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a b s t r a c t

Analyzing microarray data represents a computational challenge due to the characteristics of these data. Clustering 
techniques are widely applied to create groups of genes that exhibit a similar behavior under the conditions tested. 
Biclustering emerges as an improvement of classical clustering since it relaxes the constraints for grouping genes to 
be evaluated only under a subset of the conditions and not under all of them. However, this technique is not 
appropriate for the analysis of longitudinal experiments in which the genes are evaluated under certain conditions at 
several time points. We present the TriGen algorithm, a genetic algorithm that finds triclusters of gene expression that 
take into account the experimental conditions and the time points simultaneously. We have used TriGen to mine 
datasets related to synthetic data, yeast (Saccharomyces cerevisiae) cell cycle and human inflammation and host 
response to injury experiments. TriGen has proved to be capable of extracting groups of genes with similar patterns in 
subsets of conditions and times, and these groups have shown to be related in terms of their functional annotations 
extracted from the Gene Ontology.

1. Introduction

The use of high throughput processing techniques has revolu-
tionized the technological research and has exponentially 
increased the amount of data available [11]. Particularly, micro-
arrays revolutionized biological research by its ability to monitor 
changes in RNA concentration in thousands of genes simulta-
neously [7].

A common practice when analyzing gene expression data is to 
apply clustering techniques, creating groups of genes that exhibit 
similar expression patterns [31]. These clusters are interesting 
because it is considered that genes with similar behavior patterns 
can be involved in similar regulatory processes [34]. Although in 
theory there is a big step from correlation to functional similarity 
of genes, several articles indicate that this relation exists [10]. 
Traditional clustering algorithms work on the whole space of data 
dimensions examining each gene in the dataset under all condi-
tions tested.

Applying clustering algorithms on gene expression data usually 
does not provide the best results. Much of the activity patterns of 
gene groups are only present under a particular set of experi-
mental conditions. Actually, the available knowledge on cell

processes suggests that, while a subset of genes is co-regulated
and co-expressed under particular experimental conditions, under
different conditions these genes can show independent behavior.
Discovering this local behavior patterns can be the key to discover
gene pathways, which could be hard to discover in other ways.
For this reason, the paradigm of clustering techniques must
change to methods that allow local pattern discovery in gene
expression data [6].

Biclustering addresses this problem [16] by relaxing the con-
ditions and by allowing assessment only under a subset of the
conditions of the experiment, and it has proved to be successful in
finding gene patterns [21]. However, clustering and biclustering
are insufficient when analyzing data from microarray experiments
where attention is drawn on how time affects gene's behavior [13].
There is a lot of interest in this type of longitudinal experiments
because they allow an in-depth analysis of molecular processes in
which the time evolution is important, for example, cell cycles,
development at the molecular level or evolution of diseases
[4]. Therefore, the use of specific tools for data analysis in which
genes are evaluated under certain conditions considering the time
factor becomes necessary. In this sense, triclustering appears as
a valuable tool since it allows for the assessment of genes under a
subset of the conditions of the experiment and under a subset of
time points.

Biclustering is known to be a NP hard problem [35] and
therefore many proposed successful biclustering algorithms are
based on heuristics [3,25]. Since the computational complexity of
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triclustering is greater than the biclustering one, heuristic based
algorithms are a good approximation for triclustering.

In this context, triclustering algorithms appear as a way to find
genes of similar expression profiles along a segment of time series
in a subset of conditions. We define a coherent tricluster as a set of
genes which exhibits either similar numeric values for the times
and conditions (coherent values [21]) or similar behaviors regard-
less of the exact numeric values: correlated positive and negative
changes in the expression values (coherent behavior [21]). Both
types of coherent clusters may contain information useful to
identify useful phenotypes, potential genes related to these
phenotypes and their regulation relations [36].

We present the TriGen (Triclustering-Genetic based) algorithm
based on an evolutionary heuristic, genetic algorithms, which
finds groups of pattern similarity for genes on a three dimensional
space, thus taking into account the gene, conditions and time
factor. Although many clustering and biclustering models define
similarity based on distance functions [12,37], these functions are
not always adequate to capture similarities among genes, since
correlations may still exist among a set of genes which are
expressed at different levels of magnitude. Therefore we propose
two different evaluation functions: the first one finds triclusters of
coherent values and is based on a three dimensions adaptation of
the Mean Square Residue measure (MSR) which is a classic
biclustering distance measure for gene expression analysis [9],
the second one is a correlation measure that identifies triclusters
of coherent behavior based on the least square approximation
(LSL) which calculates the distances among the slopes of the least
square lines from a tricluster.

We show that the results obtained from applying the TriGen
algorithm to a synthetic dataset and two real ones: the yeast cell-
cycle regulated genes [33] and the human immune response to
inflammation and host response to injury [8] both for coherent
values and behaviors of the genes (MSR and LSL evaluation
functions respectively). An early version of TriGen was presented
in [14]. The algorithm has been improved by adding a new
correlated based evaluation function fLSL. It has been re-executed
on the already used datasets, providing new improved results, and
a new dataset related to human inflammation and host response
to injury has been used. A validation step has been added to the
methodology, based on the Gene Ontology project, providing
functional annotations for the genes.

The rest of the paper is structured as follows. A review of the
latest related works can be found in Section 2. Section 3 describes
the methodology of the TriGen algorithm, including a detailed
description of the genetic operators used and the two fitness
functions. In Section 4, we show the results of applying TriGen to
the synthetic dataset, the yeast cell cycle and the inflammation
and the host response to injury problems. Section 5 shows the
conclusions.

2. Related works

This section is to provide a general overview of recent works in
the field of gene expression time series data. In particular, those
focused on the application of triclustering. Despite the vast variety
of (bi)clustering methods existing, there is no one apparently
capable of extracting meaningful information from a wide range of
gene expression temporal data. On the contrary, the use of
triclustering seems to be the most suitable strategy due to its
ability to deal with the third dimension: The time.

In 2005, Zhao and Zaki [41] introduced the triCluster algorithm
to extract patterns in 3D gene expression data. They also presented
a set of metrics to assess its quality and tested the approach on real
microarrays. An extended and generalized version (g-triCluster)

was published one year later [18]. The generalization claimed by
the authors was based on the discovery of more coherent
triclusters and on its robustness to noise.

Although this algorithm was able to successfully discover such
patterns, the authors in [1] addressed the existing problem
associated with its NP-completeness. To overcome this drawback,
they proposed a parallelized version using the filter-labeled-
stream paradigm, exhibiting great improvement in terms of
computational cost.

A new definition for coherent triclusters focused on finding
regulatory relationships among genes can be found in [40]. The
algorithm was applied on both synthetic and real data. Later on
[38], the authors proposed an enhanced model to retrieve time-
delayed clusters. The novelty lied on the discovery of gene
expression cycle time, essential task to create gene regulatory
networks.

Another approach, LagMiner, was introduced in [39] to find
time-lagged 3D clusters. The highlighting feature claimed by the
authors was, this time, its ability to discover triclusters satisfying
the constraints of coherence, regulation, minimum gene number,
sample subspace size and time period length. As for previous
works, it was evaluated on both synthetic and real-life datasets.

The evolutionary computation has also been used in the search
for triclusters. Particularly, a multi-objective algorithm that simul-
taneously optimizes several conflicting requirements was pre-
sented in [19]. Again, the algorithm was tested on real datasets.

A new strategy to mine 3D-clusters in real-valued data was
introduced in [32]. In particular, the authors were concerned about
discovering subspaces with a significant number of items, one of
the main drawbacks typically found in tricluster-based approaches.
The authors applied its methodology to a large number of synthetic
datasets and, additionally, to a real-world case study. At the same
conference, another approach focused on a triclustering method to
mine quantitative data was presented [17]. However, the main
concern of the authors was, this time, to discover triclusters with
low variance. Their approach was successfully tested on a synthetic
dataset and on a cross-species genomic dataset, yielding new
insights on this topic.

The work in [20] introduced a tricluster-based approach to
discover temporal dependency association rules in microarray
datasets. The rules obtained are to represent regulated relations
among genes.

Finally, a brief survey on triclustering applied to gene expres-
sion time series was published in 2011 [22]. It provides a good
starting point for those researchers novel in this topic.

3. Methodology

In this section, we describe the implementation of the TriGen
algorithm, our proposal to mine three dimension gene expression
data. The evolutionary process is shown in detail: all the operators
involved as well as the fitness functions used on the evaluation step.

A tricluster TC is as a subset from a dataset D which contains
information related to the behavior of some genes GD at a set of
times TD under a set of conditions CD. The tricluster TC is formally
defined as TC ¼ T � C � G where TDTD, CDCD and GDGD. Qua-
litatively, a tricluster TC will provide information on the pattern of
behavior of a subset of genes under certain conditions and at
certain time points.

TriGen is based on a genetic algorithm. This evolutionary process
has several steps (see Fig. 1): an initialization step in which the initial
population will be created taking into account overlapping with
previously found triclusters; an evaluation step in which the quality
of each individual will be measured; a selection step, which serves to
decide which individuals will survive to the next generation;



crossover, which creates the necessary connections between pairs of
individuals to share new genetic material and, finally, mutation,
which performs punctual changes to individuals to ensure genetic
variability of future generations. We now describe each of these
operators.

3.1. Codification of individuals

Each individual of the population represents a tricluster TC
which is a potential solution. It contains genetic material that will
be manipulated by the genetic operators described below. The
genetic material is structured as follows. An individual is com-
posed of three sequences of structures: one for the sequence of
genes G from the input dataset D, one for the sequence of
conditions C, and one sequence of time points T. These sequences
are set up based on the input matrix, that is

G¼ 〈gi1 ; gi2 ;…; giB 〉 ð1Þ
where B is the number of genes listed in the input matrix, ijo ijþ1

for all genes, and 1o ijoB.
Analogously:

C ¼ 〈ci1 ; ci2 ;…; ciL 〉 ð2Þ
where L is the number of conditions listed in the input matrix,
ijo ijþ1 for all conditions, and 1o ijoL.

Finally, T represents different time stamps or values of pairs
gene-condition at different times:

T ¼ 〈ti1 ; ti2 ;…; tiM 〉 ð3Þ
where M is the number of samples measured over time, and
ti1 oti2 o⋯otiM .

The algorithm's population is made up of several individuals, as
depicted in Fig. 2.

3.2. Generation of initial population

The initial population is randomly generated. Part of the
individuals are purely random generated, this is, a random subset
of genes, conditions and times TC ¼ T � C � G are assigned. The
rest of the individuals are also randomly generated but attending
to some considerations to promote visiting of non-explored areas
and visiting the widest area possible of the dataset D. For this
purpose, each time a new solution tricluster TC is generated, the

coordinates of its genes G, conditions C and times T are stored.
These new individuals will be created by a random subset T � C �
G which had not appeared in the previous solutions.

3.3. Crossover operator

Two individuals (parents, P1 and P2) are combined to create two
new individuals (offsprings, O1 and O2). They are chosen based on
a probability of crossover parameter, denoted by pc. Their genetic
material is combined by a random one-point cross in the genes G,
conditions C and times T and mixing the coordinates in both
children.

Formally, let be P1
i and P2

i parents #1 and #2 at iteration i. The
resulting offspring at this iteration is

fOi
1;O

i
2g ¼ fC;G;T ðPi

1; P
i
2Þ ð4Þ

where f is the function than randomly selects a subset of ðC;G; TÞ
from parents P1

i and P2
i at iteration i, given a probability of

crossover pci. The whole procedure is illustrated in Fig. 3.

Fig. 2. Genetic algorithm codification.

Fig. 3. Representation of the crossover operator.

Fig. 1. TriGen algorithm.



The procedure can be formalized as follows. Let S1 ¼ 〈gi1 ;…; gim 〉
and S2 ¼ 〈g′j1 ;…; g′jn 〉 be two sequences of genes, where gik ; gjl AG,
i1o⋯o im, j1o⋯o jn and m;noB.

Let p be a number randomly chosen from 1 and minðm;nÞ. The
new two individuals or children are formed as follows:

O1 ¼ 〈gi1 ;…; gip ; g
′
jpþ 1

;…; g′jn 〉 ð5Þ

O2 ¼ 〈g′j1 ;…; g′jp ; gipþ 1
;…; gim 〉 ð6Þ

Note that after the creation of both offsprings, the elements
must be reordered since positions jl may not be necessarily greater
than positions ik and viceversa. Additionally, both S1 and S2 may
share any gene, as they are randomly formed from the input
matrix. Should it be the case, repeated elements must be removed
from O1 and O2. Therefore, the number of genes composing O1 may
eventually be less than n and the number of genes in O2 could be
less than m.

The full process is analogously performed for conditions and
time stamps.

3.4. Mutation operator

An individual can be mutated according to a probability of
mutation, pm. The pm condition is verified for every individual and
if it is satisfied, one out of six possible actions is taken. These
actions are: add a new random gene coordinate to G, add a new
condition coordinate to C or add a new time coordinate to T, or by
removing a random coordinate from either G, C or T. The election
of these actions is also random. For the case of addition of new
coordinates, it is first checked that the new randomly selected
coordinate is not included yet in G, C or T. If so, the process is
repeated until finding a new coordinate that did not originally
belong to the individual. Again, the sequence must be reordered so
that the new sequence remains ordered.

3.5. Selection operator

This operator is implemented following the roulette wheel
selection method [23]. The fitness level is used to associate a
probability of selection with each individual of the population.
This emulates the behavior of a roulette wheel in a casino. Usually
a proportion of the wheel is assigned to each of the possible
selections based on their fitness value. Then a random selection is
made similar to how the roulette wheel is rotated. While candi-
dates with a higher fitness will be less likely to be eliminated,
there is still a chance that they might be. There is a chance that
some weaker solutions may survive the selection process, which is
an advantage, as though a solution may be weak, it may include
some component which could prove useful following the recom-
bination process.

3.6. Fitness function

The fitness of each individual allows the algorithm to deter-
mine which are the best candidates to remain in subsequent
generations. For the TriGen algorithm, we have implemented two
different fitness functions, the first one based on a three dimen-
sions adaptation of the Mean Square Residue measure (MSR)
which is a classic biclustering measure for gene expression
analysis [9], from now on referred as fMSR. The second one fLSL.
The first function fMSR is defined based on a distance function,
while fLSL is more suitable to find correlations among a set of genes
even if they are expressed at different levels of magnitude.

Both functions share some common terms which are now
defined.

� G: Subset of gene coordinates of the individual.
� C: Subset of condition coordinates of the individual.
� T: Subset of time coordinates of the individual.
� Tl: Number of time coordinates of the individual.
� Cl: Number of condition coordinates of the individual.
� Gl: Number of gene coordinates of the individual.
� TCvðt; g; cÞ: Expression level of gene g under condition c at time

t as seen in the input dataset D.

Weights term 1. The Weights term is defined as

Weights¼ Gl n wgþCl nwcþTl n wt ð7Þ
where wg, wc and wt are weights for the number of genes,
conditions and times in a tricluster solution TC, respectively. With
high values of the weights, we favor that TriGen finds solutions
with many components for that term.

Distinction term 1. The Distinction term is defined as

Distinction¼ CDNg

Gl
n wdgþ

CDNc

Cl
n wdc

þCDNt

Tl
n wdt ð8Þ

where CDNg (Coordinate Distinction Number of g), CDNc (Coordi-
nate Distinction Number of c) and CDNt (Coordinate Distinction
Number of t) are, respectively, the number of genes, conditions
and time coordinates in the tricluster solutions that are not
present in the tricluster being evaluated, and wdg, wdc and wdt
are the distinction weights of the genes, conditions and times
respectively. Distinction measures how different the individual
under evaluation is compared to the triclusters previously found.
If the values of the weights are increased, we favor finding non-
overlapping solutions to the previously found.

3.6.1. fMSR fitness function
This function is defined by the following equation:

f MSRðTCÞ ¼MSR�Weights�Distinction ð9Þ
It is a minimizing function (the smaller the value the better)

whichhas three terms, thegeneralWeigthsandDistinction termsand
the specificMSR term. TheMSR term can be explained as follows.

MSR term 1. Since triclustering emerges as an improvement of
biclustering to analyze microarray data taking into account the
temporal dimension, we have adapted a classical biclustering
fitness function, Mean Squared Residue (MSR), presented by Cheng
and Church in [9], to the three dimensional space. MSR compares
the similarity of each value in the bicluster to the mean values of
all genes under the same condition, the mean of the gene under
the other conditions included in the bicluster, and the mean of all
values in the bicluster. In the case of triclustering, we will assess
the similarity of each value not only related to genes and condi-
tions, but also including the temporary plane, i.e., we asses how
a gene g behaves under all conditions C at the time points T, how a
condition c affects all genes G in time T, and the time factor t in
relation to genes G and conditions C, as well as the mean value of
all the tricluster. This is formalized as follows:

MSR¼
∑

g∈G;c∈ ∈C;t∈T
r2gct

Gl n Cl nTl
ð10Þ

where rgct can be defined as

rgct ¼ TCvðt; g; cÞþMGCðtÞþMGT ðcÞþMCT ðgÞ�MGðc; tÞ
�MCðg; tÞ�MT ðg; cÞ�MGCT ð11Þ

where MGC(t) is the mean of the genes under conditions at a point
in time t, MGT(c) is the mean of the genes over time under



a condition c, MCT(g) is the mean of a gene g in time under the
conditions, MGðc; tÞ is the mean of the genes under one condition
and a time point, MCðg; tÞ is the mean of the values of a gene at a
time point under conditions, MT ðg; cÞ is the mean of a gene under a
condition at all time points and MGCT is the mean value of all
values in the tricluster.

3.6.2. fLSL Fitness function
This function is defined by the following equation:

f LSLðTCÞ ¼ LSL�Weights�Distinction ð12Þ
It is a minimizing function (the smaller the value the better)

which has three terms, the general Weigths and Distinction terms
and the specific LSL term, explained as follows.

LSL term 1. This term is defined by Eq. (13).

LSL¼ TrþCrþGr

3
ð13Þ

It measures the similitude between the least squares approx-
imation for the points in each graphic of the three views that
represent a tricluster: first, for each time coordinate, conditions in
the x-axis, expression levels in the y-axis and the outlines are
genes (Tr in (13)); second, for each condition coordinate, times in
the x-axis, expression levels in the y-axis and the outlines are
genes (Cr in (13)); and third, for each condition coordinate, genes
in the x-axis, expression levels in the y-axis and the outlines are
times (Gr in (13)). We can see a representation of this in Fig. 4.
All elements in the numerator in Eq. (13) have in common the

values indicated in equation group (14).

sumXtc ¼ ∑
gεG

g sumXXtc ¼ ∑
gεG

g2 ð14aÞ

sumXg ¼∑
tεT
t sumXXg ¼∑

tεT
t2 ð14bÞ

where sumXtc is the summation of all genes of the individual under
evaluation, sumXXtc is the squared summation of all genes, sumXg

is the summation of all times and sumXXg is the is the squared
summation of al times.
As you can see in Eq. (15a), Tr is the distance between all least

square approximations in the first view described above.

Tr ¼
∑ti ;tjεT jTDti �TDtj j

ðTl�1Þ n Tl
ð15aÞ

8 tAT ; TDt ¼
Gl n sumXYt�ðsumXtc n sumYtÞ

Gl n sumXXtc�sumX2
tc

ð15bÞ

8 tAT ; sumXYt ¼ ∑
gεG

∑
cεC

g n INvðt; g; cÞ ð15cÞ

8 tAT ; sumYt ¼ ∑
gεG

∑
cεC

INvðt; g; cÞ ð15dÞ

where measures are represented by TD (15b) and sumXYt and
sumYt are, respectively, for each individual time, the summation of
each expression level value of this time and all combinations of
individual genes and conditions multiply by the genes (15c) and
for each individual time, the summation of each expression level
value of this time and all combinations of individual genes and
conditions (15d).
In the same way, Eq. (16a) defines Cr term as the distance

between all least square approximations produced in the second
view.

Cr ¼
∑ci ;cjεC jCDci �CDcj j

ðCl�1Þ n Cl
ð16aÞ

8cAC; CDc ¼ Gl n sumXYc�ðsumXtc n sumYcÞ
Gl n sumXXtc�sumX2

tc

ð16bÞ

8cAC; sumXYc ¼∑
tεT

∑
gεG

g n INvðt; g; cÞ ð16cÞ

8cAC; sumYc ¼∑
tεT

∑
gεG

INvðt; g; cÞ ð16dÞ

where measures are represented by CD (16b) and sumXYc and
sumYc are, respectively, for each individual condition, the summa-
tion of each expression level value of this condition and all
combinations of individual times and genes multiply by the genes
(16c) and for each individual condition, the summation of each
expression level value of this condition and all combinations of
individual times and genes (16d).
Finally, Eq. (17a) defines the Gr term as the distance between all

least square approximations produced in the third view described
above.

Gr ¼
∑ci ;cjεC jGDci �GDcj j

ðCl�1Þ n Cl
ð17aÞ

8cAC; GDc ¼
Tl n sumXYg�ðsumXg n sumYgÞ

Tl n sumXXg�sumX2
g

ð17bÞ

8cAC; sumXYc ¼ ∑
gεG

∑
tεT
t n INvðt; g; cÞ ð17cÞ

8cAC; sumYc ¼ ∑
gεG

∑
tεT
INvðt; g; cÞ ð17dÞ

where measures are represented by GD (17b) and sumXYc and
sumYc are, respectively, for each individual condition, the summa-
tion of each expression level value of this condition and all
combinations of individual genes and times multiply by the times
(17c) and for each individual condition, the summation of each
expression level value of this condition and all combinations of
individual genes and times (17d).

Fig. 4. This solution has G¼3, C¼4 and T¼3. This view represents for each of the time coordinates (0, 1 and 3) conditions in the x-axis, expression levels in the y-axis and the
outlines are genes. The slopes of each of the least square approximations α, β and γ are compared in order to detect the correlation among the patterns. The same process is
followed with the other views.



4. Results

We show the results obtained applying the TriGen algorithm
both to real and synthetic data. Synthetic data has the advantage
that the process that generates the data is well known and so one
is able to judge the success or failure of the algorithm [24].
Synthetic datasets generation has been widely applied both in
microarray related publications [5,15], and in other general data
mining applications [26].

TriGen takes several parameters: probability of crossover pc,
probability of mutation pm, weights wg for the number of genes, wc

for the conditions and wt for the times, used to calculate the term
Weights (see Section 3.6), and weights wdg, wdc and wdt are the
distinction weights of the genes, conditions and times respectively,
used to calculate the term Distinction (see Section 3.6).

All experiments were executed on a multiprocessor machine
with 64 processors Intel Xeon E7-4820 2.00 GHz with 8 GB RAM
memory. We now describe the results obtained.

4.1. Results on the synthetic dataset

The set of synthetic data has been generated using a software
application developed for such purpose. For this particular work,
we have simulated data from 5 different time points and 10
conditions using microarrays containing 1000 genes. Each gene
is assigned a value which represents its level of expression, i.e.,
quantification of the mRNA present in a time point under certain
conditions. This value has been randomly chosen from the rank,
respectively for each condition, ½1;15�, ½7;35�, ½60;75�, ½0;25Þ,
½30;100�, ½71;135�, ½160;375�, ½5;30�, ½25;40� and ½10;30�. In such
data set, we have allocated two areas (a and b) of prefixed values:

Area a: It is an area of size Gl ¼ 20, Cl ¼ 5 and Tl ¼ 3 with all its
values fixed to 1.

Area b: It is an area with Gl ¼ 30, Cl ¼ 4 and Tl ¼ 4 with an
ascending pattern at times t¼0,1 and descending at
times t¼2, 3 at different levels of magnitude ½1;15�,
½60;75�, ½5;30� and ½160;375�.

TriGen was executed with each of the fitness functions avail-
able, fMSR and fLSL with the parameters in Table 1. The weights wc

and wt are high in relation to wg since the genes show high
dimensionality in relation to conditions and times. The distinction
is not taken into account in these executions. The TriGen algorithm
did successfully find areas a and b in both executions. The
execution with fitness function fMSR found the whole area a and
missed some genes (seven out of thirty) and missed one time
point (three out of four). The execution with fLSL found tricluster
solutions for both areas a and b. This might be due to the fact that
area a, with fixed values can be easily detected both by distance

and correlation measures. In contrast, area b exhibits correlation
patterns, and therefore is easily found by fLSL and fMSR was capable
of only finding part of it.

4.2. Results on the yeast dataset

We have applied the TriGen algorithm to the yeast (Saccharomyces
cerevisiae) cell cycle problem [33]. The yeast cell cycle analysis
project's goal is to identify all genes whose mRNA levels are
regulated by the cell cycle. By applying TriGen to this dataset, we
aim at finding meaningful patterns on this cell cycle. In this
experiment, 6179 genes are analyzed under 6 conditions, termed
cln3, clb2, pheromone, cdc15, cdc28 and elutriation [33]. Samples
were taken at 2 time points for cln3, 2 for clb2, 18 for pheromone, 24
for cdc15, 17 for cdc28 and 14 for elutriation. To apply the TriGen
algorithm we did not take into account the conditions with only
2 time points and we used the first 14 time points of the pheromone,
cdc15, cdc28 and elutriation experiment, in order to have a compact
dataset. Therefore our dataset contains 6179 genes, 4 conditions and
14 time points.

For this experiment, after some preliminary executions, we
chose the set of parameters in Table 2 and executed both with the
fMSR fitness function and with the fLSL. The value of wg was set to
0.8 favor the presence of several genes in the solutions, since the
algorithm had a tendency to provide solutions with a low number
of genes. This might be due to the fact that the genes do not
exhibit exactly equal patterns, neither for the distance nor the
correlation measure. For the parameters related to the Distinction
term we provide a high value for the genes in order to cover as
much space in this dimension as possible. We also provide two
measures to better understand the results obtained: overlapping
of the 20 triclusters obtained, with a value of 0.1, this value due to
the overlapping of conditions and times, which appear repeated in
the solutions due to their low dimensionality, and coverage of the
solutions, which represents the proportion of cells from the input
dataset D present in the solutions.

We were interested in the relation among the 20 triclusters
generated by fMSR and the 20 generated by fLSL (see Table 2). We
calculated the average overlapping of the two groups, comparing
each tricluster generated by fMSR to each tricluster generated by
fLSL. On average, the overlapping of the genes is as low as 0.07%,
while the overlapping of conditions is 75% and the overlapping of
time points is 53%. The percentages agree with the number of
potential genes, conditions and time points for each tricluster,
6179, 6 and 14 respectively.

For legibility reasons, we focus on one of the solutions. It was
obtained with the f MSR measure. It groups 20 genes under 2 condi-
tions, pheromone (condition 0) and cdc28 (condition 3) and five

Table 1
Parameters for the execution of the TriGen algo-
rithm on the synthetic dataset.

Parameter Value

Number of solutions 4
Generations 50
Members in the population 100
pc 0.7
pm 0.3
wg 0.01
wc 0.55
wt 0.35
wdg 0.0
wdc 0.0
wdt 0.0

Table 2
Parameters for the execution of the TriGen algo-
rithm on the yeast cell cycle dataset.

Parameter Value

Number of solutions 20
Generations 400
Members in the population 200
pc 0.8
pm 0.5
wg 0.8
wc 0.1
wt 0.1
wdg 1.0
wdc 0.0
wdt 0.0
Overlapping 0.1
Coverage 0.08



time points (6, 7, 8, 9 and 10). The graphics are organized in three
groups related to this solution: in Fig. 5 we present the outline of
the gene expression values (y-axis) for each gene in the solution (x-
axis) comparing the pheromone (condition 0) and cdc28 (condition
3). A graphic is provided for each time point: 6(a), 7(b), 8(c), 9
(d) and 10(e). In Fig. 6, we present the outline of gene expression

values (y-axis) for each gene in the solution (x-axis) comparing time
points 6, 7, 8, 9 and 10 and providing a graphic for each condition in
the solutions: pheromone (a) and cdc28 (b). Finally in Fig. 7 we
present the outline of gene expression values (y-axis) for each time
point (x-axis) providing a graphic for each condition: pheromone
(a) and cdc28 (b). As we see, in the three dimensions depicted the
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Fig. 5. Gene expression values under two conditions at time point 6 (a), 7 (b), 8 (c), 9 (d) and 10 (e). (a) time point 6 (b) time point 7 (c) time point 8 (d) time point 9 and
(e) time point 10.
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Fig. 6. Gene expression values under five time points at pheromone (a) and cdc28
(b) experiments. (a) condition 0 and (b) condition 3.
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Fig. 7. Gene expression for five time points under gene solution set at pheromone
(a) and cdc28 (b) experiments. (a) condition 0 and (b) condition 3.



behavior of the genes is very similar throughout the conditions and
the times.

We provide a validation of the solutions obtained based on the
Gene Ontology project (GO) [2]. GO is a major bioinformatics
initiative with the aim of standardizing the representation of gene
and gene product attributes across species and databases. The
project provides an ontology of terms for describing gene product
characteristics and gene product annotation data. The ontology
covers three domains: cellular component, the parts of a cell or its
extracellular environment; molecular function, the elemental
activities of a gene product at the molecular level, such as binding
or catalysis; and biological process, operations or sets of molecular
events with a defined beginning and end, pertinent to the
functioning of integrated living units: cells, tissues, organs, and
organisms. We have queried the terms associated to our genes in
GO using the Onto-CC tool [29,28], an automatic method specially
suited for independent validation of gene grouping hypotheses
(e.g. co-expressed genes) based on GO clusters (i.e. expression
versus GO). Onto-CC reduces the uncertainty of the queries by
identifying optimal conceptual clusters that combine terms from
different ontologies simultaneously, as well as terms defined at
different levels of specificity in the GO hierarchy. A probability of
intersection p-value is given for each group of genes returned by
Onto-CC. This value lies in the [0–1] interval and groups of genes
are considered as relevant with values below 0.05. In Table 3, we
show the validation results using the Onto-CC program for this
tricluster solution. The p-values obtained are quite low (up to
8.54E�05) and the terms provided are very specific and many of
them directly related to the cell cycle such as those in cluster IDs 2,
9, 10 and 21.

For further validation of the solutions provided by TriGen, we
have executed the Onto-CC tool with ten groups of genes randomly
chosen from the 6179 genes in the yeast dataset, each group
containing 20 genes as in the tested solution. The best (minimum)
p-value obtained has been 0.025, and the deepest level in the
ontologies has been 3, very generic terms. Therefore, we can
conclude that the genes selected by TriGen have a closer relation
in terms of GO annotations than expected if they were selected at
random.

4.3. Results on the inflammation and host response to injury dataset

The problem under study deals with human inflammation and
the host response to injury. Understanding the inflammation
process is critical because the body uses inflammation to protect
itself from infection or injury (e.g., crushes, massive bleeding,
or a serious burn). The host response to trauma and burns is
a collection of biological and pathological processes that depends
critically upon the regulation of the human immuno-inflammatory
response [8].

The data has been acquired from an experiment about inflam-
mation and host response to injury carried out with microarrays.
In this experiment, blood samples from 8 volunteers are analyzed,
4 treated with a toxin that simulates an inflammatory process and
4 with a placebo. Samples were taken at 6 time points throughout
24 h, obtaining a total of 48 microarrays. We work with a set of
2155 genes selected as relevant for the problem [30] considering
2 conditions: endotoxin and placebo.

The set of parameters chosen can be seen in Table 4 and TriGen
was executed both with the fMSR fitness function and with the fLSL

Table 3
GO for yeast cell cycle results.

Cluster
ID

Biological process Molecular function Cellular component PI

19 Pyruvate dehydrogenase (lipoamide)
phosphatase activity

Actin cap 8.54E�05

2 Endopeptidase activity Vacuolar lumen (sensu
Fungi)

1.18E�03

14 Protein metabolism, cytokinesis 1.79E�03
25 Protein metabolism Nucleus 2.47E�03
9 Cytokinesis, regulation of biological process 5.64E�03

23 Transcription regulator activity,
binding, catalytic activity

Intracellular 1.54E�02

12 Oligosaccharide-lipid intermediate assembly Cytoplasm 1.71E�02
21 Organelle organization and biogenesis, cell proliferation Intracellular membrane-

bound organelle
1.72E�02

11 Signal transducer activity Intracellular, Organelle 1.96E�02
31 Cytokinesis, cellular morphogenesis Structural constituent of cytoskeleton 1.96E�02
22 Protein complex assembly, cell proliferation Nucleus, protein complex 2.60E�02
30 Ribosome biogenesis and assembly, metabolism Transporter activity Cytoplasm, nucleus 2.68E�02
6 Copper ion binding 2.93E�02

16 Protein amino acid dephosphorylation Cytoplasm 3.52E�02
13 Regulation of biological process Cell wall (sensu Fungi),

intracellular
3.5E�02

34 Cellular process, protein biosynthesis Cytoplasm 3.76E�02
10 Vacuole fusion, non-autophagic, regulation of phosphate metabolism, signal

transduction, pseudohyphal growth
Nucleus 3.99E�02

Table 4
Parameters for the execution of the TriGen algo-
rithm on the inflammation and host response to
injury dataset.

Parameter Value

Number of solutions 20
Generations 100
Members in the population 200
pc 0.7
pm 0.4
wg 0.9
wc 0.0
wt 0.1
wdg 0.9
wdc 0.0
wdt 0.1
Overlapping 0.08
Coverage 0.2



one. We can see that the number of iterations has been decreased
compared to the yeast cell cycle experiment. This is due to the
dimensionality of the experiments. In the yeast cell cycle problem

with G¼6179, C¼4 and T¼14 the total number of cells to visit is
346,024. For the inflammation and host response to injury
problem, G¼2155, C¼2 and T¼5, a total number of 25,860 cells
to visit. Therefore, TriGen does not need to iterate so many times.
In this case, we also favor the diversity of the genes found by
setting wdg to 0.9.

Fig. 8. Gene expression values under two conditions at time point 0 (a), 1 (b), 3 (c), 4 (d) and 5 (e).

Fig. 9. Gene expression values under five time points at condition 0 (a) and
condition 1 (b) experiments.

Fig. 10. Gene expression for five time points under gene solution set at condition 0
(a) and condition 1 (b) experiments.



We also provide two measures of the solutions, overlapping of
the 20 triclusters obtained, with a low value because genes, which
are the ones with more influence in this measure due to the
dimensionality, are very diverse. Coverage of the solutions is
0.2 from the input dataset.

We also provide information about the relation among the 20
triclusters generated by fMSR and the 20 generated by fLSL (see
Table 4). We calculated the average of the overlapping of the two
groups, comparing each tricluster generated by fMSR to each
tricluster generated by fLSL. On average, the overlapping of
the genes is 1.5%, while the overlapping of conditions is 100%
and the overlapping of time points is 78%. The percentages agree
with the number of potential genes, conditions and time points for
each tricluster, 2155, 2 and 6 respectively. In particular, both
conditions are present in all the clusters.

Again we focus only on one of the solutions for legibility
reasons. It was obtained with the f LSL measure. It groups 11 genes
under the 2 conditions, endotoxin (condition 0) and placebo
(condition 1) and five time points (0, 1, 2, 3, 4, 5).

We show three groups of graphics related to this solution: In
Fig. 8, we present the outline of the gene expression values
(y-axis) for each gene in the solution (x-axis) comparing the
endotoxin (condition 0) and placebo (condition 1). A graphic is
provided for each time point: 0 (a), 1 (b), 3 (c), 4 (d) and 5 (c). In
Fig. 9, we present the outline of gene expression values (y-axis) for
each sgene in the solution (x-axis) comparing time points 0, 1, 3,

4 and 5 and providing a graphic for each condition: endotoxin
(a) and placebo (b). Finally, in Fig. 10 we present the outline of
gene expression values (y-axis) for each time point (x-axis)
comparing each gene in the solution providing a graphic for each
condition: endotoxin (a) and placebo (b).

In this case, we see in each of the three dimensions represented
the similarity of the behavior of the genes. However, we can see
that the patterns exhibited are extremely correlated, much more
than in the yeast cell cycle experiment. In fact, the genes are
expressed at different levels of magnitude. We can see in Fig. 9
how the genes in time 0 are expressed in the 0–15,000 interval,
while in time 5 the rank in the 9000–70,000 interval. However,
since those patterns are correlated they are retrieved by TriGen.
This is due to the fact that this solution was found using the fLSL
based fitness function.

We also provide the validation results using the Onto-CC
program for this tricluster solution in Table 5. We see that the PI
results obtained are low (up to 6.07E�09) meaning that the
groups of genes are significative related to the GO terms associated
to them. Furthermore, the terms are very specific as in cluster IDs
6, 33, 51, 66 and in particular the term immune response is
present in 31.

As for the yeast cell cycle problem, we provide further valida-
tion of the solutions provided by TriGen executing the Onto-CC tool
with 10 groups of genes randomly chosen from the 2155 genes in
the inflammation and host response to injury problem, each group

Table 5
GO for inflammation and host response to injury results.

Cluster
ID

Biological process Molecular function Cellular component PI

71 Cation binding, catalytic activity, transcription regulator
activity

6.07E�09

51 Protein amino acid phosphorylation Intracellular, extracellular
region

6.28E�09

46 Ion transport ion transporter activity, protein binding Integral to membrane,
intracellular

2.81E�07

69 Regulation of transcription, DNA-dependent Zinc ion binding, protein binding 7.66E�06
37 Regulation of transcription, DNA-dependent Cytoplasm 1.12E�05
61 Binding, ubiquitin-like-protein ligase activity Cytoplasm 1.88E�05
4 Regulation of biological process Binding Intracellular 5.12E�05

52 Protein metabolism, regulation of biological
process

Catalytic activity, nucleotide binding, nucleic acid binding 5.15E�05

33 Regulation of Rho protein signal transduction Intracellular 5.54E�05
68 Regulation of transcription, DNA-dependent Transcription regulator activity, catalytic activity Intracellular 7.75E�05
29 Anion transporter activity, nucleic acid binding 2.82E�04
31 Immune response Obsolete molecular function Extracellular region 3.21E�04
7 Intracellular, cell fraction 1.01E�03

57 Transcription regulator activity, nucleotide binding Extracellular region 1.08E�03
6 Regulation of biological process ARF guanyl-nucleotide exchange factor activity 1.13E�03

66 Bone resorption, signal transduction, response to
stimulus

1.47E�03

47 Peripheral to membrane of
membrane fraction

2.34E�03

2 Response to stimulus, protein targeting,
regulation of biological process

Signal transducer activity Cell 2.84E�03

8 Protein targeting Transcription regulator activity Intracellular 3.26E�03
12 Catalytic activity, transporter activity Extracellular region 4.11E�03
15 Protein metabolism, regulation of biological

process
Catalytic activity, transporter activity Membrane 5.39E�03

17 GTPase activator activity, binding Intracellular 1.07E�02
16 Protein binding, nucleotide binding, ATP-dependent helicase

activity, nucleic acid binding
1.08E�02

76 Nucleotide binding Cytoplasm, integral to
membrane

1.09E�02

70 Extracellular region, membrane
fraction

1.33E�02

53 Regulation of transcription, DNA-dependent ATP binding 1.71E�02
67 Protein phosphatase type 2C activity 1.84E�02
55 Regulation of transcription, DNA-dependent Nucleotide binding, nucleic acid binding, ATP-dependent

helicase activity
1.89E�02



containing 11 genes as in the tested solution. The best (minimum)
p-value obtained has been 0.008, and the deepest level in the
ontologies has been 2, very generic terms. Therefore, we can
conclude that the genes selected by TriGen have a closer relation
in terms of GO annotations than expected if they were selected at
random.

5. Conclusions

We have presented TriGen, a triclustering algorithm based on
an evolutionary heuristic, genetic algorithms, which finds groups
of pattern similarity for genes on a three dimensional space, thus
taking into account the gene, conditions and time factor. The
genetic operators used have been described in detail, along with
the two fitness functions available to use with TriGen: fMSR based
on a three-dimensional adaptation of the Mean Square Residue
measure, a classic biclustering distance measure and fLSL, a
correlation measure based on the distance among the slopes of
the least square lines from the three views of a tricluster.

The algorithm has been applied to three different datasets:
a synthetic dataset, a dataset from a yeast cell cycle experiment
and a dataset from the inflammation and host response to injury.
The results show that the algorithm finds genes with high
similarity in a subset of conditions and times. Moreover, the genes
grouped together by the TriGen algorithm showed to be biologi-
cally related in terms of the functional annotations associated to
them in the Gene Ontology project. We have also proved that
genes selected by TriGen have a closer relation in terms of GO
annotations than expected if they were selected at random. We
have also seen that the two evaluation functions provide com-
plementary information, since the overlapping of genes between
triclusters found by fMSR and by fLSL is very low (0.07% for the yeast
cell cycle problem and 1.5% for the inflammation and host
response to injury problem).

TriGen is an algorithm created to mine longitudinal experi-
ments with microarray data, but it can be used in other biologi-
cally related fields, for instance combining expression data with
gene regulation information by means of substituting the time
dimension by ChIP-chip data representing transcription factor–
gene interactions what can provide us with regulatory network
information. This proposal can also be applied to mine RNA-seq
data repositories. Also, the seismic regionalization of the Iberian
Peninsula is currently being addressed through TriGen, turning the
2D-dimensional problem proposed in [27] into a 3D one. In this
case, the third component does not identify time stamps but
features associated to every pair of geographical coordinates that
represent the Iberian Peninsula.
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