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Research Highlights 

• Propose EMD-based modeling framework with end condition methods 
  
• Slope-based and Rato’s method are recommended when selecting end 

condition methods 
 
• Restraining the end effect improves the performance of EMD-based modeling 

framework 



Does Restraining End Effect Matter in EMD-Based Modeling 

Framework for Time Series Prediction? Some Experimental 

Evidences 

Tao Xiong, Yukun Bao*

Department of Management Science and Information Systems,  

, Zhongyi Hu 

School of Management, Huazhong University of Science and Technology, Wuhan, 

P.R.China, 430074 

 

Abstract 

Following the “decomposition-and-ensemble” principle, the empirical mode 

decomposition (EMD)-based modeling framework has been widely used as a 

promising alternative for nonlinear and nonstationary time series modeling and 

prediction. The end effect, which occurs during the sifting process of EMD and is apt 

to distort the decomposed sub-series and hurt the modeling process followed, however, 

has been ignored in previous studies. Addressing the end effect issue, this study 

proposes to incorporate end condition methods into EMD-based decomposition and 

ensemble modeling framework for one- and multi-step ahead time series prediction. 

Four well-established end condition methods, Mirror method, Coughlin’s method, 

Slope-based method, and Rato's method, are selected, and support vector regression 

(SVR) is employed as the modeling technique. For the purpose of justification and 

comparison, well-known NN3 competition data sets are used and four 

well-established prediction models are selected as benchmarks. The experimental 
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results demonstrated that significant improvement can be achieved by the proposed 

EMD-based SVR models with end condition methods. The EMD-SBM-SVR model 

and EMD-Rato-SVR model, in particular, achieved the best prediction performances 

in terms of goodness of forecast measures and equality of accuracy of competing 

forecasts test. 

 

Keywords: Empirical Mode Decomposition; End Effect; Support Vector Regression; 

Ensemble Modeling; Time Series Prediction. 
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1. Introduction 

Time series modeling and prediction is an area of enormous interests for both 

academics and practitioners. The large number of studies have compared the forecast 

accuracies of alternative models based on statistical theories, such as autoregressive 

integrated moving average (ARIMA) [1] and autoregressive conditional 

heteroskedasticity (ARCH) [2], or the ones based on computational intelligence, such 

as artificial neural networks (ANN) [3] and support vector regression (SVR) [4], for 

time series prediction. Existing research indicates that the latter emerges the winner, 

especially in short-term forecasting [5]. However, computational intelligence based 

forecasting models have their own shortcomings and disadvantages, e.g., local 

minima and over-fitting in ANN models and sensitiveness to parameter selection in 

both SVR and ANN models. 

In view of the limitations for computational intelligence based forecasting 

models, recently, a hybrid empirical mode decomposition (EMD)-based modeling 

framework introduced by Yu et al. [6] has established itself as a promising alternative 

for nonlinear and nonstationary time series modeling and prediction. The 

attractiveness of the EMD-based modeling framework arises from the flexible 

decomposition-and-ensemble modeling structure resulting in a simplification of the 

original complicated modeling task, and the employment of EMD with which any 

complex signals can be decomposed into a finite number of independent and nearly 

periodic intrinsic mode functions (IMFs) components and a residue based purely on 

the local characteristic time scale [7]. As such, EMD-based modeling framework has 
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been found to be a viable contender among various time-series models, e.g., 

autoregressive integrated moving average (ARIMA) [6, 8, 9], seasonal autoregressive 

integrated moving average (SARIMA) [10], neural networks [9, 11], and support 

vector regression [12], and successfully applied to different areas, including energy 

market [6, 11-13], tourism management [9], hydrology [14], and transportation 

research [10], and emergency management [8]. Regarding to the end effect occurred 

during the sifting process of EMD, however, the research mentioned above (see [6, 

8-14]) has paid little, even no attention to, which appeals this present study.  

End effect is that when calculating the upper and lower envelops with cubic 

spline function in the sifting process of EMD, the divergence will appear on both ends 

of data series, and the divergence gradually influences inside of data series so that the 

results are distorted badly [15], and always hurts the modeling quality as well as 

overall prediction performance when employing EMD-based decomposition and 

ensemble modeling framework for time series prediction. With regard to the problem 

of end effect, there has been a vast and well-established body of literatures on 

developing end condition methods for restraining the end effect. In general, the end 

condition methods are essentially to use the known points to extend both beginning 

and end of the series by the addition of typical waves [7, 16], extrema [17-20], or 

predicted values [15, 21, 22]. Although aforementioned studies have clarified the 

capability of these end condition methods on the restraining of end effect by means of, 

e.g., the orthogonality of IMFs [20], there has been very few, if any, effort to evaluate 

the effectiveness of end condition methods in EMD-based modeling framework for 
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time series prediction. So, we hope this study would fill this gap. 

In summary, The purpose of this study is to explicitly extend the EMD-based 

modeling framework with end condition methods for time series prediction, and then 

goes a step forward by providing the first experimental evidence within literature in 

which EMD-based modeling framework is applied for time series prediction to justify 

whether restraining the end effect is useful for achieving better prediction 

performance. If so, which end condition method dominates? For the purpose of 

justification, we conduct a large scale comparison study of EMD-based modeling 

framework incorporating selected end condition methods on the NN3 competition 

data. For the implementation of the proposed EMD-based modeling framework, 

support vector regression (SVR) is employed as modeling technique model in the 

current study in lights of that it has been found to be a viable contender among 

various time-series models [23-25], and successfully applied to different areas [4, 26, 

27]. 

The paper unfolds as follows. Section 2 describes related works about EMD, 

end effect, and end condition methods, indicating how end effect occurs and why it is 

important. The details on proposed procedure of EMD with end condition methods, 

support vector regression, and the proposed EMD-based modeling framework 

incorporating selected end condition methods are presented in Section 3. Section 4 

illustrates the research design on data source, preprocessing, selected counterparts, 

input selection, statistical criteria, methodologies implementation, and experimental 

procedure in details. Following that, in Section 5, the experimental results are 
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discussed. Finally, Section 6 summarizes and concludes this work. 

2. Related works 

2.1 EMD and end effect 

Empirical mode decomposition technique, first proposed by Huang et al. [7], is a 

kind of adaptive signal decomposition technique using the Hilbert-Huang transform 

(HHT) and can be applied with nonlinear and nonstationary time series. 

Intrinsic-mode functions (IMF) and the sifting process are the two key parts of the 

EMD technique. The term “intrinsic-mode function” is used because it represents the 

oscillation mode embedded in the data. An intrinsic-mode function is a function that 

satisfies two conditions: (1) in the whole data series, the number of extrema (the sum 

of local maxima and local minima) and the number of zero crossings must either be 

equal or differ at most by one; and (2) at any point, the mean value of the envelope 

defined by the local maxima and the envelope defined by the local minima is zero. 

With this definition, IMFs can be extracted from the time series ( )x t  according 

to the following sifting process: 

1. Input time series ( )x t ; 

2. Execute sifting process: 

    (1) Initialize: ( ) ( )0r t x t= , and 1i = ; 

    (2) Extract the ith IMF: 

          a. initialize: ( ) ( )0 1 , 1ih t r t k−= = ; 

          b. Identify all of the extrema (maxima and minima) of ( )1kh t− ; 

          c. interpolate the local maxima and local minima by a cubic spline to 

form upper and lower envelopes of ( )1kh t− ; 

          d. compute the mean ( )1km t− of the upper and lower envelopes just 
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established; 

          e. create: ( ) ( ) ( )1 1k k kh t h t m t− −= − ; 

          f. decide: if stopping criterion is satisfied then set ( ) ( )IMFk ih t t= . Else 

return to step b, with 1k k= + . 

    (3) Define: ( ) ( ) ( )1 IMFi i ir t r t t−= − ; 

    (4) If ( )ir t is a constant or trend then sifting process can be stop, and the time 

series ( )x t is decomposed into IMFs and residue, i.e., ( ) ( ) ( )
1

= IMF
i

d i
d

x t t r t
=

+∑ . Else 

return to step (2), with 1i i= + ; 

3. Obtain final result, i.e., the ( ) ( )IMF , 1d t t i≤ ≤ , and the residue ( )ri t . 

As discussed in [21], however, the two ends of the time series will disperse while 

the series is decomposed by EMD and this disperse, termed as end effect, would 

“empoison” in by the whole time series gradually making the results to get distorted. 

To be more specific, end effect occurs during the sifting process, when the end points 

cannot be identified as the extrema in the procedure of 2-(2)-b above, appealing 

specific measure to be taken to deal with it.  

Recently, a large number of studies have developed end condition methods for 

restraining the end effect [7, 15-21]. Most of the proposed end condition methods are 

applied to “add” the extrema when end effect occurs, facilitating the construction of 

upper and lower envelopes during the sifting process of EMD. Details of four selected 

end condition methods in this study are presented in the following subsection  

2.2 End condition methods 

In this study, we cannot examine all the end condition methods that might be 

useful in practice, and therefore we consider various previous literatures as guidance 
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and focus on the most commonly used end condition methods. Finally, selected end 

condition methods include the Mirror method [17], Coughlin’s method [16], 

Slope-based method [19], and Rato’s method [18]. For each selected end condition 

methods, there are a large number of variations proposed in the literatures, and it 

would be a hopeless task to consider all existing varieties. Our rule is therefore to 

consider the basic version of each method (without the additions, or the modifications 

proposed by some other researchers). Detailed discussions on the selected end 

condition methods can be found in [16-19], but a brief introduction about their 

formulations is provided here. To formulate the selected end condition methods, we 

adopt the notations and definitions in Table 1. 

<Insert Table 1 here> 

1) Mirror method 

For the beginning of time series ( )x t , add local minimum (0)Min  by mirror 

symmetry with respect to the local maximum (1)Max ; for the end of time series ( )x t , 

add local maximum ( 1)Max n   by mirror symmetry with respect to the local 

maximum ( )Min n . 

 The newly obtained (0)Min and ( 1)Max n  are then taken for construction of 

the upper and lower envelopes along with initial extrema. 

2) Coughlin’s method 

In the Coughlin’s method, time series ( )x t is extended by additional typical waves 

defined as Eq. (1) instead of extrema employed in the mirror method.  

Wave extension= 2sin tA phase local mean
P
π + + 

 
.                 (1) 
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where the typical amplitude A  and period P  are determined by the following 

equations. 

( )
( ) ( )

(1) 1 ,

,

2 ( (1)) ( (1)) ,

2 ( ( )) ( ( )) .

begining

end

begining

end

A Max Min

A Max n Min n

P t Max t Min

P t Max n t Min n

= −

= −

= −

= −

                        (2) 

The additional typical waves are then taken for construction of the upper and 

lower envelopes along with initial series so that the additional waves are continually 

changing in amplitude and frequency. 

3) Slope-based method 

For the beginning of time series ( )x t , slope 1s and 2s are defined as Eq. (3) and 

Eq. (4) respectively. 

   2 1
1

( (2)) ( (1))

P Q
s

t Max t Min





                           (3) 

   1 1
2

( (1)) ( (1))

Q P
s

t Min t Max





                           (4) 

Then, the time gaps between the first two successive maxima and minima are 

determined as  max
1 ( (2)) ( (1))t t Max t Max   and  min

1 ( (2)) ( (1))t t Min t Min   . 

The new extrema (0)Min and (0)Max are updated according to the corresponding 

time gaps  max
1t and  min

1t , and gradients 1s and 2s . The ordinate and abscissa 

of the new extrema are positioned at 

 

 
 

     
     

min

max

( (0)) ( (1)) 1

( (0)) ( (1)) 1

0 1 1 ( (1)) ( (0))

0 0 2 ( (0)) ( (0))

t Min t Min t

t Max t Max t

Q P s t Max t Min

P Q s t Min t Max

 

 

  

  

                   (5) 
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For the end of time series, the similar procedures are used to obtain ( 1)Max n   

and ( 1)Min n  . 

The newly obtained (0)Min , (0)Max , ( 1)Min n  , and ( 1)Max n  are then taken 

for construction of the upper and lower envelopes along with initial extrema. 

4) Rato’s method 

For the beginning of ( )x t , assume ( )( )1 0t x = and ( )( ) ( )( )1 1t Max t Min> . Add 

local minimum (0)Min , where (0)= (1)Min Min , and ( )( ) ( )( )0 1t Min t Max= − ; Add 

local maximum (0)Max , where (0)= (1)Max Max , and ( )( ) ( )( )0 1t Max t Min= − .For 

the end of time series, the similar procedures are used to obtain ( 1)Max n   

and ( 1)Min n  . 

The newly obtained (0)Min , (0)Max , ( 1)Min n  , and ( 1)Max n  are then taken 

for construction of the upper and lower envelopes along with initial extrema. 

3. Methodologies 

In this section, the overall formulation process of the proposed EMD-based SVR 

modeling framework is presented. First, EMD with end condition method is briefly 

introduced. Then a brief description of SVR algorithm is given. Finally, the proposed 

EMD-based SVR modeling framework is formulated and the corresponding steps 

involved are presented in details.  

3.1 EMD with end condition methods 

Just as mentioned in Section 2.1, the sifting process is the key part of the EMD 

technique and end effect occurs during the sifting process, when the end points cannot 

be identified as the extrema, appealing end condition methods to be incorporated into 
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the sifting process. The improved sifting process with end condition method is 

depicted in Fig.1. 

<Insert Fig.1 here> 

3.2 Support vector regression 

Support vector regression (SVR), first proposed by Vapnik et al. [28] based on the 

structured risk minimization principle, is found to be a viable contender among 

various time series models [4, 29] by minimizing an upper bound of the generalization 

error. Here, SVR is used as tool for forecasting. This subsection gives a brief 

description of SVR. The details of the formulation can be found in [28]. 

Given a set of data { }( ), 1, 2 ,t tx y t T=  , where T
tx ∈ℜ is the tht input pattern 

and ty is its corresponding observed result, the basic idea of SVR is first to map the 

original data tx into a high-dimensional feature space via a nonlinear mapping 

function ( )ϕ ⋅ , then to make linear regression in this high-dimension feature space and 

find the optimal separating hyperplane with minimal classification errors [12]. 

In general, SVR approximate the function using the following: 

( ) ( )Tf x w x bϕ= +                          (6) 

where ( )xϕ  is the nonlinear function mapping from input space x into a 

high-dimensional feature space, and ( )f x is the estimated value. Coefficients Tw and 

b are obtained by minimizing the regularized risk function, which can be transformed 

into the following optimization problem: 
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( )
( ) ( )

( )( ) ( )

*

1
*

min
2

. . , 1, 2, ,

, 1, 2, ,

T
T

t t
t

T
t t t

T
t t t

w w

s t w x b y i T

y w x b i T

γ ζ ζ

ϕ ε ζ

ϕ ε ζ

=

 + +

 + − ≤ + =

 − + ≤ + =

∑




１

        

(7) 

where γ is the penalty parameter, and nonnegative variables tζ and *
tζ are the slack 

variables which represent the distances from actual value to the corresponding 

boundary value of ε − tube. 

 So the problem of constructing the optimal hyperplane is transformed into the 

following the quadratic programming problem: 

( )( ) ( ) ( )( ) ( ) ( )

( ) [ ]

*

* * *

, 1 1 1 1

* *

1min
2

. . 0, , 0,

n n n n

i i j j i j i i i ia a i j i i

n

i i i i
i

a a a a x x y a y a

s t a a a a C

φ φ ε ε
= = = =


− − ⋅ + − + +


 − = ∈

∑∑ ∑ ∑

∑

　　　　　

　　　　　　　　　　　　　　　　　　

(8) 

where ia  and *
ia are corresponding Lagrange multipliers used to push and pull 

( )if x  towards the outcome of iy  respectively. 

 The decision function can be shown as: 

( ) ( ) ( )*

1
, .x x

n

i i i j
i

f x a a K b
=

= − +∑
                      

(9) 

( ) ( ) ( )( ),x xi j i jK x xφ φ= ⋅  is defined as the kernel function. The elegance of using 

the kernel function is that one can deal with feature spaces of arbitrary dimensionality 

without having to compute the map ( )xφ  explicitly. In this study, we select a 

common kernel function, i.e., RBF function, ( ) ( )2
, exp , 0x x x xi j i jK γ γ= − − > , as 

the kernel function. 

3.3 The proposed prediction models 

It should be noted that SVR is employed as modeling technique in this study. As 
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such, this study turns out to develop different prediction models under EMD-based 

modeling framework with or without end condition methods using SVR, i.e., 

EMD-based SVR modeling framework for short. 

As shown in Fig. 2, the proposed EMD-based SVR modeling framework is 

generally composed of the following three main steps: 

Step 1: The original series are first decomposed into a finite and often a small 

number of intrinsic mode functions (IMFs) and a residue using EMD technique. In 

the sifting process of EMD, selected end condition method is applied to restrain the 

end effect following the procedures illustrated in the above subsection.  

Step 2: After the components (IMFs and a residue) are adaptively extracted via 

EMD, each component is modeled by an independent SVR model to forecast the 

component series respectively.  

Step 3: The forecasts of all components are aggregated using another 

independent SVR model, which model the relationship among the IMFs and the 

residue, to produce an ensemble forecasts for the original series.  

<Insert Fig.2 here> 

Following the EMD-based SVR modeling framework, different prediction 

models can be developed. For example, in case mirror method is selected and 

incorporated into the EMD to deal with end effect, then EMD-MM-SVR prediction 

model is derived. Following the same naming rule, EMD-Coughlin-SVR, 

EMD-SBM-SVR, and EMD-Rato-SVR refer to the prediction models with 

corresponding end condition methods respectively. It should be noted that EMD-SVR 
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refers to the model without any end condition methods. 

4. Research design 

This section provides details about the research design. In section 4.1, the details 

of the data sets and relating data preprocessing procedure are given. Section 4.2 

presents the selected counterparts for comparison. The input selection is briefly 

presented in Section 4.3. Section 4.4 lists and briefly describes the goodness of 

forecast measures and equality of accuracy of competing forecasts test used. Section 

4.5 presents the implementations of EMD, Wavelet, SVR, and SARIMA. Section 4.6 

depicts the experimental procedures with NN3 competition data in details. 

4.1 The datasets and data preprocessing 

 The datasets of 111 time series distributed for the NN3 competition are used for 

this study1

18 111×

. This competition was organized in 2007, and targeted at computational 

intelligence based forecasting approaches. The data are monthly, with positive 

observations and structural characteristics which vary widely across the time series. 

Many of the series are dominated by a strong seasonal structure (e.g. #55, #57 and 

#73), while some series exhibit both trending and seasonal behavior (e.g. #1, #11 and 

#12). We leave the last 18 months of observations for evaluating and comparing the 

out-of-sample prediction performances of the proposed models against selected 

counterparts. All performance comparisons are based on these  out of sample 

points.  

Since most of the time series considered exhibit strong seasonal component or 

                                                        
1 The datasets can be obtained from http://www.neural-forecasting-competition.com/NN3/datasets.htm 

http://www.neural-forecasting-competition.com/NN3/datasets.htm�
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trend pattern as shown in Fig.3, we conduct deseasonalizing by means of the revised 

multiplicative seasonal decomposition presented in [30]. In addition, detrending is 

performed by fitting a polynomial time trend and then subtracting the estimated trend 

from the series when trends are detected by the Mann-Kendall test [31]. 

<Insert Fig.3 here> 

4.2 The selected counterparts for comparison 

Single SVR, Seasonal ARIMA (SARIMA) and Wavelet-SVR [32] are selected 

as counterparts for the purpose of comparison. It should be noted the reason for 

selecting single SVR is to justify the effectiveness of EMD-based modeling 

framework, for the selection of SARIMA is due to the exhibited characteristics of 

strong seasonality of the NN3 data sets, and for the selection of Wavelet-SVR is the 

similar modeling mechanism shared by EMD-based and Wavelet-based modeling 

frameworks (However, the present study focuses on the technical improvement on 

EMD-based modeling framework addressing the issue of end effect, but not the 

comparative study between EMD and Wavelet though it could be an interesting topic 

worthy of further exploration). The essential formulations of SARIMA and 

Wavelet-SVR have been presented in many papers, so will not be repeated here to 

keep this paper concise. For detailed introduction to these methods, please refer to [10, 

32]. 

Additionally, the performances on both one-step-ahead (prediction horizon H =1) 

and multi-step-ahead (prediction horizon H =18) prediction are compared across all 

the models to provide more evidences for justification. Note that the iterated strategy 
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for multi-step-ahead prediction is employed in this study due to its simplicity and 

popularity in literature [11, 33]. This strategy constructs a prediction model by means 

of minimizing the squares of the in-sample one-step-ahead residuals, and then uses 

the predicted value as an input for the same model when we forecast the subsequent 

point, and continue in this manner until reaching the horizon. 

4.3 Input selection 

Filter method is employed for input selection in this study. In the case of the 

filter method, the best subset of inputs is selected a priori based only on the dataset. 

The input subset is chosen by an evaluation criterion, which measures the relationship 

of each subset of input variables with the output [34]. Specifically, in terms of 

evaluation criteria, the partial mutual information2 35 [ ] is used for the prediction 

models. Mutual information (MI) is a commonly adopted measure of dependence 

between variables and has been widely used for input selection [34]. However, this 

raises a major redundancy issue redundancy issue because the MI criterion does not 

account for the interdependency between candidate variable. To address this issue, 

Sharma [35] developed an improved algorithm that exploits the concept of partial 

mutual information (PMI), which is the nonlinear statistical analog of partial 

correlation. The definitions of PMI are shown as follows: 

 ( ) ( )
( ) ( )
' '

' '

' '

,' ' ' '
,

,
, ln X Y

X Y
X Y

f x y
PMI f x y dx dy

f x f y
 

=  
  

∫∫              (10) 

  ' zx x E x= −                                         (11) 

                                                        
2 The Matlab code can be obtained from 
http://www.cs.tut.fi/~timhome/tim-1.0.2/tim/matlab/mutual_information_p.m.htm 

http://www.cs.tut.fi/~timhome/tim-1.0.2/tim/matlab/mutual_information_p.m.htm�
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' zy y E y= −                                         (12) 

where 'X and 'Y are generalized to represent time series ( )x t and lagged time 

( )x t i− with time step i ( )i d≤ conditional on Z which is a set of remaining time-lag 

variables. In performing the PMI, the input variable that has the highest conditional 

PMI value at each iteration is added to the selection set. The maximum embedding 

order d  is set to 12 for the input selection process over all the series from NN3 

competition data sets [36]. 

4.4 Statistical criteria 

It should be noted that the impact of end condition methods on 

the quality of EMD has been widely investigated in [7, 15-22] and it is not the focus 

of the current study, but the impact of end condition methods on prediction 

performance of EMD-based modeling framework for time series prediction has not 

been widely explored which is the research goal of this study. Hence, statistical 

criteria such as goodness of forecast measures (i.e., symmetric mean absolute 

percentage error (SMAPE) and mean absolute scaled error (MASE)) and equality of 

accuracy of competing forecasts test (i.e., one-way analysis of variance (ANOVA) and 

Tukey honestly significant difference (HSD) test) are employed here. 

To compare the effectiveness of the different prediction models, no single 

accuracy measure can capture all the distributional features of the errors when 

summarized across data series. Here, we consider two forecast accuracy measures. 

The first is the SMAPE defined as Eq. (13), as this is the main measure considered in 

NN3 competition [37]. The second accuracy measure is the MASE, defined as Eq. 
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(14). It has recently been suggested by Hyndman and Koehler [38] as a means of 

overcoming observation and errors around zero existing in some measures. The 

MASE has some features which are better than the SMAPE, which has been criticized 

for the fact that its treatment of positive and negative errors is not symmetric [39]. 

However, because of its widespread use, the SMAPE will still be used in this study. 

The smaller the values of SMAPE and MASE, the closer are the predicted time series 

values to the actual values. 

( )1 1

ˆ( ) ( )1SMAPE
ˆ( ) ( ) 2

M T
m m

m t m m

x t x t
M T x t x t= =

−
=

⋅ +∑∑                     (13) 

( )
( ) ( )1 1

2

ˆ ( )1MASE 1 1
1

M T
m m

Nm t
m mi

x t x t
M T x i x i

N
= =

=

 
 −

=  
⋅  − − − 

∑∑
∑

            (14) 

where ( )mx t  denotes the observation at period t for time series m , ˆ ( )mx t  denotes the 

forecast of ( )mx t , M is the number of time series (in this case, 111M = ), T is the 

number of observation in the hold-out sample (in this case, 18T = ), and N is the 

number of observation in the estimation sample for time series m . 

In this study, we repeat running each model fifty times for NN3 dataset to even 

out the fluctuations. Then each of the fifty runs will produce a SMAPE for all 111 

time series. Next, the mean and standard deviation of these fifty SMAPE are 

calculated and listed in the tables for examining the performance of different models. 

Similarly, the mean and standard deviation of MASE are also computed. Note that the 

error measures are computed after rolling back of the preprocessing step performed, 

such as deseasonalization and detrending.  
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Following [40], we also conduct a number of statistical tests to compare each 

model based on the obtained fifty SMAPE and MASE at the 0.05 significance level. 

For each prediction horizon ( 1and 18H = ) and performance measure (i.e., SMAPE 

and MASE), we perform a one-way analysis of variance (ANOVA) procedure to 

determine if there exists statistically significant difference among the eight models in 

out-of-sample forecasting. Then, to further identify the significant difference between 

any two models, the Tukey honestly significant difference (HSD) test [41] is used to 

compare all pairwise differences simultaneously. Note that Tukey HSD test is a 

post-hoc test, this means that a researcher should not perform Tukey HSD test unless 

the results of ANOVA are positive. 

4.5 Methodologies implementations 

In this study, EMD3 Huang et al. 

[7

 is implemented using the program provided by 

]. The number of sifting passes for IMF extraction is fixed at 10, and the whole 

sifting process stops after 
2

log N  IMFs have been extracted, where N  is the length 

of the data series. 

The Wavelet toolbox in Matlab is used to implement the discrete Wavelet 

transform. This step involves several different families of Wavelets and a detailed 

comparison of their performance. In this study, the Daubechies’s Wavelets of order 7 

is adopted through preliminary simulation in a trial-error fashion. To determine the 

number of decomposition levels, [ ]L int log( )N= is used [42]. L presents the 

decomposition level while N denotes the length of the data series. 

                                                        
3 Matlab code are available at http://rcada.ncu.edu.tw/ 

http://rcada.ncu.edu.tw/�
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LibSVM (version 2.86)4 43 [ ] is employed for SVR modeling here. We select the 

Radial basis function (RBF) as the kernel function in the EMD-based prediction 

models when modeling the IMFs data. The linear kernel function is selected to model 

the relationship among the IMFs and the residue due to its simplicity and better 

performances after extensive experimental trials on different kernel functions. To 

determine the hyper-parameters, namely , ,C ε γ  (in the case of RBF as the kernel 

function), a population-based search algorithm, named particle swarm optimization 

(PSO) [44], is employed in the current study. Due to its simplicity and generality as 

no important modification was made for applying it to model selection, PSO has been 

recently established for parameter determination of SVR [45]. In solving 

hyper-parameter selection by the PSO, each particle is requested to represent a 

potential solution ( ), ,C ε γ . Concerning the selection of parameters (i.e., cognitive and 

interaction coefficients, swarm size, and number of iterations) in binary PSO, it is yet 

another challenging model selection task. Fortunately, several empirical and 

theoretical studies have been performed about the parameters of PSO from which 

valuable information can be obtained [46]. In this study, the parameters are 

determined according to the recommendations in these studies and selected based on 

the prediction performance and computational time in a trial-error fashion. Through 

experiment, the parameter values of PSO are set as follows. Both the cognitive and 

interaction coefficients are set to 2. The swarm size and number of iterations are set to 

be 10 and 50, respectively. 

                                                        
4 Matlab code are available at http://www.csie.ntu.edu.tw/~cjlin/libsvm/ 

http://www.csie.ntu.edu.tw/~cjlin/libsvm/�
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For SARIMA estimation, the automatic model selection algorithm proposed by 

Hyndman and Khandakar [47] and implemented in the R software package ‘forecast’5

It should be noted that in the model estimation stage for EMD- and 

Wavelet-based SVR models, all the samples from training sets are decomposed at one 

time and used for model estimation. 10 fold cross validation is used for parameters 

tuning under the commonly used grid search. Finally, the achieved model based on 

training sets is tested on hold-out sample in the way as the decomposition is repeated 

with a next data added. 

 

is used in this study. 

4.6 Experimental procedure 

Fig. 4 shows the procedure for performing experiments with the NN3 

competition data in this study. Each series is split into the estimation sample and the 

hold-out sample firstly. Then, the optimal eight examined models for estimation 

sample is determined. Afterwards, obtained eight models are used for one- and 

multi-step-ahead time series prediction for hold-out sample and the two accuracy 

measures are computed. Furthermore, the modeling process for each series is repeated 

fifty times. Upon the termination of this loop, performance of the examined models is 

judged in terms of the mean and standard deviation of the SMAPE and MASE of fifty 

replications. In addition, the ANOVA and Tukey HSD tests are used to test the 

statistical significance of any two competing prediction models at the 0.05 

significance level. 

                                                        
5 R package ‘forecast’ are available at http://ftp.ctex.org/mirrors/CRAN/ 

http://ftp.ctex.org/mirrors/CRAN/�
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<Insert Fig.4 here> 

5. Results and discussions 

The prediction performances of all the examined models (i.e., EMD-Rato-SVR, 

EMD-Coughlin-SVR, EMD-SBM-SVR, EMD-MM-SVR, EMD-SVR, Wavelet-SVR, 

SVR, and SARIMA) in terms of mean and standard deviation of two accuracy 

measures (i.e., SMAPE and MASE) for one- and multi-step-ahead prediction are 

shown in Table 2. As per the results presented, one can deduce the following 

observation: 

<Insert Table 2 here> 

 Overall, the proposed prediction models (these are, EMD-MM-SVR, 

EMD-Coughlin-SVR, EMD-SBM-SVR, and EMD-Rato-SVR) outperform the 

EMD-based SVR prediction model without any end condition methods (that is, 

EMD-SVR) without exception. As such, we argue that the superior performance 

of proposed prediction models relative to EMD-SVR as a result of restraining the 

end effect occurred during the sifting process of EMD. 

 The proposed EMD-SBM-SVR and EMD-Rato-SVR outperform the 

EMD-MM-SVR and EMD-Coughlin-SVR regardless of the accuracy measures 

and prediction horizon considered, indicating the superiority of Slope-based 

method and Rato’s method as end condition methods in EMD-based modeling 

framework from the perspective of time series prediction.  

 The six hybrid ensemble models (i.e., EMD-MM-SVR, EMD-Coughlin-SVR, 

EMD-SBM-SVR, EMD-Rato-SVR, EMD-SVR, and Wavelet-SVR) consistently 
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achieve more accurate forecasts than the two single models (i.e., SVR and 

SARIMA). The main reason could be that the decomposition strategy does 

effectively improve prediction performance.  

 As far as the comparison between the EMD-SVR and Wavelet-SVR, they are 

almost a tie and the results are mixing among the prediction measures and 

horizons examined. In terms of SMAPE, EMD-SVR wins for one-step-ahead 

prediction but loses for eighteen-step-ahead prediction. In terms of MASE, 

EMD-SVR loses for one-step-ahead prediction but wins for eighteen-step-ahead 

prediction.  

 When comparing single prediction models, the SARIMA model mostly ranks the 

last, while the SVR can produce far better results. The possible reason is that 

SARIMA is a typical linear model not suitable for capturing nonlinear patterns 

hiding in the NN3 dataset. 

For each performance measure and prediction horizon, we perform an ANOVA 

procedure to determine if there exists statistically significant difference among the 

eight models in hold-out sample. Table 3 shows the results of ANOVA test, from 

which we can see that the all the ANOVA results are significant at the 0.05 

significance level, suggesting that there are significant differences among the eight 

models. To further identify the significant difference between any two models, the 

Tukey’s HSD test is used to compare all pairwise differences simultaneously here. 

Table 4 shows the results of these multiple comparison tests at 0.05 significance level 

(for abbreviation, we use SBM, Rato, Coughlin, and MM in replace of 
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EMD-SBM-SVR, EMD-Rato-SVR, EMD-Coughlin-SVR, and EMD-MM-SVR 

respectively in this table). For each accuracy measure and prediction horizon, we rank 

order the models from 1 (the best) to 8 (the worst). Several observations can be made 

from Table 4.  

 When considering one-step-ahead prediction, EMD-SBM-SVR and 

EMD-Rato-SVR significantly outperform the EMD-SVR across two measures.  

 However, when considering multi-step-ahead prediction, all the proposed four 

prediction models significantly outperform the EMD-SVR across two measures. 

 The EMD-SBM-SVR and EMD-Rato-SVR significantly outperform the 

EMD-Coughlin-SVR and EMD-MM-SVR, with one exception, where 

EMD-MM-SVR performs the poorest at 95% statistical confidence level. 

 There is no significant difference of prediction performance between 

EMD-SBM-SVR and EMD-Rato-SVR. One exception occurs when 1H = and 

SMAPE is used, in which the EMD-SBM-SVR significantly outperform the 

EMD-Rato-SVR. 

 As far as the comparison EMD-SVR vs. Wavelet-SVR is concerned, the 

difference in prediction performance is not significant at the 0.05 level in all 

cases. 

 For each accuracy measure and prediction horizon, the hybrid ensemble models 

significantly outperform the single models. 

 When comparing single prediction models, the SVR performs significantly better 

than SARIMA without exception. 
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 The SARIMA performs the poorest at 95% statistical confidence level in all 

cases. 

6. Conclusions  

This study contributed to propose an extension to well-established EMD-based 

modeling framework by incorporating end condition methods for time series 

prediction, and provide large scale experimental evidences for the purpose of 

justification. The experimental results lead to the following main conclusions. (1) The 

original EMD-based modeling framework is outperformed by the proposed four 

variants with different end condition methods, confirming the helpfulness of 

restraining the end effect in the context of time series modeling and prediction. (2) 

EMD-SBM-SVR and EMD-Rato-SVR achieved better as well as more stable 

prediction performances than the other counterparts in terms of rank-based measure, 

indicating the superiority of slope-based method and Rato’s method as end condition 

methods. 

The limitations of this study lie in two aspects. First, although we have examined 

a variety of end condition methods that are most commonly used in EMD literatures, 

there are many other possible methods in restraining the end effect of EMD, which 

may shed a different light on the modeling issue. Second, Furthermore, EEMD, 

recently proposed by Wu and Huang [48], is a substantial improvement over the 

original EMD, which may shed a different light on the modeling issue and further 

study to this regard is solicited. 
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Tables 
Table 1 Notation and definition for end condition methods 

Notation Definition 
( )x t  The input time series, ( ) { (1), ( )}x t x x T=   

i  Index of local maximum, 1, ,i n=   
j  Index of local minimum, 1, ,j m=   

(1)Max , (1)Min  First two local extrema of time series ( )x t  
( )Max n , ( )Min m  Last two local extrema of time series ( )x t  

( )P i  Ordinate value of ( )Max i respectively 
( )Q j  Ordinate value of ( )Min j respectively 

( ( ))t x t  Time index of ( )x t  
( ( ))t Max i  Time index of ( )Max i  
( ( ))t Min j  Time index of ( )Min j  

( )maxt i∆  Time gaps between two successive local maxima, 
( ) ( ( 1)) ( ( ))maxt i t Max i t Max i∆ = + −  

( )mint j∆  Time gaps between two successive local minima, 
( ) ( ( 1)) ( ( ))mint j t Min j t Min j∆ = + −  

 
Table 2 Prediction accuracy measure of different models for hold-out sample 

Prediction horizon Model  SMAPE MASE 
Mean Std Mean Std 

1H =  

EMD-Rato-SVR 7.854 0.0264 0.887 0.0026 
EMD-Coughlin-SVR 10.845 0.0315 0.956 0.0031 
EMD-SBM-SVR 6.494 0.0305 0.834 0.0029 
EMD-MM-SVR 11.084 0.0278 0.945 0.0025 
EMD-SVR 11.201 0.0295 1.006 0.0041 
Wavelet-SVR 12.012 0.0306 0.984 0.0037 
SVR 13.854 0.0297 1.113 0.0057 
SARIMA 17.125 0.0001 1.231 0.0000 

18H =  

EMD-Rato-SVR 16.274 0.0321 1.187 0.0034 
EMD-Coughlin-SVR 18.005 0.0307 1.214 0.0065 
EMD-SBM-SVR 16.094 0.0285 1.196 0.0048 
EMD-MM-SVR 18.264 0.0312 1.424 0.0032 
EMD-SVR 20.241 0.0348 1.580 0.0047 
Wavelet-SVR 19.594 0.0371 1.612 0.0052 
SVR 22.254 0.0315 1.802 0.0038 
SARIMA 24.854 0.0001 2.216 0.0000 

 



Table 3 ANOVA results for hold-out ample 
Prediction horizon Measure ANOVA Test  

Statistics F p-value 

1H =  
SMAPE 29.815 0.000*  

MASE 18.497 0.000*  

18H =  
SMAPE 9.640 0.001*  
MASE 25.874 0.000*  

Notes:* indicates the mean difference among the eight models is significant at the 0.05 level.



Table 4 Tukey HSD test results with ranked models for hold-out sample 
Prediction 
horizon 

Measure Ranks of models 
1  2  3  4  5  6  7  8 

1H =  
SMAPE SBM <*  Rato <*  Coughlin <  MM <  EMD-SVR <  Wavelet-SVR <*  SVR <*  SARIMA 
MASE SBM <  Rato <  MM <  Coughlin <  Wavelet-SVR <  EMD-SVR <*  SVR <*  SARIMA 

18H =  
SMAPE SBM <  Rato <*  Coughlin <  MM <*  Wavelet-SVR <  EMD-SVR <*  SVR <*  SARIMA 
MASE Rato <  SBM <  Coughlin <*  MM <*  EMD-SVR <  Wavelet-SVR <*  SVR <*  SARIMA 

Notes:* indicates the mean difference between the two adjacent models is significant at the 0.05 level. ‘SBM’ corresponds to the EMD-SBM-SVR model, ‘Rato’ corresponds to the 

EMD-Rato-SVR model, ‘Coughlin’ corresponds to the EMD-Coughlin-SVR model, and ‘MM’ corresponds to the EMD-MM-SVR model. 
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