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Abstract

The paper proposes a novel iterative control scheme based on neural networks for optimally controlling a large class
of nonlinear discrete-time systems affected by an unknown time variant delay and system uncertainties. An iterative
Dual Heuristic dynamic Programming (DHP) algorithm has been envisaged to design the controller which is proven
to converge to the optimal one. The key elements required by the DHP, namely the performance index function,
the optimal control policy and the nonlinear delay-affected discrete-time system are modeled with feedforward neural
networks. Examples demonstrate the validity of the proposed optimal control approach and its effectiveness in dealing
with nonlinear time delay situations.
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1. Introduction

Time delay is a widespread phenomenon in industri-
al processes either arising from the inherent time de-
lay introduced by the elements composing the system,
or from intentional actions considered for control pur-
poses [1],[2].Because of time delay, state variables can-
not timely reflect changes in the system, resulting in re-
duced performance of the controller. The presence of
time delay in a process makes the analysis and design of
the control system a complex task which, however, can-
not be avoided. In this direction, [3] and [4] proposed
a PID control approach to control time delay system-
s. In [5] an algebraic Riccati equation approach is pre-
sented to derive the memoryless linear state feedback
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control scheme for uncertain dynamic delay systems.
[6] developed a stabilizing controller for a class of time
delay nonlinear systems based on the constructive use
of appropriate Lyapunov-Krasovskii functionals. Lin-
ear matrix inequality (LMI) method is used in [7, 8] to
design state-feedback controller for the linear time de-
lay systems and a new Lyapunov-Krasovskii functional
is proposed for robust stability analysis. [9] used the
T-S fuzzy model to represent the state-space model of
nonlinear discrete-time systems with time delays and a
stable fuzzy H∞ filter was designed for signal estima-
tion. In [10] the discrete time delay system is trans-
formed into a non-delayed system by a function-based
transformation; an optimal tracking controller is con-
structed by solving Riccati matrix equation and Stein
matrix equations. A simultaneous state and disturbance
estimation technique is developed for time delay sys-
tems and applied to fault estimation and signal compen-
sation in [11]. However, the above theories and methods
are either limited to linear time delay systems or trans-
form the nonlinear time delay systems into linear ones
by fuzzy method or robust method, which may cause
oscillation in the case of large or a time-variant delay.
Generally the optimal control of time delay systems is
an infinite-dimensional control problem [12], which is
very difficult to deal with, thus some advanced control
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methods must be developed to design the optimal con-
troller.

In [13] an approach based on Adaptive Dynamic Pro-
gramming (ADP) has been proposed which is shown to
be effective in solving dynamic programming problems
by learning a model approximating the Bellman equa-
tion [14]. More in detail, ADP builds the ’Critic’ and
the ’Action’ functions, to approximate the value and the
control policy functions, respectively. There are sev-
eral main variants of ADP [15, 16]: Heuristic Dynam-
ic Programming (HDP), Dual Heuristic dynamic Pro-
gramming (DHP), Globalized Dual Heuristic dynamic
Programming (GDHP), which differentiate in the out-
put provided by the critic function. A first attempt to
use ADP to deal with the optimal control of time delay
systems can be found in [12] and [17] where an optimal
control scheme for a class of nonlinear systems charac-
terized by a time delay in the state and control variables
was developed. [18] proposed a new iterative HDP al-
gorithm to solve the optimal control problem for a class
of nonlinear discrete time-delay systems with saturating
actuators. An HDP algorithm was also proposed in [19]
to solve the optimal tracking control problem for a class
of nonlinear discrete-time systems with time delays. For
the optimal control problem of a class of nonlinear time-
delay systems with control constraints, [20] introduced
a nonquadratic performance functional to overcome the
control constraints and proposed an iterative HDP algo-
rithm to design the optimal feedback controller.

Different from HDP, where a critic network is built
to model the cost function, in DHP the partial deriva-
tives of the cost function with respect to its inputs are
modeled instead [21], [22]. The critic network of DHP
hence provides a vectored output in-stead of a scalar as
given by the HDP, and each component of the vector is
used to regulate the parameters of the action separate-
ly. It comes out that DHP is also more appropriate to
characterize a multiple input-output system. Up to the
best of our knowledge, there are no methods proposing
a solution of the optimal control problem for time delay
systems by means of a DHP technique. This motivates
our research.

More specifically, in this paper we propose a nov-
el iterative DHP algorithm to optimally control a rel-
evant class of nonlinear discrete-time systems affected
by time delay and system uncertainties. Moreover, it is
proved that the iterative algorithm converges to the op-
timal controller for the class of systems. The iterative
DHP algorithm models the requested functions through
feedforward neural networks, as suggested in [23].

The paper is organized as follows. Section 2 formal-
izes the control problem. The optimal control scheme

based on iterative DHP algorithm is developed in sec-
tion 3. Section 4 discusses the neural network imple-
mentation for the iterative DHP algorithm. Finally, ex-
perimental results are given in section 5.

2. Problem Formulation

Consider the relevant class of nonlinear discrete-time
delay systems proposed in [8]

x(k + 1) = (A + ∆A)x(k) + (Ad + ∆Ad)x(k − τ(k))
+ (B + ∆B)u(k) + f (x(k), x(k − τ(k))) (1)

where x(k) ∈ Rn and u(k) ∈ Rm denote the state and
input vectors at time instant k, respectively. A, Ad and
B are constant matrices of appropriate dimensions. ∆A,
∆Ad and ∆B are uncertain matrices. f (x(k), x(k−τ(k))) :
Rn × Rn → Rn is the nonlinear mapping also function of
the delayed states. τ(k) is the unknown time-varying
delay function bounded by constant b, such that 0 ≤
τ(k) ≤ b. The initial state is given by x(s) = ϕ(s), −b ≤
s ≤ 0 ; we assume system (1) to be controllable [24].

Remark 1 (taken from [8]). The uncertain pa-
rameters are assumed to be bounded with the form
[∆A ∆Ad ∆B] = HF[E1 E2 Ed], where F is an un-
known matrix satisfying FT F ≤ I, E1, E2, Ed and H are
constant matrices describing the uncertainty structure.
The nonlinear uncertainty f is assumed to satisfy

f T f ≤
[

xT (k)
xT (k − τ(k))

]T [HT
1 H1 0
0 HT

2 H2

] [
xT (k)

xT (k − τ(k))

]
Remark 2. It should be noted that many physical pro-

cesses are governed by nonlinear differential equations
of the form (1), e.g., the cold rolling mills [2] and re-
cycled chemical reactors [25]. (1) refers to time delays
affecting the system state only, which is one of the com-
mon circumstances arising in many real systems. Con-
sider the quadratic performance index function:

V(x(k)) =
∞∑

k=0

{xT (k)Qx(k) + uT (k)Ru(k)

− γ2xT (k − τ(k))x(k − τ(k))} (2)

where Q and R are positive definite matrices and γ is a
prescribed positive constant. Optimal control requires
the identification of the control policy u(x(k)) = u(k)
that minimizes equation (2). Let V∗(x(k)) be the optimal
performance index function

V∗(x(k)) = min
u(k)

V(x(k)) (3)



We comment that the state feedback control policy u(k)
must stabilize the system (1) on Rn, as well as guarantee
that the performance index function (2) is finite. From
[26, 27] a control policy u(k) is defined to be admissible
with respect to function

V(x(k)) =
∞∑

i=k

{xT (i)Qx(i) + uT (i)Ru(i)}

if u(k) is continuous and stabilizes (1) on Rn, u(0) = 0,
and ∀x(0) ∈ Rn, V(x(0)) is finite. Since (2) is a special
case of the above function and hypotheses are satisfied,
the control policy for (2) is admissible. Equation (2) can
be rewritten as

V(x(k)) = xT (k)Qx(k) + uT (k)Ru(k)

− γ2xT (k − τ(k))x(k − τ(k)) + V(x(k + 1)) (4)

According to Bellman’s optimality principle [28], it
follows that the optimal performance index function
V∗(x(k)) satisfies the discrete-time Hamilton-Jacobi-
Bellman (DTHJB) equation

V∗(x(k)) = min
u(k)
{xT (k)Qx(k) + uT (k)Ru(k)

− γ2xT (x − τ(k))x(k − τ(k)) + V∗(x(k + 1))}
(5)

and the corresponding optimal control policy u∗(k) is

u∗(x(k)) = arg min
u(k)
{xT (k)Qx(k) + uT (k)Ru(k)

− γ2xT (x − τ(k))x(k − τ(k)) + V∗(x(k + 1))}
(6)

The optimal control law u∗(k) follows by differentiating
the argument of the minu(k) function of (5) with respect
to u(k), i.e.,

∂(xT (k)Qx(k) + uT (k)Ru(k))
∂u(k)

−γ
2xT (x − τ(k))x(k − τ(k)))

∂u(k)

+(
∂x(k + 1)
∂u(k)

)T ∂V
∗(x(k + 1))
∂x(k + 1)

= 0

from which we obtain

u∗(k) = −1
2

R−1(B + ∆B)T ∂V
∗(x(k + 1))
∂x(k + 1)

(7)

3. Optimal Control Based on an Iterative DHP Al-
gorithm

3.1. Derivation of the iterative DHP algorithm
The iterative DHP algorithm can be derived by rely-

ing on the greedy iteration principle where we update

both the value function and control policy at the same
iteration. Start with the initial value V0(·) = 0. The
control vector u0(k) can be computed as

u0(x(k)) = arg min
u(k)
{xT (k)Qx(k) + uT (k)Ru(k)

− γ2xT (x − τ(k))x(k − τ(k)) + V0(x(k + 1))}
(8)

By knowing the control policy u0(k) we can compute
the performance index function V1(x(k))

V1(x(k)) = min
u(k)
{xT (k)Qx(k) + uT (k)Ru(k)

− γ2xT (x − τ(k))x(k − τ(k)) + V1(x(k + 1))}
= xT (k)Qx(k) + uT

0 (k)Ru0(k)

− γ2xT (x − τ(k))x(k − τ(k)) (9)

The state vector is then updated as

x0(k + 1) = (A + ∆A)x0(k) + (Ad + ∆Ad)x0(k − τ(k))
+ (B + ∆B)u0(k) + f (x0(k), x0(k − τ(k)))

(10)

The algorithm then iterates over index i yielding the
control policy

ui(x(k)) = arg min
u(k)
{xT (k)Qx(k) + uT (k)Ru(k)

− γ2xT (x − τ(k))x(k − τ(k)) + Vi(x(k + 1))}

= −1
2

R−1(B + ∆B)T ∂Vi(x(k + 1))
∂x(k + 1)

(11)

associated with the performance index function

Vi+1(x(k)) = min
u(k)
{xT (k)Qx(k) + uT (k)Ru(k)

− γ2xT (x − τ(k))x(k − τ(k)) + Vi(x(k + 1))}
= xT (k)Qx(k) + uT

i (k)Rui(k)

− γ2xT (x − τ(k))x(k − τ(k)) + Vi(x(k + 1))
(12)

and the state vector

xi(k + 1) = (A + ∆A)xi(k) + (Ad + ∆Ad)xi(k − τ(k))
+ (B + ∆B)ui(k) + f (xi(k), xi(k − τ(k))) (13)

We recall that k is the time index and i the iteration in-
dex for the control policy and the performance index
function. We now need to prove that the suggested itera-
tive algorithm converges to the optimal control solution.
This will be done in the next section.



3.2. Convergence proof of the iterative DHP algorithm

To demonstrate the convergence of the algorithm pro-
posed in section 3.1, we follow the framework delineat-
ed in [26, 27]. At first we show that value Vi in (11)
converges to V∗ and that ui in (12) converges to u∗ as i
tends to infinity.

Lemma1
Let Vi be the performance index function of (12) and
Λi defined with the recurrent form

Λi+1(x(k)) = xT (k)Qx(k) + µT
i (k)Rµi(k)

− γ2xT (k − τ(k))x(k − τ(k)) + Λi(x(k + 1))
(14)

For any arbitrary sequence of control policies {µi}
and policies {ui} in (11), if V0(·) = Λ0(·) = 0, then
Vi+1(x(k)) ≤ Λi+1(x(k)),∀i.

Proo f . The proof immediately follows by noting that
Vi+1 can be obtained by minimizing the right hand for-
mula of (12) with respect to ui, while Λi+1 is a result of
any arbitrary control input.

Lemma2
Given sequence {Vi+1} of (12), if the system is con-

trollable, then there it exists an upper bound ε so that
0 ≤ Vi+1(x(k)) ≤ ε,∀i.

Proo f . Choose {µ̄i} as any stabilizing and admissible
control policy sequence, Vi as in (12) and Λ̄i

Λ̄i+1(x(k)) = xT (k)Qx(k) + µ̄T
i (k)Rµ̄i(k)

− γ2xT (k − τ(k))x(k − τ(k)) + Λ̄i(x(k + 1))
(15)

with V0(·) = V̄0(·) = 0, then, we have that

Λ̄i+1(x(k)) − Λ̄i(x(k)) = Λ̄i(x(k + 1)) − Λ̄i−1(x(k + 1))
= Λ̄i−1(x(k + 2)) − Λ̄i−2(x(k + 2))
...

= Λ̄1(x(k + i)) − Λ̄0(x(k + i))
(16)

Since Λ̄0(·) = 0, (16) can be rewritten as

Λ̄i+1(x(k)) = Λ̄1(x(k + i)) + Λ̄i(x(k))
= Λ̄1(x(k + i)) + Λ̄1(x(k + i − 1)) + Λ̄i−1(x(k))
...

= Λ̄1(x(k + i)) + Λ̄1(x(k + i − 1))
+ Λ̄1(x(k + i − 2)) + · · · + Λ̄1(x(k)) (17)

(17) becomes

Λ̄i+1(x(k)) =
i∑

j=0

Λ̄1(x(k + j))

≤
∞∑
j=0

{xT (k + j)Qx(k + j) + µ̄T (k + j)Rµ̄(k + j)

− γ2xT (k + j − τ(k))x(k + j − τ(k))} (18)

Since µ̄i is a stabilizing and admissible control input
(x(k)→ 0 as k → ∞),

Λ̄i+1(x(k)) ≤
∞∑
j=0

Λ̄1(x(k + j)) ≤ ε,∀i. (19)

holds. By applying Lemma 1, we have that

Vi+1(x(k)) ≤ Λ̄i+1(x(k)) ≤ ε,∀i. (20)

We now present the main theorem.
Theorem1
Define the sequence {Vi} as in (12) with V0(·) = 0.

Then {Vi} is a nondecreasing sequence satisfying in-
equality Vi+1(x(k)) ≥ Vi(x(k)),∀i, and converging to the
optimal value function of the DTHJB equation (5), i.e.,
Vi → V∗ as i→ ∞.

Proo f . Define Λ̃i as

Λ̃i+1(x(k)) = xT (k)Qx(k) + uT
i+1(k)Rui+1(k)

− γ2xT (k − τ(k))x(k − τ(k)) + Λ̃i(x(k + 1))
(21)

where V0(·) = Λ̃0(·) = 0, and the control policy ui as in
(11). The proof follows in two steps. At first we show
that Λ̃i(x(k)) ≤ Vi+1(x(k)) by induction.

Since

V1(x(k)) − Λ̃0(x(k)) = xT (k)Qx(k) ≥ 0

we have that
V1(x(k)) ≥ Λ̃0(x(k))

Assume now that Vi(x(k)) ≥ Λ̃i−1(x(k)),∀x(k). Then
from (12) and (21), we obtain

Vi+1(x(k))− Λ̃i(x(k)) = Vi(x(k+ 1))− Λ̃i−1(x(k+ 1)) ≥ 0

from which
Vi+1(x(k)) ≥ Λ̃i(x(k)) (22)

Lemma 1 now grants that Vi+1(x(k)) ≤ Λ̃i(x(k)) and,
therefore

Vi(x(k)) ≤ Λ̃i(x(k)) ≤ Vi+1(x(k))



namely,
Vi(x(k)) ≤ Vi+1(x(k))

{Vi} is a nondecreasing sequence bounded thanks to
Lemma 2.As such, we can conclude that Vi →
V∗ as i→ ∞.

We just proved that the value function sequence of the
DTHJB equation converges to the optimal value. Corre-
spondingly, the control sequence also converges to the
optimal one.

3.3. The proposed iterative DHP algorithm

1. Give the initial states x(s) = ϕ(s),−m ≤ s ≤ 0,
the maximum number of iterations imax and
the computation accuracy ε;

2. Set i = 0; V0(·) = 0;
3. Compute u0(k) according to (8);

compute the performance index function
V1(x(k)) as in (9);

4. Compute the next state x0(k + 1) according to
(10);

5. do {
6. i = i + 1; Compute ui(k) for i ≥ 1 as in (11);

Update the state vector xi(k + 1) by (13);
7. Compute the value Vi(x(k)) according to (12);
8. }while (∥Vi+1(x(k)) − Vi(x(k))∥ ≥ ε

and i ≤ imax)
Algorithm 1: the iterative DHP algorithm

Starting from the initial state vector X =

[x0(k) x0(k − τ(k))]T the DHP algorithm iterates.
With V0(·) = 0, we can get u0(k) by (8). Then the
next value function V1(x(k)) can be computed as in (9).
The next state vector can be obtained by (10). Step
by step, we can compute ui(k) as in (11), update the
state vector xi(k + 1) by (13), and compute the value
Vi(x(k)) according to (12). In this way the algorithm
iterates until the value function V(x(k)) converges to a
small constant ε. To make sure the iteration procedure
is continuous, we experimentally choose a maximum
number of iterations imax. If the value function can’t
converge to ε, which means that the trail failed, imax can
be used to avoid the stuck of the training process.

4. Neural Networks Implementation for the Itera-
tive DHP Algorithm

As with [23] we approximate the control policy ui(k)
and the performance index function Vi(x(k)) with static
feedforward neural networks.

Figure 1 presents a schematic diagram of the iterative
DHP algorithm. There are three components, each of
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Figure 1: A schematic representation of the DHP algorithm.

which modeled with a neural network: the model net-
work, the critic network, and the action network, which
approximate the nonlinear discrete-time delay system,
the performance index function and the optimal control
policy, respectively. In this paper, all the three networks
are chosen as feedforward neural networks with a sin-
gle hidden layer and a linear output. The approximating
functions exposed by the network is

F̂(X, v,w) = wTσ(vT X) (23)

where X is the input vector with appropriate dimension,
v is the weight matrix between the input layer and the
hidden layer and w is the weight matrix between the
hidden layer and the output layer [23]. The activation
function of the hidden units σ(vT X) ∈ Rl is chosen to
be the hyperbolic tangent. The number of hidden units
l is determined with a trial and error approach so as to
minimize the validation set.

The training procedure provides the weights v∗ and
w∗ and, hence, the approximation function F(X, v∗,w∗).
Networks are trained with a gradient-based algorithm.

4.1. The Model network

The model network is used to model the system to be
controlled, As such, the model network must be config-
ured before carrying out the iterative algorithm. The in-
puts to the model network are x(k), x(k − τ(k)) and u(k),
and produce output

x̂i(k + 1) = F̂i(X, v,w) (24)

where X = [xi(k) xi(k − τ(k)) ui(k))]T .
The weights of the model network are frozen once

training is perfected.

4.2. The Critic network

The critic network approximates the partial deriva-
tives of the performance index function, λi(x(k)) =



∂Vi(x(k))/∂x(k). The input is the state variable x(k), the
output of the critic network is

λ̂i(k) = F̂i(x(k), v,w) (25)

Once the critic and the model networks have been con-
figured, the performance index function can be comput-
ed as

λi+1(x(k)) =
∂(xT (k)Qx(k) + uT

i (k)Rui(k)
∂x(k)

− ∂(γ
2xT (x − τ(k))x(k − τ(k)))

∂x(k)
+
∂V̂i(x(k + 1))
∂x(k)

= 2Qx(k) + (
∂x(k + 1)
∂x(k)

)T λ̂i(x(k + 1)) (26)

4.3. The Action network

The action network is needed to approximate the con-
trol policy ui(k). The states x(k), x(k − τ(k)) are used as
inputs vector to obtain the optimal control ûi(k) and the
output is

ûi(k) = F̂i(X, v,w) (27)

where X = [xi(k) xi(k − τ(k))]T . Training is computed
by considering the reference control input

ui(k) = −1
2

R−1(B + ∆B)T λ̂i(x(k + 1)) (28)

5. Experiments

An experimental campaign is carried out to demon-
strate the effectiveness of the iterative DHP algorithm
in solving the optimal control problems of the delayed
nonlinear system. In the following we first choose a
typical example and a three order system to verify the
effectiveness of the proposed DHP algorithm, and then
apply the approach to the typical two-stage chemical re-
actor with delayed recycle streams.

5.1. Example 1: A typical case

Consider the nonlinear discrete-time delay system
(1):

A =
[

0 1
−1 1

]
, B =

[
0
1

]
,

Ad =

[
0.3 0.2
0.2 0.3

]
,H =

[
0.1 0 0.1
0 1 0

]
,

E1 =

1 1
0 0
0 0

 , E2 =

010
 , Ed =

0 0
0 0
1 1

 , F = cos(k),

The time delay is set to be τ(k) = 2 for training.
The initial state is x(k) = [1 − 1]T for −2 ≤ k ≤ 0.
The performance index function is defined as (2), where
Q = R = I, γ2 = 0.1. In order to implement the iterative
DHP algorithm, we adopt similar experimental setup as
in [17], similarly hereinafter. We selected three-layer
feedforward neural networks to approximate the mod-
el network, the critic network, and the action network.
The structures of the networks are 5-8-2,2-8-2,4-8-1, re-
spectively. Model network training was performed over
10000 data. Similarly, we trained the critic and the ac-
tion networks. The initial weights of the neural net-
works are all chosen randomly in [−0.5, 0.5].

Table 1: The performance comparison of DHP and HDP
Delay times DHP HDP
τ(k) ts(time steps) ess(%) ts(time steps) ess(%)

1 20 0 31 0
2 24 0 40 0

Rand[1,5] 63 0.37 −−1 −−
1. ′ − −′ means HDP cannot stabilize in 100 time steps. Similarly
hereinafter.

To compare results we implemented the iterative HD-
P algorithm of [17]. After training, we applied the opti-
mal control law designed by the iterative DHP algorith-
m and the corresponding HDP one for 100 time steps.
The main performance indexes such as the settling time
ts and the steady-state error ess are considered, and the
delay increases from 1 to 4 time steps. To further veri-
fy the validity and the robustness of the designed opti-
mal control law, we set the delay τ(k) as a time-variant
discrete function, which outputs a random integral fol-
lowing an uniform distribution within the [1,5] interval.
The performances of the iterative DHP and HDP algo-
rithms are given in Table 1. The state trajectories are
shown in Figure 2 and Figure 4, respectively.

It emerges that the suggested iterative DHP algorith-
m performs better than the HDP one. By varying the
delay, the DHP always needs less settling time than the
HDP one, and the DHP has little steady-state error. Fur-
thermore, the time-variant delay has been dealt with ef-
fectively, which confirms the robustness of the iterative
DHP algorithm.

Remark 3. It should be noted that when time-variant
delays (see Figure 3) are added into the system, the DHP
algorithm cannot succeed in each simulation. In fact,
severe oscillation can occur due to the uncertain time
delay. Nevertheless, the DHP always performs better
than HDP.
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Figure 2: The state trajectories x with constant time delay (τ = 2).
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Figure 4: The state trajectories x with time-variant delay.

5.2. Example 2: A three order system
Consider the three order nonlinear discrete-time de-

lay system (1)(modified from [8]):

A =

 0.7 0 −0.5
0.05 0.8 0

0 0.3 0.6

 , B =
0.30
0.6

 ,

Ad =

−0.2 0 0
0 −0.1 0.1
0 0 −0.2

 ,H = [0.1 0 0.2
]
,

E1 =
[
0.2 0 0.3

]
, E2 = 0.4, Ed = 0, F = sin(k),

f (x(k), x(k − τ(k))) =

 x2(k − τ(k)) · x3(k − τ(k))
0

x1(k − τ(k)) · sin(x2(k − τ(k)))

 .
The time delay is set to be τ(k) = 2 during training.

The initial state is x(k) = [1 − 1 1]T for −2 ≤ k ≤ 0.
The performance index function is defined as (2), where
Q = R = I, γ2 = 0.1. We trained the relevant neural
networks as above.
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Figure 5: The state trajectories x with constant time delay(τ = 2).

To compare results we implemented the iterative HD-
P algorithm of [17] and the optimal guaranteed cost con-
troller of [8]. The performances of the iterative DHP, the
HDP and the optimal guaranteed cost control algorithm-
s are given in Table 2. The state trajectories are shown
in Figure 5 and Figure 6, respectively.

Table 2 shows that with different constant time de-
lay, the DHP always need less settling time and has lit-
tle steady-state error compared with the HDP one and
the guaranteed cost controller. When dealing with time-
variant delay (see Rand[4, 8] in Table 2), the DHP still
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Figure 6: The state trajectories x with time-variant delay.

Table 2: The performance comparison of DHP, HDP and guarnteed
cost control

Delay times DHP HDP guaranteed cost
τ(k) ts ess(%) ts ess(%) ts ess(%)

1 12 0 13 0 15 0
2 14 0 21 0 21 0
3 18 0 25 0 26 0
4 21 0 41 0 35 0

Rand[4,8] 57 0.56 −− −− 61 0.67

performs fairly well as the guaranteed cost controller.
Once again, the proposed controller is able to deal with
the time-variant delay, hence showing the robustness of
the iterative DHP algorithm.

5.3. Example 3: A two-stage chemical reactor with de-
layed recycle streams

A practical example of a two-stage chemical reactor
with delayed recycle streams is considered as a third ex-
ample. The mass balance equations governing the reac-
tor shown in Figure 7 [11] are:

ẋ1(t) = − 1
θ1

x1(t) − a1x1(t) + 1−R2
V1

x2(t) + δ1(t, x2(t − τ))
ẋ2(t) = − 1

θ2
x2(t) − a1x1(t) + R1

V2
x1(t − τ) + R2

V2
x2(t − τ)

+ G
V2

u + δ2(t, x1(t − τ))

where x1 and x2 are the reaction compositions, θ1 and
θ2 are the reactor residence times, a1 and a2 are the re-

action constants, R1 and R2 are the recycle flow rate, V1
and V2 are the reactor volumes, G is the feed rate, δ1
and δ2 are uncertain nonlinear functions with time de-
lay. The parameters are given as follows: θ1 = θ2 = 1,
a1 = a2 = 1, R1 = R2 = 0.5, V1 = V2 = 1, τ = 2,
δ1(t, x2(t − τ)) = ρsin(t)x2

2(t − τ), δ2(t, x1(t − τ)) =
ρsin(t)x2

1(t − τ). We define ρ as amplitude of the un-
certainties, which means that different ρ has different
effect to the system.

2 2, ( )R x t t-

1 1, ( )R x t t-

2 ( )x t

1( )x t

( )u t

Reactor

2

Reactor

1

Figure 7: Two-stage chemical reactor with delayed recycle streams.

Discretization of the above system is firstly made. By
applying the iterative DHP algorithm proposed in the
paper, the results are shown in Figure 8 and Figure 9.
The state trajectories show that the system with constant
time delay can be controlled to stable in time. For the
time variant delay, the controller performs well with ac-
ceptable oscillation.

Table 3: The performance comparison of DHP and reference [11] with
different uncertainties

Uncertainties DHP Feedback control in [11]
ρ ts ess(%) ts ess(%)

0.1 23 0 47 0
0.2 31 0.02 53 0.08
0.3 93 0.13 NaN NaN
0.4 118 0.30 NaN NaN
0.5 NaN NaN NaN NaN

To further compare the robust performance of the it-
erative approach we consider the output feedback con-
troller presented in [11]. The control input is u =
−Fx1+v, where v is the reference input, and F is the out-
put feedback gain. Here, we set v = 0, F = 4. Results
are given in Table 3. When the uncertainties increase,
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Figure 8: The state trajectories x with constant time delay (τ = 2).
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Figure 9: The state trajectories x with time-variant delay.

the DHP algorithm shows improved performance, while
the feedback controller in [11] cannot guarantee stabili-
ty with such a large uncertainty.

We can make conclusion from the above results that
the iterative DHP algorithm presented in this paper
overcomes the effect of time delay perfectly and its ro-
bustness is very good.

6. Conclusions

The paper proposes a novel iterative algorithm for op-
timally controlling systems represented by a large class
of nonlinear discrete-time systems affected by an un-
known time variant delay and system uncertainties. The
iterative DHP algorithm has been envisaged to design
the optimal controller and was shown to converge to

the optimal controller. Three feedforward neural net-
works have been considered to ap-proximate the key el-
ements required by the DHP, namely the performance
index function, the optimal control policy and the sys-
tem, respectively. Simulation results show the improved
performance of the proposed optimal control approach.
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