMS adaptive networks, IEEE Transactions on Signal Processing 60 (10)
(2012) 5107–5124.

18

[15] Z. J. Towfic, J. Chen, A. H. Sayed, On the generalization ability of online
learners, in: Proc. IEEE International Workshop on MachineLearning for
Signal Processing (MLSP), 2012, pp. 1–6.

[16] G. Widmer, M. Kubat, Learning in the presence of conceptdrift and hid-
den contexts, Machine learning 23 (1) (1996) 69–101.

[17] H. Ang, V. Gopalkrishnan, W. Ng, S. Hoi, On classifying drifting con-
cepts in P2P networks, in: Proc. ECML PKDD, 2010, pp. 24–39.

[18] K. Crammer, E. Even-Dar, Y. Mansour, J. W. Vaughan, Regret minimiza-
tion with concept drift, in: Proc. Conference on Learning Theory (COLT),
2010, pp. 168–180.

[19] S. Theodoridis, K. Koutroumbas, Pattern Recognition,4th Edition, Aca-
demic Press, MA, 2008.

[20] S. Haykin, Adaptive Filter Theory, 3rd Edition, Prentice Hall, NJ, 2001.
[21] A. H. Sayed, Adaptive Filters, John Wiley & Sons, NJ, 2008.
[22] A. Agarwal, P. L. Bartlett, P. Ravikumar, M. J. Wainwright, Information-

theoretic lower bounds on the oracle complexity of stochastic convex op-
timization, IEEE Transactions on Information Theory 58 (5)(2012) 3235
– 3249.

[23] A. Rakhlin, O. Shamir, K. Sridharan, Making gradient descent optimal
for strongly convex stochastic optimization, in: Proc. International Con-
ference on Machine Learning (ICML), 2012, pp. 449–456.

[24] S. S. Ram, A. Nedic, V. V. Veeravalli, Distributed stochastic subgradient
projection algorithms for convex optimization, Journal ofoptimization
theory and applications 147 (3) (2010) 516–545.

[25] B. Widrow, J. Hoff, M.E., Adaptive switching circuits, in: IRE WESCON
Convention Record, 1960, pp. 96–104.

[26] G. Koop, Analysis of Economic Data, 2nd Edition, John Wiley & Sons,
NJ, 2005.

[27] W. W. S. Wei, Time Series Analysis, 2nd Edition, Addison-Wesley, NY,
2006.

[28] S. Brin, L. Page, The anatomy of a large-scale hypertextual web search
engine, Computer networks and ISDN systems 30 (1) (1998) 107–117.

[29] A. J. Laub, Matrix Analysis for Scientists and Engineers, Society for In-
dustrial and Applied Mathematics (SIAM), PA, 2005.

[30] Pascal Large Scale Learning Challenge, Alpha and Beta datasets,
http://largescale.ml.tu-berlin.de (Jan. 2008).

[31] C.-C. Chang, C.-J. Lin, LIBSVM binary datasets,
http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/binary.html
(Nov. 2011).

[32] M. H. DeGroot, Reaching a consensus, Journal of the American Statistical
Association 69 (345) (1974) pp. 118–121.

[33] R. Fan, K. Chang, C. Hsieh, X. Wang, C. Lin, LIBLINEAR: A library
for large linear classification, Journal of Machine Learning Research 9
(2008) 1871–1874.

[34] J. Schlimmer, R. Granger, Beyond incremental processing: tracking con-
cept drift, in: Proceedings of the Fifth National Conference on Artificial
Intelligence, Philadelphia, Pennsylvania, Aug., 1986, pp. 502–507.

[35] J. Kolter, M. Maloof, Dynamic weighted majority: An ensemble method
for drifting concepts, The Journal of Machine Learning Research 8 (2007)
2755–2790.

[36] S. Boyd, L. Vandenberghe, Convex Optimization, Cambridge University
Press, 2004.

19

	1 Introduction
	2 Problem Formulation and Algorithm
	3 Excess-risk, Weighted MSE, and Main Assumptions
	4 Stationary Environments
	5 Non-Stationary Environments
	6 Simulation Results
	6.1 Stationary Environments
	6.2 Non-Stationary Environments
	6.2.1 Random Walk Rotating Hyperplane - Gradual Concept Drift
	6.2.2 STAGGER Concepts - Instantaneous Concept Drift

	7 General Discussion
	8 Conclusion
	9 Acknowledgments
	Appendix A Comparing Diffusion and Non-Cooperative Strategies
	Appendix A.1 CTA vs. Non-Cooperative Processing
	Appendix A.2 ATC vs. CTA

	Appendix B Mean-Square-Error Analysis
	Appendix B.1 Local MSE Recursions
	Appendix B.2 Network MSE Recursions

