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Abstract

Radial Basis Functions Neural Networks (RBFNNs) are tools widely used in regression problems. One of their principal drawbacks
is that the formulation corresponding to the training with the supervision of both the centers and the weights is a highlynon-convex
optimization problem, which leads to some fundamentally difficulties for traditional optimization theory and methods. This paper
presents a generalized canonical duality theory for solving this challenging problem. We demonstrate that by sequential canonical
dual transformations, the nonconvex optimization problemof the RBFNN can be reformulated as a canonical dual problem (without
duality gap). Both global optimal solution and local extrema can be classified. Several applications to one of the most used Radial
Basis Functions, the Gaussian function, are illustrated. Our results show that even for one-dimensional case, the global minimizer
of the nonconvex problem may not be the best solution to the RBFNNs, and the canonical dual theory is a promising tool for solving
general neural networks training problems.

1. Introduction

Radial Basis Function Neural Networks(RBFNN) are a tool
introduced in the field of function interpolation [1] and then
were adapted to the problem of regression [2]. During the last
two decades RBFNN were applied in several fields. The prob-
lem of regression consists in trying to approximate a function
f : Rn → R by means of an approximation functiong(·) that
uses a set of samples defined as:

T = {(xp, yp), xp ∈ Rn, yp ∈ R, p = 1, ...,P}, (1)

where (xp, yp) are respectively arguments and values of the
given functionf (x). In general the approximating functiong(·)
obtained by the RBFNNs with radial basis functionφ(·) has the
following form:

g(x) =
N

∑

i=1

wiφ(‖x − ci‖), (2)

whereN is the number of units used to approximate the func-
tion, or neurons of the network,w is the vector with compo-
nentswi for i = 1, . . . ,N that is the vector of the weights asso-
ciated with the connections between the unitsx andci ∈ Rn for
i = 1, . . . ,N are the centers of the RBFNNs.

Generally speaking, there are two main optimization strate-
gies to train a RBFNN. The first consists in the optimization
of only the weights of the neural network. In this case the cen-
ters are generally chosen by using clustering strategies [3]. This
problem is a convex problem in the variablew and has the form:

E(w) =
1
2

P
∑

p=1

N
∑

i=1

(wiφ(ci) − yp)2 +
1
2
βw‖w‖2, (3)

whereβw is the regularization parameter for the weights.
The second strategy is to consider both weighterw and the

centersc of the radial basis functions as variables. This strat-
egy can be performed by solving the following unconstrained
optimization problem:

E(w, c) =
1
2

P
∑

p=1

N
∑

i=1

(wiφ(ci) − yp)2 +

1
2
βw‖w‖2 +

1
2
β

N
∑

i=1

n
∑

j=1

c2
ji . (4)

This problem is non-convex, but from empirical experiments
[4] it emerged that it generally yields neural networks withan
higher precision than the ones trained with strategy (3). One of
the most used strategies to solve this optimization problemis to
apply decomposition algorithms [5]. However, due to the non-
convexity of the problem (4), there are some fundamental diffi-
culties to find the global minimum of the problem and to char-
acterize local minima. Indeed, the problem (4) is considered to
be NP-hard even if the radial basis functionφ(c) is a quadratic
function andn = 1 [6, 7]. Another issue that characterizes this
problem is the choice of the regularization parametersβw and
β. In general a cross-validation strategy is applied in orderto
find these regularization parameters. Cross-validation consists
in trying different values of the parameters in order to find the
one that yields the neural network with the best prediction.Un-
til now it was not possible to find a closed form for the optimal
values of these parameters in the general case. If it is possible
to find at least an upper bound for these parameters, the time
needed to perform a cross validation would greatly decrease.

Canonical duality theory developed from nonconvex analysis
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and global optimization [8, 9] is a potentially powerful method-
ology, which has been used successfully for solving a large
class of challenging problems in biology, engineering, sciences
[10, 14, 15], and recently in network communications [11, 13].
In this paper we study the canonical duality theory for solving
the general Radial Basis Neural Networks optimization prob-
lem (4) and mainly analyze one-dimensional case in order to
find properties and intuitions that can be useful for the multidi-
mensional cases. The rest of this paper is arranged as follows.
In Section 2, we first demonstrate how to rewrite the nonconvex
primal problem as a dual problem by using sequential canonical
dual transformation developed in [8, 12]. In Section 3 we prove
the complementarity-dual principle showing that the obtained
formulation is canonically dual to the original problem in the
sense that there is no duality gap. In Section 4, we analyze the
problem with the Gaussian function as radial basis in the neu-
rons and show some examples. The last section presents some
conclusions.

2. Primal problem for general Radial Basis Func-
tions(RBF)

The general one dimensional non-convex function to be ad-
dressed in this paper can be proposed in the following form:

P(c) =W(c) +
1
2
βc2 − f c, (5)

where β is the regularization coefficient and f is a positive
scalar close to zero. The term− f c is not comprised in the orig-
inal Radial Basis Neural Networks formulation but we consider
it for the general mathematical case. The non-convex function
W(c) depends on the choice of the radial basis functionφ(·):

W(c) =
1
2

(

wφ(‖x− c‖2) − y
)2
, (6)

wherex, y andw belong toR. In applications the parameter
w is also a variable, but the original problem (4) is convex in
w while non-convex in respect to the center of the radial basis
functionc. Therefore, the one-dimensional non-convex primal
problem can be formulated as

(P) : min
{

P(c) = 1
2

(

wφ(‖x− c‖2) − y
)2

+ 1
2βc

2 − f c | ∀c ∈ R
}

. (7)

In order to apply the canonical duality theory to solve this
problem, we need to choose the following geometrically non-
linear operator:

ξ = Λ(c) = wφ(‖x− c‖2) : R→ Ea. (8)

Clearly, this is a nonlinear map fromR to a subspaceEa ∈
R, which depends on the choice of the Radial Basis Function
φ(·). The canonical functionassociated with this geometrical
operator is

V(ξ(c)) =
1
2

(ξ(c) − y)2 =W(Λ(c)). (9)

By the definition introduced in the canonical duality theory[9],
V : Ea → R is said to be canonical function onEa if for any
givenξ ∈ Ea, the duality relation

σ = V′(ξ) = {ξ − y} : Ea→ Sa (10)

is invertible, whereSa is the range of the duality mapping
σ = ∂V(ξ), which depends on the choice of the Radial Basis
Functionφ(·). The couple (ξ, σ) forms a canonical duality pair
onEa× Sa with the Legendre conjugateV∗(σ) defined by

V∗(σ) = {ξσ − V(ξ)|σ = V′(ξ)} =
(

1
2
σ2 + yσ

)

. (11)

By considering thatW(c) = Λ(c)σ−V∗(σ), the primal function
P(c) can be reformulated as the so-calledtotal complementarity
functiondefined by

Ξ(c, σ) = Λ(w, c)σ − V∗(σ) +
1
2
βc2 − f c

= wφ(‖x− c‖2)σ −
(

1
2
σ2 + σy

)

+
1
2
βc2 − f c. (12)

The functionφ(·) can be a non convex function just likeW(c).
For this reason we have to perform a sequential canonical dual
transformation for the nonlinear operatorΛ(c). To this aim we
choose a second nonlinear operator:

ǫ = Λ2(c) = ‖x− c‖2 (13)

which is a map fromR toEb = {ǫ ∈ R|ǫ ≥ 0}. In terms ofǫ, the
first level operatorξ = Λ(c) can be written as

ξ = U(ǫ) = wφ(ǫ). (14)

We assume thatU(ǫ) is a convex function onEb such that the
second-level duality relation

τ = U′(ǫ) = wφ′(ǫ) (15)

is invertible, i.e.,

ǫ =
(

φ′
(

τ

w

))−1
, (16)

where the term
(

φ′
(

τ
w

))−1
is the inverse of the functionφ′(ǫ).

Thus, the Legendre conjugate ofU can be obtained uniquely
by

U∗(τ) = τ
(

φ′
(

τ

w

))−1
− wφ

(

(

φ′
(

τ

w

))−1
)

. (17)

We notice thatξ = wφ(ǫ). By substituting the value ofǫ given
by (16) we find a relation that connects the first level primal
variableξ with the second level dual variableτ:

ξ = wφ

(

(

φ′
(

τ

w

))−1
)

. (18)

By plugging this in (10) we obtain

σ = wφ

(

(

φ′
(

τ

w

))−1
)

− y. (19)
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Generally speaking, it is possible, for certain functionsφ, to use
the canonical dual transformation to find the relation between
the first level dual variableσ and the second level dual variable
τ by means of the derivatives ofφ(·) and the first primal variable
ξ. In general this relation is:

τ = wφ′
(

φ−1
(

σ + y
w

))

. (20)

Therefore, replacingU(ξ) = Λ(c) by its Legendre conjugate
U∗, the total complementarity function becomes

Ξ(c, σ, τ) =
(

‖xp − ci‖2τ − U∗(τ)
)

σ

−V∗(σ) +
1
2
βc2 − f c. (21)

It is also possible to rewrite the total complementary function
(21) in the following form:

Ξ(c, σ, τ) =
1
2

c2(2τσ + β) − c(2τσx+ f )

−U∗(τ)σ − V∗(σ) + x2τσ. (22)

By the criticality condition∂Ξ(c, σ, τ)/∂c = 0 we obtain

c(τ, σ) =
2τxσ + f
2τσ + β

. (23)

Clearly, if 2τσ + β , 0, the general solution of (23) is

c =
2τxσ + f
2τσ + β

∀(σ, τ) ∈ Sa = {σ, τ| 2τσ + β , 0} (24)

and the canonical dual function ofP(c) can be presented as

Pd(σ, τ) = −1
2

(2τxσ + f )2

2τσ + β
− U∗(τ)σ − V∗(σ) + x2τσ. (25)

By considering dual relation given in (20), and by setting
s(σ) = σ+y

w , we can write the total complementarity function
in terms of onlyc andσ

Ξ(c, σ) = 1
2c2G(σ) − cF(σ) − U∗(σ)σ −
V∗(σ) + x2wφ′

(

φ−1 (s(σ))
)

σ, (26)

where

G(σ) = 2wφ′
(

φ−1 (s(σ))
)

σ + β,

F(σ) = 2wφ′
(

φ−1 (s(σ))
)

xσ + f ,

U∗(σ) = wφ′
(

φ−1 (s(σ))
)

φ−1 (s(σ)) − (σ + y).

Therefore, in terms ofσ only, the canonical dual function can
be written as

Pd(σ) = −1
2

F(σ)2

G(σ)
− U∗(σ)σ + V∗(σ) −

x2wφ′
(

φ−1 (s(σ))
)

σ. (27)

3. Complementary-Dual Principle

Theorem 3.1. If σ̄ is a critical point of (Pd) and the term:

G′(σ̄) = σφ′′
(

φ−1 (s(σ̄))
) (

φ−1 (s(σ̄))
)′
+

wφ′
(

φ−1 (s(σ̄))
)

, 0, (28)

then the point

c̄ =
F(σ̄)
G(σ̄)

(29)

is a critical point of P(c) and P(c̄) = Pd(σ̄)

Proof 3.1. Suppose that ¯σ is a critical point ofPd then we have

Pd(σ̄)′ =
[

c̄2 − 2xc̄+ x2 − φ−1 (s(σ̄))
]

G′(σ̄) −

σ
[

φ′
(

φ−1 (s(σ̄))
) (

φ−1 (s(σ̄))
)′
− 1

]

= 0. (30)

Notice that
(

φ−1 (s(σ̄))
)′
=

1
φ′ (ǭ)

=
1

φ′
(

φ−1 (s(σ̄))
) , (31)

The third term in (30) is zero. The termG′(σ̄) is not zero from
the hypothesis, so we obtain

(x− c̄)2 − φ−1 (s(σ̄)) = 0, (32)

that is
σ̄ = wφ

(

‖x− c̄‖2
)

− y. (33)

The critical point condition for the primal problemP′(c) = 0 is

−2w(x− c)φ′(‖x− c‖2)(wφ(‖x− c‖2) − y) + βc− f = 0. (34)

By considering thatφ′(‖x − c‖2) = φ′
(

φ−1 (s(σ̄))
)

andσ =

wφ
(

(x− c)2
)

− y we obtain

2w(x− c)φ′
(

φ−1 (s(σ))
)

σ + βc− f = 0, (35)

that is

c =
2φ′

(

φ−1 (s(σ))
)

σ + f

2φ′
(

φ−1 (s(σ))
)

σ + β
. (36)

By settingσ = σ̄ in (36) we obtain (24) proving that ¯c is a
critical point ofP(c).

For the correspondence of the function values we start from the
dual function

Pd(σ̄) = −1
2

F2(σ̄)
G(σ̄)

− U∗(σ̄)σ̄ − V∗(σ̄) +

x2wφ′
(

φ−1 (s(σ̄))
)

σ̄ (37)

add and subtract the term12
F2(σ̄)
G(σ̄) and substitute the value of ¯c

1
2 c̄2G(σ̄) − c̄F(σ̄) − U∗(σ̄)σ̄ − V∗(σ̄)+

x2wφ′
(

φ−1 (s(σ̄))
)

σ̄ (38)

by reordering the terms we obtain

=
(

‖x− c̄‖2wφ′
(

φ−1 (s(σ̄))
)

− U∗(σ̄)
)

σ̄

−V∗(σ̄) +
1
2
βc̄2 − f c̄, (39)
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Considering the (10), setting ¯ǫ = ‖x− c̄‖2 andφ′
(

φ−1 (s(σ̄))
)

=

φ′(ǭ) we obtain:
[

wφ′(ǭ)ǭ − wφ′ (ǭ) ǭ + wφ(ǭ)
] [

wφ(ǭ) − y
]−

1
2

(wφ(ǭ) − y)2 + y(wφ(ǭ) − y) +
1
2
βc̄2 − f c̄ =

w2φ(ǭ)2 − ywφ(ǭ) − 1
2

(wφ(ǭ) − y)2

−ywφ(ǭ) + y2 +
1
2
βc̄2 − f c̄ (40)

by collecting the terms we obtain:

(wφ(ǭ) − y)2 − 1
2

(wφ(ǭ) − y)2 +
1
2
βc̄2 − f c̄, (41)

that is

1
2

(

wφ(‖x− c̄‖2) − y
)2
+

1
2
βc̄2 − f c̄ = P(c̄). (42)

that proves the theorem. �

Theorem 3.1 shows that the problem (Pd) is canonically dual
to the primal (P) in the sense that the duality gap is zero.

4. Gaussian function

One of the most used RBF is the Gaussian function. In
this section we will analyze the problem withφ(‖x − c‖2) =
exp

{

− ‖x−c‖2
2α2

}

, whereα is a parameter that represents the stan-
dard deviation of the Gaussian function. In the RBFNN for-
mulation normally there is no the linear termf c. The primal
problem is:

minP(c) =
1
2

(

wexp

{

−‖x− c‖2
2α2

}

− y

)2

+
1
2
βc2 (43)

If we define the quantityd(c) = ‖x−c‖2
2α2 , the nonlinear operator

ξ : R→ Ea from (8) becomes

ξ = wexp{−d(c)} . (44)

The expressions that defineσ, V andV∗ are the same as the
general problem that is:

• V(ξ(c)) = 1
2(ξ − y)2;

• σ = ξ − y;

• V∗(σ) =
(

1
2σ

2 + yσ
)

.

The second order operatorΛ2(c) : R→ Eb is

ǫ = Λ2(c) = ‖x− c‖2 = ǫ (45)

The second level canonical function becomes

U(ǫ) = wexp
{

− ǫ
2α2

}

. (46)

And the second order duality mappingτ is

τ = wφ′(ǫ) = − w
2α2

exp
{

− ǫ
2α2

}

. (47)

So the Legendre conjugateU∗ : S′b → R is

U∗(τ) = τ
(

φ−1
(

τ

w

))′
− wφ

(

φ−1
(

τ

w

))′

= −2α2τ

(

ln

(

−2α2τ

w

)

− 1

)

. (48)

The derivative of the exponential function is the exponential
function itself. This simplifies the relation (18) betweenξ and
τmaking it linear, that isξ = − τ2α2 . The relation betweenσ and
τ is:

τ = − (σ + y)
2α2

(49)

that is also linear. The total complementarity function becomes:

Ξ(c, σ) =
1
2

c2G(σ) − cF(σ) − U∗(σ)σ − V∗(σ) −

x2(σ2 + yσ)
2α2

(50)

where:

G(σ) = β − σ
2 + yσ
α2

F(σ) = − xσ2 + xyσ
α2

U∗(σ) = (σ + y) (ln (s(σ)) − 1)

s(σ) =
σ + y

w

The dual problem is

Pd(σ) = −1
2

F(σ)2

G(σ)
− ln (s(σ))

(

σ2 + yσ
)

+
1
2
σ2

− x2(σ2 + yσ)
2α2

(51)

The domains of the variables in the primal and dual problems
are:

• Eb = {ǫ ∈ R|ǫ ≥ 0}

• Sb = {τ ∈ R| − ∞ < τ < 0} if w > 0,Sb = {τ ∈ R| − ∞ <
τ < 0} if w < 0

• Ea = {ξ ∈ R|0 ≤ ξ ≤ w}

• Sa = {σ ∈ R| − y ≤ σ ≤ w − y} if w > 0, Sa = {σ ∈
R|w − y ≤ σ ≤ −y} if w < 0

Remark 1. Parametersβ, x, y, and w play important roles
in solving the non-convex problem (P). In the original prob-
lem (7) one searches for the value of c that brings the
term wexp{−d(c)} as closer as possible to y, that isσ =
wexp{−d(c)} − y = 0.
If y < 0 and w > 0 or y > 0 and w < 0 we will have that
|σ| > 0. This means that in the case of the exponential function,
it would be better to choose c as bigger as possible in order to
make the exponential go to zero, but the result would never be
satisfactory as the error committed by the approximation would
go close to−y as c goes to infinity. The value−y is not a good
value for the error as it is far from zero. On the other hand if y
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and w have the same sign and|y| > |w| the value of c will be x in
order to have the exponential equal to1 and to have the lowest
value forσ = wexp{−d(c)} − y.
In order to have a realistic problem, we will consider the case
with y and w with the same sign, and with|y| < |w|. The cases
with y,w > 0 and y,w < 0 are equivalent, so we will suppose
that both y and w are positive without losing generality.

Theorem 4.1. Suppose that̄σ ∈ Sa is a critical point of the
dual problem (51) with the correspondinḡc = F(σ̄)

G(σ̄) ∈ R and
that σ̄ , y

2. Thenc̄ is a critical point of the primal problem
and:

Pd(σ̄) = P(c̄). (52)

moreover, there are the following relations between the critical
points of the primal problem and the dual problem:

1. If (2σ̄+y) > 0 and G(σ̄) ≥ 0 or (2σ̄+y) < 0 and G(σ̄) ≤ 0
then ifσ̄ is a local minimum of the dual problem, the corre-
spondinḡc is a local maximum of the primal problem; if̄σ
is a local maximum of the dual problem the corresponding
c̄ is a local minimum of the primal problem;

2. If (2σ̄+y) > 0 and G(σ̄) ≤ 0 or (2σ̄+y) < 0 and G(σ̄) ≥ 0
then ifσ̄ is a local minimum of the dual problem the corre-
spondinḡc is a local minimum of the primal problem; if̄σ
is a local maximum of the dual problem the corresponding
c̄ is a local maximum of the primal problem.

Let xo =

√

−2α2 ln
(

y
2w

)

. If σ̄ = − y
2, then there is a corre-

sponding critical point toσ̄ in the primal problem if and only
if the parameters x, y,β and w satisfy one of the two following
conditions:

βx+
(

β +
y2

4α2

)

xo = 0

βx−
(

β + y2

4α2

)

xo = 0
(53)

and the corresponding critical point̄c in the primal problem is
always a local minimum. If neither of conditions (53) is satis-
fied,σ̄ = − y

2 is always a critical point of the dual problem, but
it does not have any corresponding critical point in the primal
problem.

Proof 4.1. The first order derivative for the dual problem is:

Pd(σ)′ = −














(

x− F(σ)
G(σ)

)2 1
2α2
+ ln (s(σ))















[

2σ + y
]

(54)

so the term (28) is equal to 2 ¯σ + y. If σ̄ , − y
2, the critical point

equivalency and condition (52) are consequences of Theorem
3.1.
To prove statements (i) and (ii ) we use the second order deriva-
tives of the problemsP(c) andPd(σ)

P(c)′′ = (x−c)2

α4 exp{−d(c)} (2wexp{−d(c)} − y
)

+β − 1
α2 wexp{−d(c)}

(

wexp{−d(c)} − y
)

(55)

Pd(σ)′′ = − 1
α2

(

x− F(σ)
σ

)2 (

1+
(2σ + y)2

α2G(σ)

)

−2σ + y
σ + y

− 2 ln(s(σ)) . (56)

Sinceσ̄ is a critical point of the dual, we have thatPd(σ)′ = 0.
Therefore when ¯σ , − y

2:

(

x− F(σ̄)
G(σ̄)

)2

= −2α2 ln (s(σ̄)) (57)

By using condition (57) in (56) we obtain:

Pd(σ̄)′′ = (2σ̄ + y)

(

2 ln(s(σ̄)) (2σ̄ + y)
α2G(σ̄)

− 1
σ̄ + y

)

. (58)

Noticingσ = wexp{−d(c)} − y, it is possible to rewriteP(c̄)′′

in terms ofσ̄, i. e.:

P(c(σ̄))′′ = G(σ̄) +
2
α2

(σ̄ + y)(2σ̄ + y)

(

x− F(σ̄)
G(σ̄)

)2

. (59)

by using again condition (57) we obtain:

P(c(σ̄))′′ =
1
α2

[

α2G(σ̄) − 2(σ̄ + y)(2σ̄ + y) ln (s(σ̄))
]

(60)

so it is possible to rewrite equation (58) in the following form:

Pd(σ̄)′′ = − 2σ̄ + y
G(σ̄)(σ̄ + y)

P(c(σ̄))′′. (61)

and to find the relations reported in Table 1. From these rela-
tions, we obtain:

• If (2σ+y) > 0 andG(σ) ≥ 0 or (2σ+y) < 0 andG(σ) ≤ 0
then the second order derivate of the primal problem and
the second order derivate of the dual problem have oppo-
site sign at their critical points;

• If (2σ+y) > 0 andG(σ) ≤ 0 or (2σ+y) < 0 andG(σ) ≥ 0
then the second order derivate of the primal problem and
the second order derivate of the dual problem have the
same sign at their critical points.

This proves statements 1 and 2.

(2σ̄ + y) G(σ̄) P(c(σ̄)) Pd(σ̄)
> 0 > 0 ± ∓
> 0 < 0 ± ±
< 0 < 0 ± ∓
< 0 > 0 ± ±

Table 1: Relations between the second order derivatives of the primal problem
and dual problem

The pointσ̄ = − y
2 is a critical point ofPd according to the

second part of the (54). The point ¯c corresponding to ¯σ = − y
2
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is a critical point of the primal problem if and only ifP′(c̄) = 0.
We can use the (10) to find the relation between ¯σ andc̄ that is:

σ̄ = ξ̄ − y→ σ̄ = wexp{−d(c̄)} − y (62)

c̄ = x±
√

−2α2 (ln (s(σ̄))). (63)

For σ̄ = − y
2 we obtain:

c̄ = x± xo. (64)

Substituting these values in the first order derivative of the pri-
mal problem:

P′(c̄) =
1
2

d(c̄)wexp{−d(c̄)} (wexp{−d(c̄)} − y
)

+ βc̄ (65)

and considering thatwexp{−d(c̄)} = σ̄ + y =
y
2 and

wexp{−d(c̄)} − y = σ̄ = − y
2 we obtain that the primal problem

has a critical point at ¯c corresponding to the critical ¯σ = − y
2 if

and only if:

βx±
(

β +
y2

4α2

)

xo = 0. (66)

This happens only for a particular configuration of the param-
etersw, β, x andy that makes one of the roots the first term of
the derivative (54):

−














(

x− F(σ̄)
G(σ̄)

)2 1
2α2
+ (ln (s(σ̄)))















= 0 (67)

be inσ̄ = − y
2.

To prove that at ¯σ = − y
2 the critical point of the dual problem

corresponds to a minimum point of the primal problem we plug
the value ofσ̄ = − y

2 in the (59) and obtain

P′′(σ̄) = β +
y2

4α2
, (68)

which is always a positive value. �

Remark 2. From now on we will refer to the critical point
σ f = − y

2 as pseudo dual critical point as it is a critical point of
the dual problem that generally does not have a corresponding
critical point for the primal problem.

4.1. Choice of the critical point

In order to find the best solution among the critical points of
problem (43) we introduce the following feasible spaces:

S+a = {σ ∈ Sa|G(σ) > 0} (69)

S−a = {σ ∈ Sa|G(σ) < 0} (70)

The following theorem explains the relations between the criti-
cal points:

Theorem 4.2. Suppose that the point̄σ1 ∈ S+a and σ̄2 ∈ S−a
are critical points of the dual problem, that̄σi , − y

2 for i =
1, 2 and thatc̄1 andc̄2 are the corresponding critical points of
the primal problem. Then if both̄c1 and c̄2 are local minima
or local maxima of the primal problem, the following relation
always holds:

P(c̄1) = Pd(σ̄1) < P(c̄2) = Pd(σ̄2) (71)

Proof 4.2. This theorem is a consequence of the first theorem
in triality theory [8]. �

Remark 3. The pseudo critical pointσ f = − y
2 is always in S+a .

From the results in Theorem 4.2 it is always better to search
for the dual critical point inS+a that corresponds to a minimum
in the primal problem. In order to characterize the solutions in
S+a and the domains in which search for the best solution, two
theorems are proposed in the following:

Theorem 4.3. Letσ f = − y
2 be the pseudo critical point of the

dual problem, xo =
√

−2α2 ln
(

y
2w

)

, x positive. Then:

• if x ∈ (0, xo) thenσ f is always a local minimum of Pd(σ);

• if x > xo then:

1. if β > 0 andβ < y2xo

4α2(x−xo) , σ f is a local minimum for
the dual problem;

2. if β > 0 andβ > y2xo

4α2(x−xo) , σ f is a local maximum for
the dual problem;

3. if β > 0, β = y2xo

4α2(x−xo) , σ f is an inflection point in
which the first order derivative is zero and that cor-
responds to a a local minimum of the primal problem.

Proof 4.3. In order to understand thatσ f = − y
2 is a minimum

or a maximum for the dual we have to plug its value in the sec-
ond order derivative ofPd(σ) that is equation (56) and analyze
its sign. After the substitution we obtain

Pd(σ f ) = −



















2 ln
(

− y
2w

)

+
1
α2

















xβ

β +
y2

4α2

















2
















. (72)

The first order derivate inβ of (72) is − 2xβ2

α2
(

β+ y2

4α2

)2 , that is the

function is monotonic decreasing inβ. The value of (72) in
β = 0 is− ln

(

− y
2w

)

that is positive. If we makeβ go to+∞ we
obtain:

lim
β→+∞

−



















2 ln
(

− y
2w

)

+
1
α2

















xβ

β + y2

4α2

















2
















= −2 ln
(

− y
2w

)

+
x2

α2

(73)
that is the second order derivative ofPd(σ) inσ f is non negative
for any value ofβ > 0 if

x ∈ [−xo, xo] (74)
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If x does not satisfy this condition, from the (72) we have that
the second order derivative of the dual problem is positive inσ f

if β satisfies:

β >
−y2xo

4α2 (x+ xo)
andβ <

y2xo

4α2 (x− xo)
. (75)

On the other hand if:

β <
−y2xo

4α2 (x+ xo)
or β >

y2xo

4α2 (x− xo)
(76)

there will be a local maximum inσ f . As x is considered pos-

itive, the term −y2xo

4α2(x+xo) is always negative, soβ will always be
greater than it.

If the conditionβ = y2xo

4α2(x−xo) is satisfied, the critical pointσ f is
an inflection point that also satisfies the first order condition and
it has a corresponding minimum point in the primal problem for
Theorem 4.1. �

Remark 4. In the case of x negative, the conditions are
changed in the following way:

• if x ∈ (−xo, 0) thenσ f is always a local minimum of Pd(σ)

• if x < −xo then:

1. if β > 0 andβ < −y2xo

4α2(x+xo) , σ f is a local minimum for
the dual problem;

2. if β > 0 andβ > −y2xo

4α2(x+xo) , σ f is a local maximum for
the dual problem;

3. if β > 0, β = −y2xo

4α2(x+xo) , σ f is an inflection point in
which the first order derivative is zero and that cor-
responds to a a local minimum of the primal problem.

The proof of these statement is similar to that of Theorem 4.3
and can be omitted.

Remark 5. Theorem 4.3 shows the effects of the parameterβ
on the pseudo critical pointσ f . Similar effects can also be
obtained in respect to y, x,α, and w. The reason we chooseβ
is because it is an hyper-parameter that can be chosen by the
practitioner before performing the optimization.

For the next theorem, we introduce the two following subsets
of S+a :

S+♯ =
{

σ ∈ S+a |σ > −
y
2

}

(77)

S+♭ =
{

σ ∈ S+a |σ < −
y
2

}

(78)

Theorem 4.4. Letσ f = − y
2 be the pseudo critical point in the

dual problem and let the primal problem have a maximum of
five critical points. Then

• if σ f is a local minimum for the dual function, there will
be a local maximum inS+

♯
that corresponds to a minimum

of the primal problem.

• if σ f is a local maximum then:

1. there are no critical points inS+
♯
;

2. there is at least one critical point in(S+
♭

Proof 4.4. In the dual problem there must be a singularity point
in G(σ) = 0 that goes to−∞, so ifσ f is a local minimum, there
must be a local maximum inS+

♯
.

If σ f is a local maximum, we prove condition (i) by negating
the thesis and suppose that there is a least one critical point
in S+

♯
. As Pd(σ) goes to−∞ if G(σ) → 0, there will be no

one, but two critical points inS+
♯
, a local minimumσ1 and a

local maximumσ2 with the relationPd(σ1) < Pd(σ2). For
Theorems 4.1 and 4.2,σ1 corresponds to the second highest
local maximum of the primal functionc1, andσ2 corresponds
to the lowest or second lowest local minimum of the primal
functionc2, that is the relationP(c2) < P(c1) is satisfied. By
Theorem 3.1 we have:

Pd(σ1) < Pd(σ2) = P(c2) < P(c1) = Pd(σ1) (79)

that is a contradiction.
To prove condition (ii ), it is sufficient to notice that if there are
no critical points inS+

♯
, for the triality theory there must be at

least one critical point corresponding to the global minimum in
S+a and this point will be inS+

♭
. �

Figure 1: Dual algebraic curves withy = 1, w = 2, α =
√

2
2 andβ = 0.1 in

respect to the internal inputx

Depending on the parameters, the primal problem (43) can
have at most five critical points. There are several cases:

Case 1: Three critical points forP(c) and four critical points
for Pd(σ), two critical point inS+a and two critical points in
S−a , with σ f as local minimum. The values of the parameters

arey = 1, x = 1, w = 2, α =
√

2
2 , β = 0.1 (see Figure 2).

This case can be easily solved with the general canonical du-
ality framework[8], as the local maximum inS+a corresponds
to the global minimum of the problem, and the local minimum
and maximum inS−a correspond to the local minimum and max-
imum in the primal problem.
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Figure 2: Primal(in blue) and dual(in red) functions for Case 1 with three criti-
cal points

Figure 3: Primal(in blue) and dual(in red) functions for Case 2 with five critical
points in the primal and six critical points in the dual.

Case 2: Five critical points forP(c), six critical points for
Pd(σ). The values of the parameters arey = 1, x = 4, w = 2,

α =
√

2
2 andβ = 0.1 (see Figure 3). Notice that the only pa-

rameter that changed in respect to Case 1 isx. With these pa-
rameters the problem becomes multi-welled. The two critical
points with the lowest value of the objective function belong
to the same double well and their corresponding critical points
are inS+a . The critical pointσ = −0.999999 ofPd(σ) is cor-
responding to the second best minimizerc = 0.00002 of the
primal problem and thisσ is situated near the boundary ofS+

♭
which is visible in Figure 4. It is also possible, for certainval-
ues of the parameters, that the local minimum on the boundary
of Sa, corresponds to the global minimum of the problem (see
Figure 5). In this case the choice of the value forσ should be
the critical point near the boundary. This critical point corre-
sponds to a critical point in the primal with the value ofc near
zero. This critical point is generated by the term12βc

2 that is
the regularization term used to make the objective functionco-
ercive and more regular. On the other hand, this term doesn’t
have anything to do with the original aim of the problem. This
point near zero in the primal function will always have the cor-
responding dual critical point near the boundary, because as c

Figure 4: Critical point on the boundary of the dual functionfeasible set for
Case 2.

Figure 5:S+a of the dual problem in the case ofβ = 0.12. The minimum near
the boundaryσ1 is a global minimum.

gets close to zero,σ = wexp{−d(c)} − y gets close to−y. We
also consider thatσ = wexp{−d(c)} − y is the error that origi-
nally we want to minimize in problem (6) and that the critical
point on the boundary will always have aσ with an absolute
value bigger than the other critical point closer toσ = 0. In
other words the local minimum on the boundary has nothing to
do with the original problem, has an high value of the error and
should not be considered as a good solution. In order to find
the optimal solution for the original problem, the local mini-
mum in the primal problem corresponding to the critical point
closer to zero inS+a is preferable. By reducing the value ofβ it
is possible not only to make the critical point nearc = 0 into a
local minimum, but also to assure thatσ f is a local minimum.
In this way there is a critical point inS+

♯
and the domain of the

solution is well defined. Basically if the critical point near the
boundary ofS+a is the global minimum, a very big value ofβ
has been chosen.

Case 3: Three critical points forP(c) and four critical points
for Pd(σ), all belonging toS+a . The values of the parameters

arey = 1, x = 4, w = 2, α =
√

2
2 andβ = 0.22 (see Figure 6).

This case is similar to the previous one, and the solution of the
dual problem should be the critical point that corresponds to a

8



Figure 6: Primal(in blue) and dual(in red) functions for theCase 3 with three
critical points in the primal and four critical points inS+a .

minimum in the primal problem with the value ofσ closer to
zero.

Figure 7: Primal(in blue) and dual(in red) functions for theCase 4 with three
critical points in the primal and two critical points inS+a and two critical points
in S−a andσ f as a local maximum.

Case 4: Three critical points in the primal and four critical
points in the dual, but with two critical points inS+a , two criti-
cal points inS−a andσ f as local maximum. The values of the

parameters arey = 1, x = 8, w = 2, α =
√

2
2 andβ = 0.25 (see

Figure 7). If the value of the hyper parameterβ is reduced it is
possible to makeσ f into a local minimum and return in one of
the previous cases.

Case 5: One critical point in the primal problem and two
critical points in the dual problem. This case occurs when the
quadratic term with beta dominates the error functionW(x). If
this case occurs, it means that the value ofβ is too big and the
problem is not related with the original anymore, so one should
choose a smaller value ofβ to have a problem related to the
original.
Based on the study of these cases, we can obtain the general
idea to find the best solution, i. e. the hyper parameterβ should
be set to a value that satisfies condition (75) in order to have
σ f as a local minimum, then search for the critical point in the

domainS+
♯
.

5. Conclusions

In this paper we have presented an application of the canoni-
cal duality theory to function approximation using Radial Basis
Functions. By using the sequential dual canonical transforma-
tion, the non convex problem with a general RBF functionφ(·)
is reformulated in a canonical dual form. An associated strong
duality theorem is also proposed.
Applications to one of the most used RBF, the exponential func-
tion, are illustrated. Due to the particular properties of the expo-
nential function, we are able to find a linear relation between the
dual variables, which leads to an explicit form of the canonical
dual problem. We also found conditions on the hyper parame-
terβ in order to obtain a reliable domain where to search for the
best solution. This research reveals an important phenomenon
in complex systems, i.e. the global optimal solution may notbe
the best solution to the problem considered.
There are still several open topics on the application of the
canonical duality theory to Radial Basis Error functions. For
example there are other kinds of RBF that can be analyzed, like
the multi quadratic and the multi quadratic inverse functions,
a further development for future research is to expand the one
dimensional case to the multidimensional case with also con-
sideringw as a variable and not as a parameter. When this case
is analyzed, we will be able to realize RBF neural networks
based on canonical duality theory.
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