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cycle plant.

This study presents a novel bio-inspired knowledge system, based on closed loop tuning, for calculating
the Proportional-Integral-Derivative (PID) controller parameters of a real combined cycle plant. The aim
is to automatically achieve the best parameters according to the work point and the dynamics of the
plant. To this end, several typical expressions and systems were taken into account to build the model for
this multidisciplinary study. Each of these expressions is appropriated for a particular system. The novel
method is empirically verified under a real case study based on an auxiliary steam system of a combined

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

It is well known that the typical power generation plants are far
from achieving an optimal operating point [40]. Consequently,
these plants are not operating at an optimal point of production in
economic terms. In an effort to reverse this situation a large
number of Combined Cycle Power Plants have been built in recent
years. These new plants allow higher efficiency levels and reduced
pollutant emissions. Compared to traditional power plants, they
guarantee higher efficiency and reduced emissions [41].

However, it is also well known that Combined Cycle Power
Plants experience significant losses of efficiency and are usually
used to control the net frequency [42]. The primary reason for this
is the auxiliary services of the plant, which are not optimized [42].
Recently much research has been made in this field with the aim
to improve this type of power plants and to increase their overall
efficiency [41,42,49-52].

Although the PID controller is one of the most traditional control
mechanisms, researchers are still working with it to improve its
control action and performance [1-4]. While there are several
studies oriented to the same objective, they are always tailored to
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specific systems such as, for example, Robot Fault Diagnosis [2],
speed controller [3] and, mobile robot control [4].

Despite this, there are many controllers operating far below the
most favorable state [7], or general system controllers that are not
self-tuning. Thus it is indispensable to achieve new ways to solve
this problem. In many research studies related to the PID con-
troller, the method followed is to try to obtain the best parameters
according to the system [26-30]. Another way is to achieve self-
tuning controller topologies [4-6].

Rule based systems are models based on the experience of
human experts [43,58]. These experts deduce rules from a system
and structure the rules according to their behavior [43]. These
methods allow the implemented system to emulate the expert's
behavior in a certain field [43,44], and have been one of the most
implemented methods in both research and operation [44]. There
are several examples of those models. For instance [56] combines
both rule based systems and case based reasoning to provide
product design decision support. [57]| shows a rule based system
that complements the Risk Metrics Wealth Bench system for
portfolio optimization with nonlinear cash-flows and constraints.
[58] describes a robust and general rule-based approach to
manage situation awareness. Bio-inspired models are inspired
by nature [45], which can be applied in many systems ranging
from such diverse fields as industry, network security and health-
care [45,53,55]. These models provide a deeper insight of bio-
logical phenomena. Bio-inspired systems provide solutions to
problems that could not be solved satisfactorily by other techniques


www.sciencedirect.com/science/journal/09252312
www.elsevier.com/locate/neucom
http://dx.doi.org/10.1016/j.neucom.2013.01.055
http://dx.doi.org/10.1016/j.neucom.2013.01.055
http://dx.doi.org/10.1016/j.neucom.2013.01.055
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2013.01.055&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2013.01.055&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2013.01.055&domain=pdf
mailto:jlcalvo@udc.es
mailto:jlcalvo@cdf.udc.es
mailto:escorchado@usal.es
http://dx.doi.org/10.1016/j.neucom.2013.01.055

96 J.L. Calvo-Rolle, E. Corchado / Neurocomputing 126 (2014) 95-105

OFFSET

CONTROL l

ERROR
ar CONTROLLER ~ ——

A

SET POINT

LT

SIGNAL +

— 4 — SYSTEM —

Fig. 1. Typical configuration of Relay-Feedback.

[46,47,48]. Some examples of Bio-inspired models are: neural
networks [53], evolutionary systems [54] and the ant colony [55].

The use of rule based systems and Bio-inspired models in a
knowledge system is befitting for solving the control problem of
the auxiliary steam system of a combined cycle plant and improv-
ing the overall efficiency of the power plant.

The novel Bio-inspired Knowledge System (BIOKSY) presented in
this study consists of two phases. The first phase is based on expert
rules [31,32] and the second on a bio-inspired method [33-35]. The
basic element of the model based on rules only contemplates
techniques with a thoroughly tested implantation in the industry.
BIOKSY is based on practical and robust methods [7,12]. There are
several methods and applications that combine rule-based systems
and bio-inspired models. For instance [36] shows an approach that
maps a rule-based system into the neural architecture in both, the
structural and the behavioral aspects. In [37] a medical application
is used to test the behavior of the proposed hybrid systems. [38]
studies an expert system designed to assist managers in forecasting
the performance of stock prices; it was developed to demonstrate
the advantages of this integrated approach and how it can enhance
support for managerial decision making.

Essentially the novel method proposed in this paper achieves
the best tuning parameters of a PID controller to improve a certain
desired specification. Typical results of previous research [9-12]
were taken into account, but it is possible to include any other
method in the model.

The model is verified over the part of the cycle plant that
provides electric power. While many other studies have been
made to improve the operation and the efficiency of this type of
industry [22-25], the objectives in this case are achieved through
control optimization.

This paper is organized as follows. It begins with a brief
description of the general diagram followed by an explanation of
the PID controller format, and a brief review of PID controller
tuning in a closed-loop. BIOKSY is then presented, followed by an
empirical verification made over the auxiliary steam system of a
combined cycle plant. Finally conclusions and future works are
presented.

2. PID controller

A PID controller is a generic control loop feedback controller
widely used in industrial control systems [7]. PID is the most
commonly used feedback controller [8]. Essentially, a PID con-
troller calculates an error value as the difference between the
measured process variable and the desired setpoint [7]. The
controller attempts to minimize the error by adjusting the
process control inputs. The PID controller algorithm involves three

separate constant parameters, and is accordingly sometimes called
three-term control, in reference to the proportional, the integral
and derivative values [10].

2.1. PID controller format

There are several topologies of PID controllers, but this study
employs the standard format presented in Eqs. [(1),(7) and (8)].

t
ut)=K [e(t) + %/ e(tydt + Ty d(ej(tt) 0
iJo

where ‘u’ is the control variable and ‘e’ is the control error given by
‘e=SP—y’ (difference between the setpoint ‘SP’ and conditioned
output ‘y’). The other terms are the tuning controller parameters:
proportional gain ‘K’, integral gain ‘Ti" and derivate gain ‘Td’.

2.2. PID controller tuning in closed-loop

This section presents the PID controller tuning method in
closed-loop. BIOKSY is based on this tuning technique. First of
all, the general procedure to calculate parameters will be pre-
sented, followed by an explanation of the procedure used to obtain
the response characteristics. Finally, typical expressions used to
obtain the PID controller parameters are shown.

2.2.1. General procedure to calculate parameters
Two steps are necessary to obtain the controller tuning para-
meters in closed loop:

® 1st Step. It is necessary to carry the system response to a
permanent state of oscillation, after which certain character-
istics of the response must be measured.

® 2nd Step. According to the information achieved from the plant
response, appropriate expressions must be applied to obtain
correct controller parameters for the desired specifications.

2.2.2. Obtaining the response characteristics in closed-loop

Different methods can be used to obtain the controller para-
meters. BIOKSY uses a relay-feedback method proposed by Astrém
and Hagglud [7]. The results are very similar to those obtained by
the traditional method proposed for Ziegler-Nichols [9], but with
some very important advantages including the fact that the system
operates at a state that is far from unstable, and also the fact that
tuning can be made at any time for any working point.

The implementation scheme of relay feedback is shown in
Fig. 1. A relay with hysteresis centered on the zero value with an
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Table 1
Expressions of controller parameters.

Kp Ti Td Appl. range
Z-N 0.6 x Kc 0.5 x Tc 0.125 x Tc 2 <KKc<20
Z-N Some Owv. 0.33 x Kc Tc/2 Tc/3 2 <KKc<20
Z-N Whitout Ov 0.2 x Kc Tc Tc/3 2 <KKc<20
Tyreus-Luyben 0.45 x Kc 22 xTc Tc/6.3 2 <KKc<20

amplitude d and a hysteresis window of width h is recommended
for the general method.

The system oscillation has a period (Tc) with approximately the
same value as the Ziegler-Nichols method. The critical gain (Kc) of
the process is obtained by using Eq. (2), where a is the peak to
peak value of the oscillation.

4d

TV a2—h2

Ke= )

2.2.3. Obtaining controller parameters with formulas

Controller parameters are obtained with the Tc and Kc character-
istics of the system obtained from the previous step. Many expres-
sions have been developed by different authors [7,9-12] with the
aim of achieving items (Overshoot, peak response, settling time, rise
time and so on) that improve a particular specification of the system
controlled response and make the system more robust to a
particular criteria (Load Disturbance or Set Point Criteria).

There are several studies with different systems which are
carried out under diverse conditions where a lot of expressions
were developed (to reduce noise effect, for slow systems, for
systems with time delay, and so on) [39]. Additionally, control
equipment manufacturers have developed their own expressions
according to their product lines [39].

In this study four methods were taken into account (Table 1):
Ziegler-Nichols [9-11], Ziegler-Nichols some overshoot [9], Zieg-
ler-Nichols without overshoot [9] and Tyreus-Luyben [12]. All of
them are defined for Load Disturbance rejection criteria to reduce
the effect of perturbations [7].

3. Classification techniques considered to complete the model

This section briefly describes the three classification techniques
[16-19] used to complete the novel model:

® Fisher's Linear Discriminant Analysis FLDA [14,15]. This is a
technique for dimension reduction which projects the original
high-dimensional data onto a low-dimensional space, where all
the classes are well separated. FLDA carries out the discrimina-
tion of classes by means of hyperplanes which are derived from
the training data. In the event that there are two classes, the
classification of test vector x is given by projecting x onto the
weight vector w (see Eq. (3)).

¥ =W Xest 3)

A projection that maximizes the class separation for two
classes C; and G, is obtained to find w, given a training set of
data vectors x. A good separation should be given when the
projections of the class involves exposing a long distance along
the direction of w. These projections are given by Eq. (4).

1~y =W (Mg —my) 4

where (u1-1) means the projection and m; represents the mean
vectors of the two classes, and w their projections onto w.
The classification of a test dataset performed by FLDA provides

each sample, first of all, with the projection of the sample onto w
and the class label. The first output corresponds to a gradual
decision and the second to a binary decision. The projection is a
scalar value that gives a measure of the distance in the projection
between the sample and the hyperplane. This distance can be
interpreted as a measure for the distinctiveness of the sample
from samples of the other class. FLDA finds the best separation of
two classes by maximizing the quotient of the class mean
distance and the class variance. To achieve a good separation, it
is desirable to have a large distance between the means.

® |48 learning algorithm [16-18]. The decision tree approach is
one of the most common approaches in automatic learning and
decision [16,17]. The purpose of these decision trees is to
classify the data into different groups, according to the depen-
dent variable [16]. The decision trees were obtained by using
the J48 algorithm [16,19,20]. The J48 algorithm was chosen
because of its better performance in most circumstances [20].
In general terms the decision tree classifier method involves an
entropy calculation. Entropy is the probable information based
on the partitioning into subcategories according to attribute.
The greatest advantage is the purity of the subcategory parti-
tions. The feature with the greatest entropy reduction is chosen
as the test attribute for the present node. Let S be a set made of
s data samples. Assume the attribute has m distinct values
defining m distinct classes: C(for i=1,..., m). Let s; be the
number of samples of S in class C;. The expected information
needed to classify a given sample is given by Eq. (5).

m
I(s1, S2,vves Sm) = — _21 p; log,p; ©)
iZ

where, p; is the probability that a random sample belongs to
Class C; and is estimated by s;/s. Let attribute A have v different
values, {ay, a,,...,a,}. Attribute A can be used for the partition of
Sinto v subsets, {Sy, S...., S,}, where S; covers those samples in
S that have value g; of A.

If A was selected as the test attribute, then these subsets
would correspond to the branches grown from the node
containing the set S. Let s;; be the number of samples of class
G in a subset S;. The entropy is given by Eq. (6).

EA) == 3 Ly Spj o ) LRt 6)
j=

The encoding information that would be gained by branching
on A is presented in Eq. (7).

Gain(A) =1(sq1, Sa,...... ,Sm)—E(A) (7

The method uses gain ratio which applies normalization to
information gain using a value defined in Eq. (8).

Split(S)=— 3 (
i=1

Si|/1S) loga(1Sil/19) ®)

The above value represents the information generated by
splitting the training dataset S into v partitions corresponding
to v outcomes of a test on the attribute A.

The gain ratio is defined as:

Gain Ratio(A) = Gain(A)/Split(S) 9)

The attribute with the highest gain ratio is selected as the
splitting attribute. The non-leaf node of the decision tree
generated is considered a relevant attribute.

® A multilayer perceptron (MLP) [21] is a feed forward artificial
neural network [16,18] characterize by its robustness and
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Fig. 2. System overview with a PID controller based on BIOKSY.
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parameters.

The novel Bio-Controller is based on the traditional PID con-
troller in standard format, and its tuning is based on the closed-
loop method, specifically the relay-feedback technique. Conse-
quently, it is more applicable in many types of cases than other
methods [9]. The obtained model is shown in Fig. 3, where there is
one part based on the use of rules (Part I) and another based on
artificial neural networks (ANN) (Part II).

5. BIOKSY

BIOKSY consists of a rigorous and explicit description of the
domain knowledge of the controller. It is a fusion between rules
and bio-inspired techniques.

The general conceptual diagram of BIOKSY (see Fig. 4) is
divided into three different blocks:

® Knowledge of existing rules. The aim of this block is to organize
different rules for application ranges, authors expressions,
criterions, and so on.

® Traditional knowledge link with new bio-inspired knowledge.
This part is the link between the other two blocks through
which information will be interpreted by the third block.

® Bio-inspired knowledge to complete the model. This block
selects the most appropriate expressions to obtain the con-
troller tuning parameters.

In general terms, BIOKSY will select the best tuning parameters,
according to the system and the desired specifications of
operation.

The next two subsections present the simplified bio-knowledge
model. The first shows the knowledge representation corresponding

Fig. 3. Model final structure.

Bio-Inspired Knowledge System
BIOKSY

Traditional
knowledge link with
new bio-inspired
knowledge

Bio-inspired

knowledge to

complete the
model

Knowledge of
existing rules

Fig. 4. Bio-Inspired Knowledge System (BIOKSY).

to the first two blocks explained before. The second gives details
about the third block ‘Bio-inspired knowledge to complete the
model’.

5.1. First block of the knowledge representation

A flow chart is obtained as a result of the different methodol-
ogies of PID controller tuning in closed-loop (shown in Fig. 5).
Many PID tuning rules in open loop were considered in the
creation of this diagram, with the aim of achieving a generalized
knowledge of the field. The following paragraphs explain the
flowchart in greater details.

PID tuning in closed loop is only possible if the plant engineer
can set the system operation to sustained oscillation. For this
reason the flowchart starts with this premise. As explained in
Section 4, there are several techniques to perform PID controller
tuning in closed loop. The Relay-Feedback method is the most
robust, and has achieved the best results. It is then necessary to
find out if the system can achieve sustained oscillation. If it is not
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Fig. 5. Flowchart corresponding with the first part of knowledge representation.

possible, then tuning in closed loop cannot be applied. Otherwise,
with the system in this state it is necessary to calculate the Tc and
Kc parameters.

By knowing the Tc and Kc (see PID controller, Section 2) values
it is possible to obtain the K.Kc indicator, where K is the gain of the
process. This indicator, among others, defines the best expressions
to achieve the desired operation as the result of the system.

The next step in the flowchart is to determine if the KKc
indicator value is in the range of 2 < KKc < 20. If it is within this
range, then in order to fix BIOKSY all the systems that are not
within this range must be discarded [7]. If these conditions are
met, then it is possible to use the bio-inspired knowledge Model 1
(see Fig. 5).

If the K.Kc indicator is out of range, the model must be able to
know if the value is infinite or not. Then it is possible to follow the
flowchart in two ways:

® When K.Kc is not infinite, the operator must decide if they will
nevertheless use all the expressions. If not, closed loop tuning is
not applicable for the expressions being considered. Otherwise

it is possible to use the bio-inspired knowledge model 2 (see
Fig. 5).

® When K.Kc is infinite, the operator must find out if the system
is unstable. If it is unstable, then closed loop tuning is not
applicable. This means that the system has an integrator in its
transfer function. In this case it is possible to use the bio
knowledge model 3 (see Fig. 5).

5.2. Bio-inspired knowledge to complete the model

As shown in Fig. 5, in addition to the organization's set of rules,
there are three blocks corresponding to the bio-inspired knowl-
edge models (1, 2 and 3). Three techniques were applied to create
these blocks: rules without applying machine learning methods,
tree decision models, and artificial neural networks. The formula-
tion of the model is described in the following paragraphs.

Model input. As seen in the flowchart (Fig. 5) and its corre-
sponding description, the K.Kc. is a very important indicator, as it
defines, for example, the application range of expressions. In all
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bio-inspired knowledge models created, K.Kc was used as the
input that defines the system type. Thus, KKc defines the system
dynamics and consequently its controllability.

Dataset for model creation. As in other studies, it is necessary to
incorporate representative systems with the objective of general-
izing the model as much as possible. For this reason, this study is
based on the research done by Astrom and Hagglund [13]. Their
research includes a list of very representative systems, all of which
behave similarly. Table 2 shows a list of systems included in [13]
where it is possible to obtain K.Kc. In total, their study covers 32
such systems. The systems have been ordered for K.Kc value from
the highest to lowest values.

As shown in Table 2, the K.Kc values of the first systems are
very close; however the last systems have widely separated values.
As a result, many systems were created to solve the problem, and
in so doing, a delay time is added to the first and second order
systems with Pade approximation [7]. Thus, a difference in the K.
Kc values between consecutive systems of less than one is
achieved. Finally there are 1704 systems that were used to obtain
the model. The obtained systems are balanced by controller
parameters expressions.

System specifications for each expression. Each system is tuned
with the four expressions identified in Table 1. Four specifications
are then tested in all cases for the step input: response time (Tr),
settling time (T5), overshoot (Ov) and peak time (Tp). As a result, it
is possible to obtain the expression that gives the best specifica-
tion value. Table 3 shows examples of some of the systems from
Table 2 with the best specifications values for step input. The
expression used to achieve this result is specified in brackets,
according to the following legend: Z&N (Ziegler-Nichols), Z&N
wOv (Ziegler-Nichols Whitout Overshoot), Z&N sOv (Ziegler-
Nichols some Overshoot), T&L (Tyreus-Luyven).

Classification results: a model was created for each specification
(response time, settling time, overshoot and peak time). Each of
the sets of expressions is a class:

Class A: Z-N.

Class B: Z-N Some Ov.
Class C: Z-N Whitout Ov
Class D: Tyreus-Luyben

Five parameters were used to measure performance: Sensitiv-
ity (SE), Specificity (SPC), Positive Prediction Value (PPV), Negative
Prediction Value (NPV) and Accuracy (ACC) (as listed in Eq. (10) to
(14) respectively).

TP

SE= PN (10
SPC = % a1
PPV = % 12)
NPV = % (13)
ACC— TP+ TN (14)

(TP + TN + FP + FN)

where TP is the number of True Positive, TN is the number of True
Negative, FN is the number of False Negative and FP is the number
of False Positive.

Table 2
Values for the KKc indicator in representative systems (G1, c6, ..., F).

System KKc System KKc

1 G1 0.44 17 A2 4

2 C6 0.5 18 B4 4

3 5 1.1429 19 c2 5

4 E3 1.5377 20 G3 5.24

5 E2 1.6422 21 C1 6.1585

6 D3 1.7071 22 B3 6.7510

7 D2 1.7972 23 Al 8.0011

8 G2 1.8812 24 D6 8.8672

9 A3 1.884 25 E5 9.7963
10 D1 1.9052 26 G4 11.2414
1 E1l 1.9052 27 E6 16.818
12 E4 1.9317 28 D7 17.5578
13 C4 2 29 B2 30.2375
14 D4 2 30 E7 35.1592
15 c3 32 31 B1 1101
16 D5 3.8891 32 F 167.7135

Table 3
Best specifications values with tuning expressions examples.

System Tr Ts

G1 24.45 (Z&N) 48.18 (Z&N)
C6 0.44 (Z&N wOv) 48.95 (Z&N)
C5 7.92 (Z&N) 19.03 (Z&N)
D2 0.77 (Z&N) 5.58 (Z&N)
G2 1.05 (Z&N) 9.29 (Z&N s0v)
A3 4.01 (Z&N) 32.75 (Z&N)
E4 0.85 (Z&N) 7.56 (Z&N)
B2 0.12 (Z&N) 0.9 (T&L)

E7 2.05 (Z&N) 19.75 (T&L)
B1 0.04 (Z&N) 0.33 (T&L)

F 0.13 (Z&N) 1.29 (T&L)
System Ov Tp

G1 0 (Z&N wOv) 131.21 (Z&N)
C6 0 (Z&N wOv) 2.81 (Z&N s0v)
Cc5 0 (Z&N wOv) 110 (Z&N)
D2 0 (Z&N wOv) 2.04 (Z&N)
G2 0 (Z&N wOv) 4.71 (Z&N)
A3 0 (Z&N wOv) 9.75 (Z&N)
E4 0 (Z&N wOv) 2.25 (Z&N)
B2 10.062 (Z&N wOv) 0.34 (Z&N)
E7 14.3172 (Z&N wOv) 6.34 (Z&N)
B1 20.9154 (Z&N wOv) 0.12 (Z&N)

F 13.2937 (Z&N wOv) 0.36 (Z&N)

6. Areal case study: physical description of the auxiliary steam
system of a real combined cycle plant

The aim of this research is to control the auxiliary steam of a
real combined cycle plant (Fig. 6), whose goal is to supply sealed
steam to both the main turbine and the degasser condenser
(bubbling steam).

Fig. 6 shows the physical system where the novel method is
applied to improve the control tuning. It is applied where the
water supply takes place, with the fluid degassing in order to
prevent an excess of non-condensable fluid within the system,
which could eventually impair the functioning of the installed
system. The tank is relatively small, considering the real require-
ments of the process. Occasionally the system becomes unstable
due to its limited size. This is a very good example of where the
optimal parameters for the controller would be necessary, as they
would make it possible to improve the system's performance.

The general layout of the process is shown in Fig. 7. As shown,
the scheme is divided into four phases. These subparts of the
system will be explained on the following sections.



J.L. Calvo-Rolle, E. Corchado / Neurocomputing 126 (2014) 95-105 101

Phase 1 - Supply of water into the degasser vessel. In this phase,
the demineralized water goes into the system. First, the water is
strained through a strainer. Control of the level in the degasser

Fig. 6. General System Control Layout and physical component to which BIOKSY is
applied.

takes place by means of a throttle valve, which increases or
decreases the flow of demineralized water.

Phase 2 - Degasser vessel. For the process at the lower side of
the column a counter-current flow provides saturated steam.
Saturated steam flows counter-current against the demineralized
water due to the specially designed blades and diaphragms inside
the degasser. This allows non-condensable particles to be removed
and released out to the atmosphere at the top of the degasser.
Inside the degasser, low pressure is monitored at the bottom,
while pressure and heat are controlled at the top.

Phase 3 - Saturated steam supply to degasser and to deminer-
alized water tank. Steam is conveyed to two different locations of
the plant. One part of the saturated steam is piped to the water
supply storage tank. The function of this tank is to heat the lowest
part of the water in order to initiate degasification when starting
up the plant.

The other part of the saturated steam is conveyed to the lower
end of the degasser, as shown in the above sketch. The flow in this
line can be controlled by a valve; usually an opening is set for the
maximum flow of demineralized water allowed into the circuit.

Phase 4 - Water supply storage tank. This stage of the process
corresponds to the storage of the treated water used to supply
the auxiliary boiler of the combined cycle installation. In order
to simplify this explanation, the process at this phase can be
separated as follows:

ATM
D)
Phase 1 { XPhase 2
/j‘\
[peminertzes v - PR i
ATM
G | Phase 3
N‘D%ﬂ;\%l Saturated steam ‘
q - Pump ‘
X minimum flow
{ Tk 8 7
5 . A
O [
: . [R]
£
’ Phase 4

Fig. 7. General System Control Layout.
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® [ntake - On top of the tank where the supply of demineralized
water is located, which no longer includes incondensable
particles.

® Qutlet — At the bottom of the tank, treated water is pumped
through a valve by the supply pumps to the auxiliary boiler in
order to produce steam, which will be used later to seal the
main turbine, or by the degasser to degasify.

® To ensure water level control there is a level transmitter that
monitors the tank level.

® The remaining components are fundamental for the mainte-
nance of different available sensors.

N

. Results
7.1. Knowledge model classificators

This section shows the results corresponding to the classifiers
created by the Bio-inspired Knowledge to complete the model
explained above.

In all cases the k-fold cross-validation was used to split the
dataset into a reasonable value that obtains good results. The k
value is 10 for all models. For the first classification method, there
is a linear discriminant analysis. For the decision tree classification
the algorithm chosen is 48, which contains the following config-
uration parameter values: the confidence threshold for pruning is
0.25 and the minimum number of instances per leaf is 2. In the
case of the MLP, tests were performed with 2 and 3 hidden layers,
with best results obtained for the second value. The number of
neurons in the hidden layer is within the range of 10-15. The
activation functions tested in the hidden layer are linear, the log
sigmoid and the tangent sigmoid (see Table 4). The best results
were achieved with the tangent function, whose error rate is less
than that of the other activation functions. The activation function
of the output layer is the log sigmoid. The Winner Take All (WTA)
technique is used to obtain the class provided by the MLP output.

Table 5 shows the percentage of correct classification using the
previously mentioned techniques for the three Knowledge Models.

As can be seen in Table 5, a total of 602 systems were used for
the knowledge “model 1”7, with an equal number of cases for each
type of expression. However for the other two models (knowledge
models 2 and 3) all systems were taken into account. The

Table 4
Comparision between activation function of mlp.

Response Time (Tr)

Model data Linear Logsig Tansig
Err(%) No Ne. Err(%) NoNe. Err(%) No Ne.
Knowledge model 1 38 1 31 12 4 13
Knowledge model 2 35 1 36 1 5 12
Knowledge model 3 41 12 32 12 8 12
Settling time (T5s)
Knowledge model 1 39 12 35 14 7 1
Knowledge model 2 41 13 36 12 8 12
Knowledge model 3 40 14 38 13 8 12
Overshoot (Ov)
Knowledge model 1 35 12 33 13 6 14
Knowledge model 2 39 12 36 12 7 14
Knowledge model 3 40 13 37 12 9 13
Peak time (Tp)
Knowledge model 1 45 12 36 13 12 14
Knowledge model 2 40 12 38 11 10 15
Knowledge model 3 42 12 38 13 11 14

Table 5
Percentage of correct classification for three Knowledge models.

Response time (Tr)

Model data Training data Classification method
LDA J48 MLP

Knowledge model 1 602 72 85 96

Knowledge model 2 1786 74 87 95

Knowledge model 3 1786 75 20 92

Settling time (Ts)

Knowledge model 1 602 70 81 93

Knowledge model 2 1786 69 83 92

Knowledge model 3 1786 65 84 92

Overshoot (Ov)

Knowledge model 1 602 69 80 94

Knowledge model 2 1786 72 83 93

Knowledge model 3 1786 72 81 91

Peak Time (Tp)

Knowledge model 1 602 70 85 88

Knowledge model 2 1786 71 78 90

Knowledge model 3 1786 73 81 89
Table 6

Confusion matrix for classification rate of response time of Knowledge model
2 using lda.

Desired method Method chosen by model

A B C D
A 209 86 81 72
B 79 221 79 53
C 80 85 210 79
D 83 65 90 214
TP 209 221 210 214
TN 1096 1118 1082 1130
FP 242 236 250 204
FN 239 21 244 238
SE 0.467 0.512 0.463 0.473
SPC 0.819 0.826 0.812 0.847
PPV 0,463 0,484 0,457 0,512
NPV 0.821 0.841 0.816 0.826
ACC 0.731 0.750 0.723 0.753

difference between the number of systems of knowledge model
1 and Knowledge models 2 and 3 is due to the fact that model 1 is
created only with systems where parameter K.Kc is in the range of
2 <KKc <?20.

For all the cases listed in Table 5, the best configuration for each
technique used was selected. To accomplish this, the confusion
matrix was created in each case, comparing the desired method to
the method chosen by the model. For each confusion matrix, the
parameters are obtained correspond to Eqgs. (10-14), which mea-
sure the classification quality. Table 5 is a summary of all
classification models created where the accuracy parameter is
shown. As shown in the table, the best classifications in all cases
are achieved with an MLP model. The Response Time for Knowl-
edge Model 2 is tested for the following techniques: LDA, ]J48
Decision Tree and MLP respectively and, is shown in Tables 6-8 as
an example.

7.2. Control description and practical behavior of the proposal onto
the described plant

The method was implemented in the manufacturer's software.
It should be noted that this is relatively difficult because the
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software is very closed to modifications. Some tests were made,
with the aim of checking the behavior of the novel model. One of
the tests is described below.

As the software is very closed, the first step to obtain the
response characteristics in closed-loop was performed manually.
The relay feedback method, which was implemented by a human
operator, centered on 800 mm of liquid level without a hysteresis
window because the system is very slow. When the level exceeds
800 mm (tuning working point) the operator closes the valve (0%),
and when the level is lower than 800 mm the operator opens
the valve (100%). Fig. 8 shows the system when oscillation is in a

Table 7
Confusion matrix for classification rate of response time of knowledge model
2 using J48 decision tree.

Desired method Method chosen by model

A B C D

A 339 46 32 31

B 21 343 40 28

C 38 44 316 56

D 49 45 50 308
TP 339 343 316 308
TN 1230 1219 1210 1219
FP 108 135 122 115
FN 109 89 138 144
SE 0.757 0.794 0.696 0.681
SPC 0.919 0.900 0.908 0.914
PPV 0.758 0.718 0.721 0.728
NPV 0.919 0.932 0.898 0.894
ACC 0.878 0.875 0.854 0.855

Table 8
Confusion matrix for classification rate of response time of knowledge model
2 using mlp.

Desired method Method chosen by model

A B C D
A 420 10 13 5
B 12 399 9 12
C 14 25 393 22
D 20 19 26 387
TP 420 399 393 387
TN 1292 1300 1284 1295
FP 46 54 48 39
FN 28 33 61 65
SE 0.938 0.924 0.866 0.856
SPC 0.966 0.960 0.964 0.971
PPV 0.901 0.881 0.891 0.908
NPV 0.979 0.975 0.955 0.952
ACC 0.959 0.951 0.939 0.942

815 -

steady state (X-axis shows the time variable and Y-axis is the
level variation for the oscillation steady state). This is the appro-
priate time to measure Tc and a parameters in order to calculate
Kc (Tc=2 min and a=19-Kc=6.7). Then the KKc indicator is
obtained in order to apply it as an input to the model (K.Kc=0.8 x
6.7=5.36).

The response of the system under these conditions is shown in
Fig. 9. The novel proposal is able to obtain the correct expressions for
the KKc value. With the selected expressions, the PID parameters
(K, Ti and Td) are calculated and are then programmed on the
controller. At KKc=5.36, if the operator needs to improve the
overshoot, the model indicates that the operator must use the
Tyreus-Luyben expressions. The PID parameter values using these
expressions are: K=3, Ti=4.4 and Td=0.3. The system response
with a step input for the work point of the design is shown in Fig. 9.
Fig. 10 shows the response with a step input for a traditional
Ziegler-Nichols method in closed loop. The X-axis for Figs. 9 and
10 shows the time variable and the Y-axis shows the level of the
plant tank. In both cases the dotted line shows the set point for the
desired level, and the thick line shows the system response. As seen
in these figures the best expressions were chosen to achieve the best
overshoot between the expressions considered in the study. In both
cases (Figs. 9 and 10) different set-points were programed, and as
shown in each case, the selected method has a good performance.

Table 9 shows the best method selected for the model to
improve the specification, and the values of the specification in
each case. The first columns show the specification that the user
attempts to improve. The second column shows the method
chosen by the model to improve the specification of the first
column. Finally the third column shows the value of the specifica-
tion for the case being contemplated.

8. Conclusions

The novel Bio-inspired Knowledge System (BIOSKY) was pre-
sented in this study. It was successfully tested with a practical
application on a real combined cycle plant with a problematic
control loop where a PID controller is used. It is often the case that
when no specific purpose control system is implemented, the
control loop is programmed in a general form regardless of the
final application. Consequently, the system provider only includes
a set of parameters for the controller for the entire operating range
and for different systems. For the case study in which the
parameters were programmed by the provider, the plant tank
level goes to oscillation state frequently. Independently of the
system type, the greatest advantage offered by the method is that
it ensures the most appropriate selection of the expressions
needed to calculate the PID controller parameters and to improve
a selected specification of the process. Good results were obtained
in the performed tests, compared to the results achieved with
typical expressions employed with PID controllers.
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Fig. 8. System response for relay feedback centered on 800 mm of level.
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Fig. 9. System response with Tyreus-Luyben method chosen from the model.
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Fig. 10. System response with traditional Ziegler-Nichols method in closed-loop.

Table 9
Methods selected for the model for each specification and its values.

Specification to
improve

Method chosen by model Specification

value

Response time (Tr)
Settling time (Ts)
Overshoot (Ov)
Peak time (Tp)

Z&N (Ziegler-Nichols) - Class A 1 min and 02 s
T&L (Tyreus-Luyven) - Class D 5 min and 56 s
T&L (Tyreus-Luyven) - Class D 12%

Z&N sOv(Ziegler-Nichols some 1 min and 53 s
Overshoot) - Class B

It should be noted that the novel model is easy to expand to
other system types. It is only necessary to consider the new systems
that were not taken into account when creating the Bio-inspired
Knowledge models. The rest of the model is completely valid.

With the aim of comparing and making the model more robust,
several techniques were taken into consideration: LDA, decision
trees J48 and MLP. It was shown that the MLP performed better
than the other models.

Several future lines of research have been considered, two of
which are of particular importance. Firstly it is necessary to consider
other bio-inspired and intelligent techniques to improve the model
despite the very good results that have been already obtained.
Another research line will involve testing the response of non-
typical industrial plants when using the new proposed system.
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