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Abstract

We developed a new quantum annealing (QA) algorithm for Dirichlet process mixture (DPM) models based
on the Chinese restaurant process (CRP). QA is a parallelized extension of simulated annealing (SA), i.e., it
is a parallel stochastic optimization technique. Existing approaches (Kurihara et al., 2009; Sato et al., 2009)
cannot be applied to the CRP because their QA framework is formulated using a fixed number of mixture
components. The proposed QA algorithm can handle an unfixed number of classes in mixture models.
We applied QA to a DPM model for clustering vertices in a network where a CRP seating arrangement
indicates a network partition. A multi core processer was used for running QA in experiments, the results
of which show that QA is better than SA, Markov chain Monte Carlo inference, and beam search at finding
a maximum a posteriori estimation of a seating arrangement in the CRP. Since our QA algorithm is as easy
as to implement the SA algorithm, it is suitable for a wide range of applications.

Keywords: Quantum annealing, Dirichlet process, Stochastic optimization, Maximum a posteriori
estimation, Bayesian nonparametrics

1. Introduction

Clustering is one of the most important top-
ics in machine learning because it is a fundamen-
tal approach to analyze differences and similarities
of data. In statistical machine learning, a prob-
abilistic latent variable model is used for cluster-
ing. The Dirichlet process mixture (DPM) models
(Antoniak, 1974) are well studied and they enable
us to handle an unfixed number of classes, which
means that we do not have to decide the number of
classes in advance. In other words, they can esti-
mate the number of classes according to data. A
DPM model is often represented by the Chinese
restaurant process (CRP) (Aldous, 1985), in which
clustering is represented as a seating arrangement
of customers in a restaurant. This representation
is a useful one helping us understand the clustering
process in DPM models.

A clustering problem using a probabilistic model
is generally formulated as a maximum a posteriori
(MAP) estimation in statistical machine learning.

Since finding the exact MAP solution will be diffi-
cult in many cases, we have to search for an approx-
imate one. Markov chain Monte Carlo (MCMC)
inference is widely used for the CRP (Neal, 2000)
but the MCMC is not necessarily appropriate for
the MAP estimation. When we use MCMC for the
MAP estimation, we extract a single class assign-
ment with the highest probability in the class as-
signments sampled from the posterior distribution.
The problem is that this sampling distribution (i.e.,
the posterior distribution) has to be stationary, and
much iteration is needed before it converges.

DaumeIII (2007) showed that a beam search pro-
vides an attractive alternative to the MCMC in the
CRP and another approach for the MAP estimation
is a stochastic search. One of the most well-known
stochastic search algorithms is simulated anneal-
ing (SA) (Kirkpatrick et al., 1983), which is simi-
lar to the MCMC but has an additional parameter,
called a temperature, controlling the uncertainty of
the search space. SA is known to find the global
optimum when the cooling temperature reduction
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Figure 1: The left-hand panel shows the running of SA, in
which σ indicates a seating arrangement of N customers in
the CRP (i.e., a class assignment of N data points). The
right-hand panel shows QA, in which multiple SAs inter-
act through f . σj indicates a seating arrangement of the
CRP running in the j-th process. Note in QA that σm is
interacted with σm−1 and σ1 (i.e., σm+1 = σ1), which is
mathematically derived from the QA framework (Theorem
3.1). During iterations, we control the hyper-parameters.

schedule is slow enough (Geman and Geman, 1984)
but such a schedule is too slow for practical use. SA
with a practical cooling schedule is therefore also
affected by a local optimization problem.

In this work, we focus on a novel stochas-
tic search algorithm, quantum annealing (QA),
which has attracted attention as an alterna-
tive annealing method for optimization problems
(Kadowaki and Nishimori, 1998; Farhi et al., 2001;
Santoro et al., 2002) in quantum information sci-
ence (Lloyd, 1996; Nielsen and Chuang, 2000). QA
has been shown experimentally converge faster than
to find better local optimums for Ising spin models.
It has a parameter inducing quantum fluctuation,
so the search space is controlled in a way different
from that in SA. The details are explained below.

QA is a parallelized extension of SA in which
quantum fluctuation is induced by running mul-
tiple SAs with interactions. Let us consider run-
ning m SAs, and let σj (j = 1, · · · ,m) indicate a
state (e.g., a class assignment) of N data points
in the j-th simulation. In the CRP, we formulate
σj as a table-seating arrangement of customers in
the j-th CRP (see Fig. 1). We denote N data
points as x = (x1, x2, · · · , xN ). The log-likelihood
model given σj (i.e., log p(x, σj)) is based on the
way the data is modeled. For simplicity, we denote
the log-likelihood by log p(σj). In this work, we use
the Newman model (Newman and Leicht, 2007) for
clustering network data (explained in Sec.4). QA
runs multiple dependent SAs with dependent here
meaning that there is interaction f among neigh-
boring SAs (see right-hand panel in Fig. 1).

We describe QA in terms of an optimization

problem. When we run m SAs with different
random initializations independently, we optimize
log p(σj) individually. That is, we find σ∗

j =
argmaxσj

log p(σj) for each j and we choose σ that
has the highest log p(σ∗

j ) of all j. In QA, we
optimize the joint probability of m CRPs’ states
{σj}mj=1:

max
(σ1,σ2,··· ,σm)

log pQA({σ1, σ2, · · · , σm}), (1)

where pQA(·) is a probability measure over a set
of states, which means that each state σj (j =
1, · · · ,m) can take an independent state and QA
gives the probability for these states. A set of
states (σ1, σ2, · · · , σm) represents (quantum) super-
position of different states. That is, pQA(·) is a
probability measure over superposition of different
states in the limit of m → ∞ in quantum physics.
In the CRP, (σ1, σ2, · · · , σm) represents a superpo-
sition ofm seating arrangements. The optimization
problem (1) is actually formulated as

max
(σ1,σ2,··· ,σm)

m
∑

j=1

log pSA(σj) + f · R(σ1, σ2, · · · , σm),

(2)

where the first term corresponds to the summation
over m SA objectives, and R(·) is regarded as a
regularizer among m states, which are described
in Sec.3.5. This optimization is derived from the
QA framework explained in Sec. 3. QA was re-
cently used for solving practical optimization prob-
lems, such as clustering (Kurihara et al., 2009) and
variational Bayes inference (Sato et al., 2009), and
it outperformed SA. Figure 2 summarizes QA and
related work.
Problems: Existing approaches

(Kurihara et al., 2009; Sato et al., 2009) can-
not be applied to the CRP because they need a
fixed number of mixture components. Moreover,
these approaches have to use a heuristic such as
purity to apply their QA algorithms to the cluster-
ing problem. Therefore, a different formulation is
needed.
Contributions: The purpose of this study is

to propose a QA algorithm for the CRP. The key
point is how to represent the states of data in the
CRP. The existing work represents the data states
as “which class a data point is assigned to.” That
is, they require K-dimensional indicator vectors to
represent the data states, and K (the number of
classes) is given and fixed. We instead represent the
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Figure 2: QA and related algorithms. We categorize the
algorithms into two groups according to their purposes:
MCMC and optimization. MCMC aims at approximating
the expectation by a finite sum of samples drawn from the
posterior distribution and therefore needs a large number of
iterations. Optimization algorithms search for optimal solu-
tions in a small number of iterations. The algorithms are also
classified according to the presence of interactions among
multiple processes. Note that expectation maximization
(EM) algorithms (Dempster et al., 1977) and variational in-
ferences (Blei and Jordan, 2005; Kurihara et al., 2007) can-
not be applied to the CRP.

states of data as “which data points a data point
shares the table with” in the CRP. That is, we use
an N -by-N bit matrix to represent the data states,
and this matrix indicates a seating arrangement in
the CRP and does not depend on K. This bit-
matrix representation of the CRP is a novel idea
and a key point in applying QA to the CRP. Note
that the bit matrix is only used for mathemati-
cally deriving QA for the CRP and is not used
in the actual algorithm. Mathematically, this nov-
elty appears in interaction function f in Eq.(17),
where our derived f does not include the number of
classes, K, whereas f in existing work is formulated
by using (fixed) K. Moreover, our algorithm does
not require heuristics such as purity. We also use
parallel processing in QA, whereas Kurihara et al.
(2009) and Sato et al. (2009) used a single process-
ing.

The idea of using a matrix that represents the re-
lationship among data points has been used in sev-
eral studies (L. Xu and Oja, 1993; Frey and Dueck,
2007; Wang and Lai, 2011). These studies used
a similarity matrix based on the feature vectors
among data points. For example, xi and xj de-
note the feature vectors of the i-th and j-th data
points and the similarity was calculated by using
the Gaussian kernel between xi and xj . The for-
mulation in this paper is different from these exist-
ing approaches because we do not use the similar-
ity matrix based on the feature vectors. We used

the matrix of data points to formulate the cluster-
ing state of data in a learning process. For exam-
ple, a bit-matrix in this study changes in a learning
process, while the similarity (kernel) matrix in the
existing works does not change but is fixed. More-
over, we use a bit-matrix only for mathematically
deriving QA for the CRP. We do not directly use
the matrix in an actual algorithm, whereas the ex-
isting approaches directly use the similarity matrix
for clustering data.

2. Chinese Restaurant Process (CRP)

The CRP is a distribution over partitions such
as clustering and is composed of three elements:
a customer, table, and restaurant. In a clustering
problem, the customer denotes a data point and the
table denotes a data class. A seating arrangement
of customers in a restaurant indicates a class assign-
ment of data. In QA, we run multiple CRPs, i.e.,
we consider the seating arrangements in multiple
restaurants.
The CRP assigns a probability for the seating ar-

rangement of the customers in which Z = {zi}Ni=1
denotes the seating arrangement of the customers
and zi = k indicates that customer i sits at the
k-th table. N indicates the number of customers.
When customer i enters a restaurant with K oc-
cupied tables at which other customers are already
seated, customer i sits at a table with the following
probability:

p(zi|Z\zi;α) ∝







Nk

α+N − 1
(k-th occupied table),

α

α+N − 1
(new unoccupied table),

(3)

where Nk denotes the number of customers sitting
at the k-th table, and α is the hyper parameter of
the CRP. A customer tends to select a new table
when α takes large value.
The log-likelihood of Z is given by p(Z) =
αK(Z)

∏
N
l=1(N−l+α)

∏K(Z)
k=1 (Nk − 1)!, where K(Z) is the

number of occupied tables in Z.

3. Quantum Annealing for CRP

This section explains how we derive QA for the
CRP (QACRP). First, we introduce some notations
and explain QACRP intuitively. Second, we intro-
duce a bit matrix to reformulate the CRP for using
QA independent of the number of classes, which

3
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Figure 3: Example of approximation inference in QACRP where β = m. Let us consider adding customer 2 to restaurant j

(j-th CRP). The classical CRP seats customers at existing tables in proportion to the number of customers already seated (see
Eq.(3)). The QACRP sampler derived in Eq.(4) introduces the effect of customers who share tables with customer 2 in the
(j − 1)-th and (j + 1)-th CRPs. In this case, since customers 1, 3, and 4 are customers who share tables with customer 2 in
the (j − 1)-th and (j + 1)-th CRPs, the 1st table in the j-th CRP has these “two” customers and so takes the effect e“2”f(β,Γ)

into account (c−j,1(2) + c+j,1(2) = 2 in Eq. (4)). That is, in the QACRP sampler, when interaction f(β,Γ) is large, a customer
tends to sit with customers sharing the table in other CRPs.

is a key idea in this work. Third, we formulate
the CRP by using a “density matrix” that is a ba-
sic formulation in quantum mechanics. Finally, we
apply the Suzuki-Trotter expansion (Trotter, 1959;
Suzuki, 1976) to approximate QACRP because the
first-derived QACRP is intractable because of the
computational cost of a matrix exponential.

3.1. Main result (See Fig. 3 for an intuitive image)

QACRP uses multiple restaurants. zj,i = k indi-
cates that customer i sits at the k-th table in the
j-th restaurant. Zj = {zj,i} denotes the seating
arrangements of customers in the j-th restaurant.
c+j,k(i) denotes the number of customers who sit at
the k-th table in the j-th restaurant and share ta-
bles with customer i in the (j + 1)-th restaurant.
c−j,k(i) denotes the number of customers who sit at
the k-th table in the j-th restaurant and share ta-
bles with customer i in the (j − 1)-th restaurant.
Customer i sits at a table in the j-th restaurant
with the following probability:

pQA(zj,i|{Zd}md=1\{zj,i};β,Γ) ∝


























(

Nj,k

α+N − 1

)
β
m

e(c
−

j,k
(i)+c

+
j,k

(i))f(β,Γ)

(k-th occupied table),
(

α

α+N − 1

)
β
m

(new unoccupied table),

(4)

where Nj,k denotes the number of customers sitting
at the k-th table in the j-th restaurant. f(β,Γ) is
derived in Sec.3.5 Eq.(17) where β and Γ are hyper
parameters that are called inverse temperature and
quantum effect, respectively. The inverse tempera-
ture is also the hyper parameter of SA. When you

change the CRP in Eq.(3) into QACRP in Eq.(4),
all you have to do is to count the customers sharing
tables in neighboring CRPs and introduce f(β,Γ).
Figure 3 shows an example of QACRP and pro-
vides an intuitive explanation. When f(β,Γ) = 0,
QACRP is equivalent to m independent CRPs with
inverse temperature β/m, which we call SACRPs.
We provide the details of the derivation in the next
sections.

3.2. Bit matrix representation for CRP

We represent seating arrangement Z by using a
bit matrix B in order to reformulate the CRP with-
out fixing the number of tables (see Contributions
in Sec. 1). Although this bit matrix representation
seems to have high computational complexity, in an
actual algorithm of QA, we do not need the direct
calculation to the bit matrix.
A bit matrix B looks like an adjacency matrix

of customers (see Fig. 4) and B denotes an N -
by-N bit matrix where Bi is the i-th row vector,
i.e., Bi = (Bi,1, Bi,2, · · · , Bi,N ), and Bi,n is the i-
th row and the n-th column element of B or the
n-th element of Bi. σ̃i,n (i, n = 1, · · · , N) is a two-
dimensional indicator vector, i.e., it takes (1, 0)⊤

or (0, 1)⊤ We correspond Bi,n = 1 to σ̃i,n = (1, 0)⊤

and Bi,n = 0 to σ̃i,n = (0, 1)⊤, which means we can

represent B by using the 2N
2

dimensional indicator
vector, σ, as follows:

B ⇔ σ =

N
⊗

i=1

N
⊗

n=1

σ̃i,n. (5)

⊗

is the Kronecker product, which is a special
case of a tensor product. If A is a k-by-l matrix
and B is an m-by-n matrix, then the Kronecker

4



1 4 3 5
2

1 1 0 1 0

1 2 3 4 5

1 1 0 1 0

0 0 1 0 1

1 1 0 1 0

0

1

2

3

4

5 0 1 0 1

1 0 1 0

1 2 3 4 5

0 1 0 1

1 0 1 0

0

1

2

3

4

5 1 0 1

1

2

1 1 0 1 0

0

1

2

0

1

1 1 0 1 0

0

1

0

0

0 1 1 0 1

1

0

1

0

0 1 0 0 0

0

0

0

1 4 3 5

Figure 4: Example of bit matrix representation. A seating arrangement Z is represented as a bit matrix B, which enables
us to formulate the CRP without fixing the number of tables. For example, σ̃2 represents customers who share a table with

customer 2. Σ̃2 represents a set of the states that customer 2 can take under the seating conditions, and ρ
(2)
9 indicates that

customer 2 sits alone at a table.

product A
⊗

B is the following km-by-ln block ma-

trix: A
⊗

B =







a11B · · · a1lB
...

. . .
...

ak1B · · · aklB






. For exam-

ple, (1, 0)⊤
⊗

(0, 1)⊤ = (0, 1, 0, 0)⊤. Σ denotes a

set of σ, i.e., |Σ| = 2N
2

.
The bit matrix B is regarded as a seating ar-

rangement as follows. If Bi,n = 1, the i-th and the
n-th customers share a table. Note that we need
the following conditionals to represent seating ar-
rangements with the bit matrix

1. Bi,n = Bn,i (symmetric matrix)

2. Bi,i = 1(i = 1, 2, · · · , N), i.e., TrB = N

3. ∀ i and l, Bi

|Bi|
· Bl

|Bl|
= 1 or 0, where · is the

inner product.

Tr X is the trace of X . Σ̃(⊂ Σ) denotes a set of σ
corresponding to B satisfying the above conditions.
We call these conditions “seating conditions.”
Here, σ̃i indicates the state of the i-th customer,

i.e., with whom the i-th customer shares a table
(see the left-hand side of Fig. 4) and σ̃i is a (2N−1
)-dimensional indicator vector given by

σ̃i =

i−1
⊗

n=1

σ̃i,n ⊗ σ̃i,i ⊗
N
⊗

n=i+1

σ̃i,n

N
⊗

n=1,n6=i

σ̃n,i. (6)

Let Σ̃i be a set of the states that σ̃i can take un-
der the seating conditions (i.e., σ ∈ Σ̃) when the
i-th row elements and the i-th column elements are
blank and the others are filled (see the right-hand
side of Fig. 4). Since Σ̃i is a set of table-assignment
states of the i-th customer, |Σ̃i| = K(Z\{zi}) + 1.
For example, the right-hand side of Fig. 4 shows
table assignments of the 2nd customer when cus-
tomers 1,3,4, and 5 have already been seated.

ρ
(i)
2N−1 is defined as a 2N−1 dimensional indicator

vector given by

ρ
(i)
2N−1 =

i−1
⊗

n=1

(0, 1)⊤ ⊗ (1, 0)⊤ ⊗
N
⊗

n=i+1

(0, 1)⊤
N
⊗

n=1,n6=i

(0, 1)⊤.

(7)

The right-hand side of Fig. 4 shows an example of

ρ
(i)
2N−1. We use ρ

(i)
2N−1 only in Appendix A.

3.3. Density matrix representation for classical
CRP

We define the energy function E over σ(l) ∈
Σ (l = 1, · · · , 2N2

) by E(σ(l)) = − log p(σ(l)),
where if σ(l) ∈ Σ\Σ̃, then p(σ(l)) = 0, i.e., E(σ(l)) =
+∞.
The probability of a state σ(∈ Σ) is given by

p(σ) =
1

Z
σ⊤e−Hcσ, (8)

whereHc = diag
[

E(σ(1)), E(σ(2)), · · · , E(σ(2N
2
))
]

,

and diag[·] denotes a diagonal matrix. Note that
Z =

∑

σ σ
⊤e−Hcσ = Tr e−Hc , where Hc is

called the classical Hamiltonian. If σ ∈ Σ̃,
then p(σ) is equal to p(Z), i.e., p(σ) is the
probability over a seating arrangement. Since
Hc is diagonal, e−Hc is also diagonal with

the k-th diagonal element e−E(σ(k)). That is,

p(σ(k)) = 1
Z
σ(k)⊤e−Hcσ(k) = 1

Z
e−E(σ(k)).

3.4. Formulation for quantum CRP

The basic approach to expanding a classical sys-
tem to a quantum one is to make the Hamiltonian

5



non-diagonal, i.e., add some off-diagonal elements
while keeping hermiticity. We define a non-diagonal
matrix H by

H = Hc +Hq, (9)

where Hq is a non-diagonal matrix (we describe
the definition of Hq later). Intuitively, diago-
nal elements are filled with zero, and some off-
diagonal elements are filled with Γ in Hq. That
is, H is filled with energy E(σ) in diagonal ele-
ments and quantum effect Γ in off-diagonal ele-
ments. The above scheme that adds a non-diagonal
matrix (Hq) to a diagonal matrix (Hc) is a basic
approach in quantum physics and has also worked
well in (Kurihara et al., 2009; Sato et al., 2009).
The meaning of this formulation was described in
(Sato et al., 2009) in terms of uncertainty.
The probability of a state σ(∈ Σ) in a quantum

system is given by

pQA(σ;β,Γ) =
1

Z
σ⊤e−β(Hc+Hq)σ, (10)

where Z =
∑

σ σ
⊤e−β(Hc+Hq)σ=Tr[e−β(Hc+Hq)].

The optimization problem

max
σ

log pQA(σ;β,Γ) (11)

could be solved by using the eigenvalue decomposi-
tion of the density matrix 1

Z
e−β(Hc+Hq), but, this

approach is intractable because of its large compu-
tational cost.
One approximation approach for solving the op-

timization problem (11) is a stochastic search by
drawing a state of the i-th customer, σ̃i, from

p(σ̃i|σ\σ̃i) =
σ⊤e−Hcσ

∑

σ̃i
σ⊤e−Hcσ

, (12)

pQA(σ̃i|σ\σ̃i;β,Γ) =
σ⊤e−β(Hc+Hq)σ

∑

σ̃i
σ⊤e−β(Hc+Hq)σ

, (13)

where σ\σ̃i indicates that bits excluding the i-th
row and the i-th column elements are standing. The
summation over σ̃i is actually the summation of
σ̃i ∈ Σ̃i; therefore, the classical system p(σ̃i|σ\σ̃i)
is tractable when p(σ̃i|σ\σ̃i) in Eq. (12) is another
expression of Eq. (3). Calculation of the prob-
ability of the quantum system pQA(σ̃i|σ\σ̃i;β,Γ),
however, is intractable because of the exponential
operation of a non-diagonal matrix H = Hc +Hq.
We therefore need another approach described in
Sec.3.5.

We define Hq as follows.

Hq =− Γ
N
∑

i=1

N
∑

n=1

σ
x
i,n, E =

(

1 0
0 1

)

, σ
x =

(

0 1
1 0

)

,

σ
x
i,n =

(

i−1
⊗

t=1

N
⊗

u=1

E

)

⊗

[(

n−1
⊗

t=1

E

)

⊗ σ
x ⊗

(

N
⊗

t=n+1

E

)]

⊗

(

N
⊗

t=i+1

N
⊗

u=1

E

)

, (14)

where Γ is the quantum effect parameter. This
formulation means that diagonal elements are filled
with zeros, and some off-diagonal elements are filled
with Γ in Hq. Although other definitions can be
considered, we define this formulation so that we
can make the derivation of the search algorithm
tractable by using an approximation method that
is easy to implement.

3.5. Approximation inference for QACRP

We cannot calculate pQA(σ̃i|σ\σ̃i;β,Γ) in
Eq.(13) because σ⊤e−βHσ is intractable because
of the non-diagonal matrix H. We use the Suzuki-
Trotter expansion (Trotter, 1959; Suzuki, 1976) to
approximate pQA(σ̃i|σ\σ̃i;β,Γ).

We consider multiple running CRPs in which
σj(j = 1, · · · ,m) indicates the seating arrangement
of the j-th CRP and represents the j-th bit matrix
Bj . We correspond Bj,i,n = 1 to σ̃j,i,n = (1, 0)⊤

and Bj,i,n = 0 to σ̃j,i,n = (0, 1)⊤, which means that
we can represent Bj as σj by using Eq.(5). We
derive the following theorem:

Theorem 3.1. pQA(σ;β,Γ) in Eq.(10) is approxi-
mated by the Suzuki-Trotter expansion as follows:

pQA(σ;β,Γ) =
1

Z
σ⊤e−β(Hc+Hq)σ

=
∑

σj(j≥2)

pQA-ST(σ, σ2, · · · , σm;β,Γ) +O
(

β2

m

)

,

(15)

6



where we rewrite σ as σ1, and

pQA-ST(σ1, σ2, · · · , σm;β,Γ)

=
m
∏

j=1

1

Z(β,Γ)
e−

β
m

E(σj)ef(β,Γ)s(σj ,σj+1), (16)

f(β,Γ) = 2 log coth

(

β

m
Γ

)

, (17)

s(σj , σj+1) =
N
∑

i=1

N
∑

n=1

δ(σ̃j,i,n, σ̃j+1,i,n), (18)

Z(β,Γ) =

[

sinh

(

β

m
Γ

)]2N
∑

σ

e−
β
m

E(σ). (19)

Note that σm+1 = σ1. The proof is given in
Appendix A. Note that our derived f in Eq.(17)
does not include the number of classes, K, whereas
the f in existing work (Kurihara et al., 2009;
Sato et al., 2009) is formulated by using a fixed K.
Equation (15) is interpreted as fol-

lows. pQA(σ;β,Γ) is approximated by
marginalizing out other states {σj}j≥2 of
pQA-ST(σ1, σ2, · · · , σm;β,Γ). As shown in
Eq.(16), pQA-ST(σ1, σ2, · · · , σm;β,Γ) looks like
the joint probability of the states of m depen-

dent CRPs. In Eq.(16), e−
β
m

E(σj) corresponds
to the classical CRP with inverse temperature
and ef(β,Γ)s(σj ,σj+1) indicates the quantum effect
part. If f(β,Γ) = 0, which means CRPs are
independent, pQA-ST(σ1, σ2, · · · , σm;β,Γ) is equal
to the products of probability of m classical
CRPs. s(σj , σj+1)(> 0) is regarded as a similarity
function between the j-th and (j + 1)-th bit
matrices. If they are the same matrices, then
s(σj , σj+1) = N2. In Eq.(2), log pSA(σj) corre-

sponds to log e−
β
m

E(σj)/Z and the regularizer term
f · R(σ1, · · · , σm) is log

∏m

j=1 e
f(β,Γ)s(σj ,σj+1) =

f(β,Γ)
∑m

j=1 s(σj , σj+1).
Note that we aim at deriving the approximation

inference for pQA(σ̃i|σ\σ̃i;β,Γ) in Eq.(13). Using
Theorem 3.1, we can derive Eq.(4) as the approxi-
mation inference. The details of the derivation are
provided in Appendix B.

4. Experiments

We evaluated QA in a real application. We ap-
plied QA to a DPM model for clustering vertices in
a network where a seating arrangement of the CRP
indicates a network partition.

Figure 5: Examples of Network structures.

4.1. Network Model

We used the Newman model
(Newman and Leicht, 2007) for network mod-
eling in this work. The Newman model is a
probabilistic generative network model. This
model is flexible, which enables researchers to an-
alyze observed graph data without specifying the
network structure (disassortative or assortative) in
advance.

In an assortative network, such as a social net-
work, the members (vertices) of each class are
mostly connected to the other members of the same
class. The communications between members in
three social groups is illustrated in Fig. 5, where
one sees that the members generally communicate
more with others in the same group than they do
with those outside the group. In a disassortative
network, the members (vertices) have most of their
connections outside their class. An election network
of supporters and candidates is illustrated in Fig.
5-b, where a link indicates support for a candidate.
The Newman model can model not only these two
kinds of networks but also a mixture of them, such
as a citation network (see Fig.5-c), but, the user
must decide in advance the number of classes. We
therefore used the DPM extension of the Newman
model as described in Appendix C.
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4.2. Dataset

We used three social network datasets,
Netscience1, Citeseer2, and Wikivote3. Netscience
is a coauthorship network of scientists working
on a network that has 1,589 scientists (vertices).
Citeseer is a citation network dataset for 2,110
papers (vertices). Wikivote is a bipartite network
constructed using administrator elections and
vote history data in Wikipedia. Its 7,115 vertices
represent Wikipedia users and a directed edge from
vertex i to vertex j represents that user i voted
for user j. Netscience, Wikivote, and Citeseer
respectively correspond to network examples a,
b, and c in Fig.5. We used the vertices in these
networks to represent customers in the CRP, and
we used a negative log-likelihood as an energy
function to find the MAP solution.

4.3. Annealing schedule

We tested several β/m schedules using combi-
nations of β0 = 0.2m, 0.4m, and 0.6m and β =
β0 log(1 + t), β0

√
t, and β0t, where t denotes the

t-th iteration. The results we observed in our ex-
periments showed that β0 = 0.4m and β0

√
t created

a better schedule in SA in terms of the MAP esti-
mation. That is, β increases to β0

√
T , where T

is the total number of iterations. In QA, we use
the same β/m schedule we used in SAs. Note that
since the new table is easy to sample at very small
β (where the probability distribution becomes flat,
see Eq. (4)), the SACRP has many tables at small
β and converges very slowly. That is, inverse tem-
peratures that are too low do not work well in the
CRP.
Since interaction f is a function of Γ and β,

in practice we have to consider the schedule of
f(β,Γ). The interaction f(β,Γ) increases when βΓ

m

decreases. QA is known to work well when f(β,Γ)
starts from zero (i.e., “independent” multiple SAs)
and gradually increases. This process of f(β,Γ)
is achieved when βΓ

m
is a decreasing function of t.

Therefore, we use

βΓ

m
= Γ0

T

t
, (20)

where Γ0 is a tuning parameter.

1http://www.casos.cs.cmu.edu/computational tools
/datasets/external/netscience/

2http://www.cs.umd.edu/projects/linqs/projects
/lbc/index.html

3http://snap.stanford.edu/data/wiki-Vote.html
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Figure 6: Experimental results for the maximum log-
likelihoods (minimum energies) of QA and other algo-
rithms. Vertical axes show the difference of maximum log-
likelihoods. A higher value is better (closer to optimum
states). We denote Lmax

QA , Lmax
16 SAs as the maximum log-

likelihood of 16 CRPs in QA and SA, Lmax
1600 SAs as the max-

imum log-likelihood of 1600 CRPs in SA, and Lmax
Beam as

the maximum log-likelihood of the beam search with beam-
width = 100. The solid line indicates Lmax

QA −Lmax
Beam. Lower

(red) and upper dotted lines indicate Lmax
16 SAs − Lmax

Beam and
Lmax
1600 SAs − Lmax

Beam. When these lines take positive values,
QA and SA outperform the beam search. Whenever the
solid line is higher than the dotted lines QA outperforms
SAs. The horizontal axes are the Γ0 for QA .
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4.4. Experimental settings

Our purpose is to search for a better MAP
solution to a CRP in a small number of itera-
tions (or short running time). We evaluated op-
timization algorithms in terms of maximum log-
likelihood because we want a state with the high-
est log-likelihood. We compared QA with SA and
the beam search. We used the beam search with
an inadmissible score function that achieved the
best performance in (DaumeIII, 2007). We set the
beam-width to 100. We did not compare the vari-
ational inference with QA because the variational
inference cannot deal with the Chinese restaurant
formulation of the Dirichlet process mixture. That
is, it is hard to compare them because their objec-
tive functions are different.

Since we used a multi core processer with 16
cores, we set m = 16 (i.e., ran one CRP at one
core) We set α = 1 in the CRP. α is easy to esti-
mate in SAs and QA, but beam search cannot esti-
mate it; therefore, we fixed it in these experiments.
The number of iterations, T , for SAs and QA was
30. We generated 16 random seating arrangements

{σ(random)
j }16j=1 for the initial settings of QA and 16

SAs, i.e., we use σ
(random)
j for the same initial set-

ting of the j-th seating arrangement. Moreover, we
compared QA (m = 16) with 1600 SAs where their
MAP solutions are the best one of 1600 simulations
with different random initializations. In 1600 SAs,
we tried 100 seeds and generated m = 16 random
seating arrangements for each seed, i.e., we ran the
CRPs with 100 × m(= 16) = 1600 initial seating
arrangements.

4.5. Results and Discussions

Figure 6 shows the experimental results. QA and
SAs outperformed the beam search because each
line takes a positive value. QA finds a better local
optimum than that of 16 and 1600 SAs at some
Γ0. This means that it is useful to run QA with
changing Γ0 rather than to run multiple SAs.

The effective Γ0 has a positive correlation with
the number of nodes. For example, the effec-
tive Γ0 is around 2 in Netscience and is around
3.5 in Wikivote, which has more nodes than that
Netscience does. This is because the quantum effect
term depends on C ·f(β,Γ), where C is the number
of customers who share tables and thus depends on
the number of customers (nodes). This means that
the effective parameter range can be inferred from

the number of nodes and we have only to check a
few Γ0 values.
QA needs more time and memory than SA with

the linear order of m because QA uses m CRPs
However, when a parallel processing environment
can be used and we run multiple SAs in parallel,
the scalability of QA is the same as that of SAs.
QA (T = 30, m = 16) and SA (T = 30, m = 1)
took about 15 and 13 seconds for Netscience, about
25 and 22 seconds for Netscience, and about 79 and
76 seconds for Wikivote, where each value was the
averaged running time of a single simulation for
SA. Because of the multi core processing and the
caching of customers sharing tables, the running
time of QA was almost the same as that of a sin-
gle SA. Therefore, QA makes the CRPs converge
faster and finds a better seating arrangement than
multiple-run SAs. The estimated number of classes
achieving the best performance in QA (m = 16),
16 SAs, 1600 SAs and the beam search are 26, 22,
65, and 61 for Netscience, 37, 35, 30, and 57 for
Citeseer, and 8, 8, 8, and 27 for Wikivote.
We found that a small Γ0 induces a fast schedule

of f , which means f ≫ 0 at small β. The fast sched-
ules make the convergence of QA too fast; therefore,
QA converges at a worse optimum. QA is similar
to SAs at large Γ0 because interaction f remains at
almost 0 for a limited number of iterations. Larger
Γ0 makes CRPs in QA more independent, which
means the results of QA approach those of SA. We
found that interaction f is almost zero when Γ0 = 5
and T = 30, which means that the performance of
QA is similar to that of SA. Therefore, in practice,
we only check values of Γ0 in descending order from
a large value of Γ0, such as Γ0 = 5. That is, the
effective value range is easy to infer from some Γ0

values (in our experimental results, we show some
non-effective values in order to provide the negative
examples of QA).

5. Conclusion

We proposed a QA algorithm for the DPM mod-
els based on the CRP. Our algorithm is different
from those of Kurihara et al. (2009) and Sato et al.
(2009) in three ways: (i) it can handle an unfixed
number of classes in mixture models, (ii) it does
not require heuristics such as a purity, and (iii) it
uses parallel processing in QA. The proposed al-
gorithm (Eq. (4)) is easy to implement because
it is similar to a classical CRP (Eq. (3)). That
is, it is easy to apply the proposed algorithm to
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other nonparametric models with which it is not
easy to apply beam search, such as an infinite re-
lational model (Kemp et al., 2006). The proposed
algorithm will therefore be a promising new opti-
mization technique when it is used with rapidly ad-
vancing multi core processers. As shown in Eq.(2),
our algorithm is regarded as an optimization with
a regularized term and its performance depends on
parameter f like that other optimization algorithms
with a regularized term does (e.g., L1 and L2 reg-
ularized optimization algorithms often used in ma-
chine learning). For future work, it will be worth
analyzing what kind of schedule of f enables QA to
work well.
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Appendix A. Proof of Theorem 3.1

We use the following Trotter product formula
(Trotter, 1959) to approximate

pQA(σ;β,Γ) =
1

Z
σ⊤e−β(Hc+Hq)σ. (A.1)

If A1, ..., AL are symmetric matrices, we have

exp

(

L
∑

l=1

Al

)

=

[

L
∏

l=1

exp(Al/m)

]m

+O

(

1

m

)

.

(A.2)

Applying the Trotter product formula to Eq.(A.1)
with finite m, we have

pQA(σ;β,Γ) =
1

Z
σ⊤e−β(Hc+Hq)σ

≈ 1

Z
σ⊤
(

e−
β
m

Hce−
β
m

Hq

)m

σ. (A.3)

We evaluate the residual of this approximation.
Since eA1+A2 = eA1eA2 does not hold in general4,
we need to use the Trotter product formula for
computation. We rewrite σ as σ1 and note that

σ⊤
1

(

eA
)2
σ1 =

∑

σ2
σ⊤
1 eAσ2σ

⊤
2 eAσ1. Hence, we ex-

press Eq.(A.3) by marginalizing out auxiliary vari-
ables {σ′

1, σ2, σ
′
2, ..., σm, σ′

m},

σ⊤
1

(

e−
β
m

Hce−
β
m

Hq

)m

σ1

=
∑

σ′

1

∑

σ2

...
∑

σm

∑

σ′

m

σ⊤
1 e

− β
m

Hcσ′
1σ

′⊤
1 e−

β
m

Hqσ2

· · ·σ⊤
me−

β
m

Hcσ′
mσ′⊤

m e−
β
m

Hqσm+1

=
∑

σ′

1

∑

σ2

...
∑

σm

∑

σ′

m

m
∏

j=1

σ⊤
j e−

β
m

Hcσ′
jσ

′⊤
j e−

β
m

Hqσj+1,

(A.4)

where σm+1 = σ1. To express Eq.(A.4) more partic-
ularly, we use the following Lemma Appendix A.1
and Lemma Appendix A.2.

Lemma Appendix A.1.

σ⊤
j e

− β
m

Hcσ′
j =exp

[

− β

m
E(σj)

]

δ(σj , σ
′
j), (A.5)

where δ(σj , σ
′
j) = 1 if σj = σ′

j and δ(σj , σ
′
j) = 0

otherwise.

Proof. By the definition, e−
β
m

Hc is diagonal with

[e−
β
m

Hc ]kk = E(σ(k)), and σj and σ′
j are binary

indicator vectors, i.e. only one element in σj is one
and the others are zero. Thus, the above lemma
holds.

Lemma Appendix A.2.

σ′⊤
j e−

β
m

Hqσj+1 =

[

sinh

(

β

m
Γ

)]2N

exp

[

N
∑

i=1

N
∑

n=1

δ(σ̃′
j,i,n, σ̃j+1,i,n) log coth

(

β

m
Γ

)

]

.

(A.6)

Proof. Using (A⊗B)(C ⊗D) = (AC)⊗ (BD) and

4If A1A2 = A2A1, then eA1+A2 = eA1eA2 .
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eA1+A2 = eA1eA2 when A1A2 = A2A1, we find,

σ′⊤
j e−

β
m

Hqσj+1 =σ′⊤
j e−

β
m

{−Γ
∑N

i=1

∑N
n=1 σx

i,n}σj+1

=σ′⊤
j

(

N
⊗

i=1

N
⊗

n=1

e
β
m

Γσx
i,n

)

σj+1

=

N
∏

i=1

N
∏

n=1

σ̃′
⊤

j,i,ne
β
m

Γσx

σ̃j+1,i,n.

(A.7)

Note that σj =
⊗N

i=1

⊗N

n=1 σ̃j,i,n.

e
β
m

Γσx

=

∞
∑

l=0

1

l!

(

β

m
Γσx

)l

=

[

1 +
1

2!

(

β

m
Γ

)2

+ · · ·
]

E

+

[

β

m
Γ +

1

3!

(

β

m
Γ

)3

+ · · ·
]

σx

=cosh

(

β

m
Γ

)

E+ sinh

(

β

m
Γ

)

σx. (A.8)

Substituting Eq.(A.8) into Eq.(A.7), we have
Eq.(A.6) because

σ̃′
⊤

j,i,n

[

cosh

(

β

m
Γ

)

E+ sinh

(

β

m
Γ

)

σx

]

σ̃j+1,i,n

= cosh

(

β

m
Γ

)

δ(σ̃′
j,i,n, σ̃j+1,i,n)

+ sinh

(

β

m
Γ

)

(1− δ(σ̃′
j,i,n, σ̃j+1,i,n)) (A.9)

Using Lemma Appendix A.1 and Lemma
Appendix A.2 into Eq.(A.4),

σ⊤
1

(

e−
β
m

Hce−
β
m

Hq

)m

σ1

=
∑

σ2

· · ·
∑

σm

m
∏

j=1

exp

[

− β

m
E(σj)

] [

sinh

(

β

m
Γ

)]2N

exp

[

N
∑

i=1

N
∑

n=1

δ(σ̃′
j,i,n, σ̃j+1,i,n) log coth

(

β

m
Γ

)

]

.

(A.10)

and from Eq.(A.3), we have shown,

pQA(σ1;β,Γ) ≈
∑

σ2

· · ·
∑

σm

pQA-ST(σ1, σ2, ..., σm;β,Γ).

(A.11)

The same relation holds for σ2, σ3, · · · , σm.

Appendix B. Derivation of Eq.(4)

Since

pQA(σ̃j,i|{σd}md=1\{σ̃j,i};β,Γ)
∝ e−

β
m

E(σj)ef(β,Γ)(s(σj−1,σj)+s(σj ,σj+1)), (B.1)

we have

pQA(σ̃j,i|{σd}md=1\{σ̃j,i};β,Γ) ∝










































(

∑N
n=1,n6=i δ(σ̃j,i,n, (1, 0)

⊤)

N − 1 + α

)

β
m

es̃(σ̃j−1,i,σ̃j,i,σ̃j+1,i)f(β,Γ),

if σ̃j,i ∈ Σ̃j,i\{ρ(i)2N−1},
(

α

N − 1 + α

)
β
m

, if σ̃j,i = ρ
(i)
2N−1,

0 if σ̃j,i 6∈ Σ̃j,i,

(B.2)

s̃(σ̃j−1,i, σ̃j,i, σ̃j+1,i)

=

N
∑

n=1,n6=i

δ(σ̃j−1,i,n, σ̃j,i,n) +

N
∑

n=1,n6=i

δ(σ̃j,i,n, σ̃j+1,i,n).

(B.3)

This is easy to understand when you consider the
meaning of s̃(σ̃j−1,i, σ̃j,i, σ̃j+1,i) in multiple CRPs.
s̃(σ̃j−1,i, σ̃j,i, σ̃j+1,i) indicates the number of cus-
tomers who share tables with the i-th customer in
the j − 1-th and j + 1-th CRPs. Therefore, Eq.(4)
is derived as another formulation of Eq.(B.2). Note
that Eq.(4) is the approximation of Eq.(13).

Appendix C. Details of Network Model

In this section, we explain the Newman network
model. V is the vertex set. v is a vertex; i.e.,
v ∈ V . V is the number of vertices. K is the num-
ber of classes. Suppose that the vertices fall into K
classes with probability π, where πk is the proba-
bility that a vertex is assigned to class k. Vertex i
belongs to class k, indicated by zi = k. Each class
has a probability φkv that a link from a particu-
lar vertex in class k connects to vertex v. A link
from vertex i to vertex v is indicated by ℓi = v.
Each vertex links to other vertices in accordance
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with φ. That is, vertex i links to vertex v in accor-
dance with φziv. The generation process for link ℓi
is represented by ℓi ∼ Multi(φzi), zi ∼ Multi(π),
where φzi = (φzi1, φzi2, · · · , φziV ), and Multi(·) is
a multinomial distribution.
Suppose that φt is distributed in accordance with

the Dirichlet distribution H(τ); i.e., φk ∼ H(τ),
where τ is a parameter of the Dirichlet distribution.
G is a random probability measure over φ: G ∼
DP(α,H(τ)), where DP(·) indicates the Dirichlet
process (DP), α is the DP concentration parameter
that is equal to the hyper parameter of the CRP,
and H is the base measure, which is the Dirichlet
distribution here. The generation process for link
ℓi is represented by ℓi ∼ Multi(φzi), φzi ∼ G.
Here, we define A as an adjacency matrix with

elements Aiv = 1 if there is an edge from i to v;
otherwise Aiv = 0. The probability of zi given
z−i = {z}\zi and adjacency matrix A is

p(zi = k|A, z−j ;α) ∝
p(Ai|zi = k,A−i, z−i)p(zi = k|z−i;α), (C.1)

where Ai = (Ai1, Ai2, · · · , AiV ), and A−i = A\Ai.
We can calculate the probability of Eq.(C.1) as

follows.

p(Ai|zi = k,A−i, z−i) =

g(V τ +
∑

u6=i

∑

v Auvz
k
u)

g(V τ +
∑

u

∑

v Auvzku)

∏

v

g(τ +
∑

u Auvz
k
u)

g(τ +
∑

u6=j Auvzku)
,

(C.2)

where g(·) is the gamma function, and zki indicates
1 if zi = k; otherwise, it indicates 0.

p(zi = k|z−i;α) =











N−i
k

V − 1 + α
(if k previously used.)

α

V − 1 + α
(if k is new.)

,

(C.3)

where N−i
k is the number of vertices except vertex

i assigned to class k; i.e., N−i
k =

∑

v 6=i z
k
v . We can

adapt a Gibbs sampler for estimating zi by using
Eq. (C.1).
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