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Abstract

Usually it is difficult to solve the control problem of a complex nonlinear
system. In this paper, we present an effective control method based on adap-
tive PID neural network and particle swarm optimization (PSO) algorithm.
PSO algorithm is introduced to initialize the neural network for improving
the convergent speed and avoiding weights getting trapped into local op-
tima. To adapt the initially uncertain and varying parameters in the control
system, we introduce an improved gradient descent method to adjust the net-
work parameters. The stability of our controller is analyzed according to the
Lyapunov method. The simulation of complex nonlinear multiple-input and
multiple-output (MIMO) system is presented with strong coupling. Empiri-
cal results illustrate that the proposed controller can obtain good precision
with shorter time compared with the other considered methods. It provides
a novel control approach for complex nonlinear systems.
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1. Introduction

In the industrial control field, the controlled system usually has great non-
linearity, including spacecraft system, vehicle system, robot system, power
system, chemical reaction system, etc. PID control technique has been widely
used in the real control system for its advantages such as simple mechanism
and clear physical conception. It is hard to get a precise control performance
even while researchers focus on other intelligent control methods, including
adaptive control [1, 2], fuzzy control [3, 4, 5], neural network control [6, 7, 8]
and decoupling control [9, 10, 11] etc.. And then, some mixed control meth-
ods are emerging, such as PID neural network. Due to the characteristics of
self-learning, self-organizing and self-adaptation, PID neural network would
automatically identify the controlled system parameters and automatically
adjust the parameters according to the changes in the process parameters.

In this paper, we design a controller model based on an adaptive PID
neural network. To prevent the weights of neural network falling into local
optima, PSO algorithm is adopted to select initial weights. The parameters
of PID neural network are self-regulating without intervention. The improved
gradient descent method is used to optimize the weights of network.

2. Related Works

Since it is difficult to control a complex nonlinear system [12, 13, 14],
neural network was introduced to solve the problem [15, 16, 17]. However,
researches still confront some difficulties. For example, network parameters
training is time-consuming and easily falls into local minimum. Particle
swarm optimization (PSO) algorithm is a new globe optimization algorithm,
which has the advantage of fast convergence speed [18, 19]. In [20], Sel-
vakumaran et al. proposed a new design of decentralized load-frequency
controller for interconnected power systems with ac-dc parallel using PSO
algorithm. The experiment result illustrated that their method have rapid
dynamic response ability. In [21], Hasni et al. used PSO algorithm to pa-
rameters selection, and used genetic algorithm (GA) to optimize the choice
of parameters by minimizing a cost function. The study result was applied to
a greenhouse environment with Continuous Roof Vents, and obtained satis-
factory effect. In [22], Chen et al. designed a novel multi-objective endocrine
particle swarm optimization algorithm. The method is equipped with the ad-
vantages of some multi-objective optimization problems. Nevertheless, these
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Figure 1: Structure of control system.

methods mentioned above can not be applied to complex nonlinear system
with strong coupling.

Adaptive controller has the ability to adjust of control parameters with-
out the help of human intelligence. It can tune complex systems better by
combining nonlinear controlling methods and intelligent control technology
[23, 24]. The results show that adaptive control has the advantage to solve
effectively problems of nonlinear system with uncertain model and random
disturbance.

3. Adaptive PID Neural Networks

3.1. Control system structure

The control system adopts close loop control, and it mainly consists of
two parts: the controller and the controlled system, as shown in Figure 1.
The controller is built based on adaptive PID neural network. In the whole
control system, X is object vector, E is error vector, Y is output value of
control system. And U is control law of the control system. The controlling
algorithm is illustrated in Algorithm 1.

3.2. PID neural network controller

In the controller, three-layer PID neural network is built by combining
PID and feedforward neural network, as shown in Figure 2. X∗ = [X Y ] is
input vector of the controller, X = [x1, x2, · · · , xn]T is object value of the
whole control system, and Y = [y∗1, y

∗
2, · · · , y∗n]T is a feedback value from

current system output.
Input layer have 2n neurons, n of them are used to input object values,

the others are used to input values which returned from control system’s
output. The output of this layer at k is
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Algorithm 1 Controlling algorithm for complex nonlinear system

1: Input the object value of controlled system into the controller.
2: Initialize weights of PID neutral network by PSO algorithm.
3: Use PID neural network to control the controlled system.
4: Feedback the output of the control system.
5: Adjust parameters of PID neural network by improved gradient descent

method.
6: If the control error is small enough, algorithm is terminated. If not,

return to Step 3.

Figure 2: Structure of PID neural network
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out1q1(k) = xq(k) (1)

out1q2(k) = y∗q (k) (2)

Hidden layer have 3n neurons, including n proportion neurons, n inte-
gration neurons and n differentiation neurons. The output of each neuron in
this layer at k is

out2q2(k) = φp

2∑
i=1

ωi1out
1
qi(k) (3)

out2q2(k) = φi

[
2∑
i=1

ωi2(k)xli(k) + out2q2(k − 1)

]
(4)

out2q3(k) = φd

[
2∑
i=1

ωi3(k)xli(k)−
2∑
i=1

ωi3(k − 1)xli(k − 1)

]
(5)

where, φp, φi and φd are coefficient, usually larger than 1, which is used
to balance output values from proportion neurons, integration neurons and
differentiation neurons. Output layer have n neurons. The output of each
neuron in this layer at k is

up(k) = out3p(k) =
n∑
l=1

3∑
j=1

ωjp(k − 1)out2qj(k − 1) (6)

where q is the number of subnets, that is, the number of output values. And
j is the number of neurons in hidden layer, ωij is weight between input layer
and hidden layer, ωjk is weight between hidden layer and output layer.

3.3. Parameters initiation

PSO algorithm searches for the optimal solution by collaboration among
individuals in the population [25, 26]. In the algorithm, weight initiation
is done randomly. However, weights may fall into local optima during the
process of optimization. In this paper, particle swarm optimization (PSO)
algorithm is adopted to set initial weights in the controller. The main steps
of PSO algorithm are showed in Algorithm 2.
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Algorithm 2 Particle swarm optimization algorithm

1: Initialize a group of individuals by random algorithm (population size is
m), including random position and velocity.

2: Calculate the fitness of each individual.
3: For each individual, compare the fitness with the fitness of its best his-

torical position bhp. If the former is superior to the latter, bhp will be
replaced with the current fitness, and the position of bhp will also be
replaced with the current position.

4: For each individual, compare the fitness with the fitness of global best
historical position gbhp. When the former is superior to the latter, gbhp
will be replaced with the subscript and fitness of current individual.

5: Update the position and velocity of particles.
6: Check end condition. If satisfied, algorithm is over, otherwise, k = k+ 1,

return to Step 2. The end condition is that a good enough fitness or the
max desired evolution population mdep reaches.

In Step 5, the position and velocity of particles are updated according to
Equ. (7) and Equ. (8).

vk+1
id = vkid + aψ1(pkid − xkid) + bψ2(pkgd − xkid) (7)

xk+1
id = xkid + vk+1

id (8)

where d ∈ [1, 2, · · · , n], i ∈ [1, 2, · · · ,m], k is current evolution population,
ψ1 and ψ2 are random number between 0 and 1, a and b are acceleration
constants. In order to prevent velocity of individual against great change, a
max velocity is limited to a maximum of Vmax.

3.4. Adaptive parameters adjustment

Usually to get better control effect and close quickly to control object
values, weights must be adjusted according to the error. The gradient de-
scent method can be used to adjust the velocity. For function f(X), X =
(x1, x2, · · · , xn), the gradient is shown in Equation (9).

grad f(X) =

[
∂f(X)

∂x1

,
∂f(X)

∂x2

, · · · , ∂f(X)

∂xn

]T
(9)
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Here the minus gradient direction is steepest descent direction. In this paper,
an improved gradient descent method is designed considering the PID neural
network. Gradient information is added into individual velocity with certain
probability, which help particle to search the solutions more efficiently. The
weights are changed by Equ. (10) and Equ. (11), which are presented as
follows.

ωij(k + 1) = ωij(k)− µ ∂e(k)

∂ωij(k)
+ σ [ωij(k)− ωij(k − 1)] (10)

ωjp(k + 1) = ωjp(k)− µ ∂e(k)

∂ωjp(k)
+ σ [ωjp(k)− ωjp(k − 1)] (11)

where µ and σ are the network learning rates, and e(k) is control error
calculated by Equ. (12).

e(k) =
1

2

n∑
q=1

∣∣y∗q (k)− xq(k)
∣∣2 (12)

In our neural network, the parameters are computed in each sampling
period. The weights are automatically adjusted on line based on the errors
of closed loop system, and the controller implements nonlinear and adaptive
real-time online control for controlled system.

4. Stability Analysis

Let Lyapunov function be

V (k) =
1

2

n∑
q=1

e2
0(k) (13)

where
e0(k) = y∗q (k)− xq(k) (14)

The change of Lyapunov function is

∆V (k) = V (k + 1)− V (k) =
1

2

n∑
q=1

(
(e2

0(k + 1)− e2
0(k))

)
(15)

That is

7



∆V (k) = 1
2

n∑
q=1

((e0(k + 1)− e0(k))) (e0(k + 1) + e0(k))

= 1
2

n∑
q=1

∆e0(k) (2e0(k) + ∆e0(k))

=
n∑
q=1

e0(k)∆e0(k)+1
2

n∑
q=1

∆e2
0(k)

(16)

According to the Lyapunov method, when ∆V (k) ≤ 0 in any sampling
period, the closed loop system is stable. That is,

n∑
q=1

e0(k)∆e0(k) ≤1

2

n∑
q=1

∆e2
0(k) (17)

Based on Equ. (10) to Equ. (12), we can obtain Equ. (18).

∆ωij(k) = − µ
1−σ

∂e(k)
∂ωij(k)

≈ − µ
1−σe0(k)

(
n∑
q=1

e0(k)sgn
(

∆y∗q (k)

∆xq(k)

)) (18)

Then

∆e0(k) =
n∑
q=1

(
3∑
i=1

(
∂e0(k)
∂ωij(k)

∆ωij(k)
))

= − µ
1−σ

(
3∑
i=1

1
ωij(k)

)
n∑
q=1

(
e0 (k) sgn

(
∆yq(k)

∆xq(k)

)) n∑
q=1

e2
0 (k)

(19)

Let h (k) =
n∑
q=1

(
e0 (k) sgn

(
∆yq(k)

∆xq(k)

)) n∑
q=1

e2
0 (k), Equ. (19) is simplified to

∆e0(k) =
n∑
q=1

(
3∑
i=1

(
∂e0(k)
∂ωij(k)

∆ωij(k)
))

= − µ
1−σ

(
3∑
i=1

1
ωij(k)

)
h (k)

(20)

Substitute to Equ. (17), then

− µ

1− σ
h (k)

n∑
q=1

e0(k)

(
3∑
i=1

1

ωij (k)

)
≤1

2

(
µ

1− σ

)2

h2 (k)
n∑
q=1

(
3∑
i=1

1

ωij (k)

)2

(21)
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To ensure ∆V (k) ≤ 0,

When

(
n∑
q=1

3∑
i=1

e0(k)

ωij(k)

)
h (k) < 0, then

0 <
µ

σ − 1
≤ −2

n∑
q=1

3∑
i=1

e0(k)

ωij(k)(
n∑
q=1

(
3∑
i=1

1
ωij(k)

)2
)
h (k)

(22)

When

(
n∑
q=1

3∑
i=1

e0(k)

ωij(k)

)
h (k) ≥ 0, then

− 2

n∑
q=1

3∑
i=1

e0(k)

ωij(k)(
n∑
q=1

(
3∑
i=1

1
ωij(k)

)2
)
h (k)

≤ µ

σ − 1
≤ 0 (23)

5. Simulation

A simulation is carried out to verify the proposed control strategy in this
section. The controlled system is a complex nonlinear MIMO system with
strong coupling of variables, described by Equ. (24).


y1(k + 1) = 0.4× y1(k) + 0.3× y2(k) + u1(k)

1+u1(k)2
+ 0.2× u2(k)3

y2(k + 1) = 0.3× y2(k) + 0.2× y3(k) + u2(k)

1+u2(k)2
+ 0.6× u1(k)3

y3(k + 1) = 0.5× y3(k) + 0.3× y1(k) + u3(k)

1+u3(k)2
+ 0.1× u2(k)3

(24)

Where u1, u2, u3 are control laws. The following parameters are set to
the system:

• Initial values of control system is specified as [0 0 0].

• Object values of control system is specified as [0.7 0.4 0.8].

• Learning rates is specified as 0.006.

• Time interval is specified as 0.0001s.
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Figure 3: Control laws vary with time.

During the process of weights initiation by PSO, numbers of populations
is specified as 50, and iteratiion number is specified as 40. To illustrate the
advantages of our controller, three different methods are used to control the
same system separately.

5.1. Control by traditional PID neutral network

The first simulation is controlling the system by traditional PID neutral
network, and the results are shown from Figure 3 to Figure 5. Figure 3 shows
the control laws changed with time. Figure 4 shows the contrast between the
actual output values and the object output values. Figure 5 shows control
error with time variation.

Simulation results show that the actual output is close to expect output,
control law is gradually stabilized, and control error is close to 0. That is to
say, this method has some effect on control the system.

5.2. Control by PID neutral network though standard PSO optimization

The second simulation is controlling the same system by PID neutral
network which is optimized by standard PSO, and the results are shown
from Figure 6 to Figure 8. Figure 6 shows the control laws changed with
time. Figure 7 depicts the contrast between the actual output values and
the object output values. Figure 8 illustrates the control error with time
variation.
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Figure 4: Actual output values vary with time.
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Figure 5: Control error vary with time.

11



0 0.05 0.1 0.15 0.2
0

0.05

0.1

0.15

0.2

0.25

0.3

Time(s)

C
o

n
tr

o
l 

L
a

w
s

 

 

u1

u2

u3

Figure 6: Control laws vary with time.
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Figure 7: Actual output values vary with time.
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Figure 8: Control error vary with time.

Simulation results show that the actual output is close to the expected
output, and the speed of convergence is faster than the previous method and
the control law is gradually stabilized.

5.3. Control by the adaptive PID neutral network

The last simulation is controlling the same system by adaptive PID neu-
tral network, which is proposed in this paper, and the results are shown from
Figure 9 to Figure 11. Figure 9 shows the control laws changed with time.
Figure 10 shows the contrast between the actual output values and the object
output values. Figure 11 shows control error with time variation.

In order to compare the performance of three different control methods
mentioned above, the control errors varied with time are shown respectively
in Table 1. Due to the limit of space, the time interval of data is 0.001s, and
15 data groups is selected from 0.02s. Obviously, adopting the new method,
the actual output values can most quickly approximate the object output
values when compared with the previous two methods. The control error
is falling faster before 0.02s, then tends to 0 gradually. The control laws
are also quickly changed to constant within a short time. Therefore, the
adaptive PID neutral network has high convergence speed, high accuracy
and high stability for the control of a complex nonlinear system.
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Figure 9: Control laws vary with time.
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Figure 10: Actual output values vary with time.
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Figure 11: Control error vary with time.

Table 1: Control error vary with time using above three control methods.

Groups Times Control Error I a Control Error II b Control Error III c

1 0.020 0.626280 0.050725 0.000322
2 0.021 0.620422 0.039564 0.000204
3 0.022 0.614219 0.030990 0.000174
4 0.023 0.607665 0.024495 0.000165
5 0.024 0.600709 0.019648 0.000168
6 0.025 0.593351 0.016086 0.000221
7 0.026 0.585584 0.013522 0.000194
8 0.027 0.577358 0.011724 0.000158
9 0.028 0.568675 0.010503 0.000185
10 0.029 0.559526 0.009712 0.000234
11 0.030 0.549869 0.009237 0.000214
12 0.031 0.539705 0.008988 0.000165
13 0.032 0.529032 0.008897 0.000103
14 0.033 0.517811 0.008912 0.000103
15 0.034 0.506049 0.008997 0.000138

Mean - 0.573084 0.018133 0.000183

a Control Error by 4.1.
b Control Error by 4.2.
c Control Error by 4.3.
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6. Conclusion

In this paper, the design of an adaptive PID Neural Network controller
is presented. The controller’s model is established based on a PID Neural
network. The PSO algorithm is adopted to select initial weights, solving
the problem that influences the initial values in the training, improving the
convergent speed, and preventing the weights getting trapped into local op-
tima. In each sampling period, improved gradient descent method is used
to change all weights in this network. With three main features such as
self-correcting, on-line and real-time, the adaptive mechanism of parameters
adjustment can compensate the drawbacks of the conventional methods. The
stability is analyzed according to the Lyapunov method.

Empirical results illustrate that the adaptive PID Neural Network con-
troller is significantly better than the traditional PID neutral network con-
troller and PID neutral network optimized using PSO. Our controller can
achieve better control results within less sampling periods and the error
tends to 0 in a stable manner. During the weight initialization, PSO al-
gorithm takes a long time and this requires more research and also to decide
the number of iterations to have a nice balance between high efficiency and
precision. The proposed control approach is available to some systems with
complex nonlinear characteristics and it could also be extended to other non-
linear systems in natural and social sciences.
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