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Eigenvalue Decay: a New Method for Neural Network Regularization

Oswaldo Ludwig∗, Urbano Nunes, and Rui Araujo.∗
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Abstract

This paper proposes two new training algorithms for multilayer perceptrons based on evolutionary computation, regularization,
and transduction. Regularization is a commonly used technique for preventing the learning algorithm from overfitting the training
data. In this context, this work introduces and analyzes a novel regularization scheme for neural networks (NN) named eigenvalue
decay, which aims at improving the classification margin. The introduction of eigenvalue decay led to the development of a new
training method based on the same principles of SVM, and so named Support Vector NN (SVNN). Finally, by analogy with the
transductive SVM (TSVM), it is proposed a transductive NN (TNN), by exploiting SVNN in order to address transductive learning.
The effectiveness of the proposed algorithms is evaluated on seven benchmark datasets.

Keywords: transduction, regularization, genetic algorithm, classification margin, neural network

1. Introduction

One of the problems that occur during syntactic classifier
training is called overfitting. The error on the training dataset
is driven to a small value; however the error is large when new
data are presented to the trained classifier. It occurs because the
classifier does not learn to generalize when new situations are
presented. This phenomenon is related to the classifier com-
plexity, which can be minimized by using regularization tech-
niques [1] and [2]. In this paper we will apply regularization
to improve the classification margin, which is an effective strat-
egy to decrease the classifier complexity, in Vapnik sense, by
exploiting the geometric structure in the feature space of the
training examples.

There are three usual regularization techniques for neural
networks (NN): early stopping [3], curvature-driven smoothing
[4], and weight decay [5]. In the early stopping criterion the
labeled data are divided into training and validation datasets.
After some number of iterations the NN begins to overfit the
data and the error on the validation dataset begins to rise. When
the validation error increases during a specified number of iter-
ations, the algorithm stops the training section and applies the
weights and biases at the minimum of the validation error to the
NN. Curvature-driven smoothing includes smoothness require-
ments on the cost function of learning algorithms, which de-
pend on the derivatives of the network mapping. Weight decay
is implemented by including additional terms in the cost func-
tion of learning algorithms, which penalize overly high values
of weights and biases, in order to control the classifier complex-
ity, which forces the NN response to be smoother and less likely
to overfit. This work introduces and analyzing a novel regular-
ization scheme, named eigenvalue decay, aiming at improving
the classification margin, as will be shown in Section 3.

∗Corresponding author

In the context of some on-the-fly applications, the use of
SVM with nonlinear kernels requires a prohibitive computa-
tional cost, since its decision function requires a summation of
nonlinear functions that demands a large amount of time when
the number of support vectors is big. Therefore, a maximal-
margin neural network, [6], [7], [8], and [9], can be a suitable
option for such kind of application, since it can offer a fast non-
linear classification with good generalization capacity. This
work introduces a novel algorithm for maximum margin train-
ing that is based on regularization and evolutionary computing.
Such method is exploited in order to introduce a transductive
training method for NN.

The paper is organized as follows. In Section 2 we propose
the eigenvalue decay, while the relationship between such reg-
ularization method and the classification margin is analyzed in
Section 3. In Section 4 it is proposed a new maximum-margin
training method based on genetic algorithms (GA) that is ex-
tended to the transductive approach in Section 5. Section 6 re-
ports the experiments, while Section 7 summarizes some con-
clusions.

2. Eigenvalue decay

A multilayer perceptron (MLP) with one sigmoidal hidden
layer and linear output layer is a universal approximator, be-
cause the sigmoidal hidden units of such model compose a ba-
sis of linearly independent soft functions [10]; therefore, this
work focuses in such NN, whose model is given by:

yh = ϕ (W1 · x + b1)
ŷ = WT

2 yh + b2
(1)

where yh is the output vector of the hidden layer, W1 is a matrix
whose elements are the synaptic weights that connect the input
elements with the hidden neurons, W2 is vector whose elements
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are the synaptic weights that connect the hidden neurons to the
output, b1 is the bias vector of the hidden layer, b2 is the bias
of the output layer, x is the input vector, and ϕ (·) is the sigmoid
function. The most usual objective function for MLPs is the
MSE:

E =
1
N

N∑
i=1

(yi − ŷi)2 (2)

where N is the cardinality of the training dataset, yi is the tar-
get output, ŷi is the output estimated by the MLP for the input
xi belonging to the training dataset. However, in case of the
usual weight decay method [11], additional terms which pe-
nalize overly high values of weights and biases are included.
Therefore, the generic form for the objective function is:

E∗ = E + κ1

∑
wi∈W1

w2
i + κ2

∑
w j∈W2

w2
j + κ3

∑
b(1,k)∈b1

b2
(1,k) + κ4b2

2(3)

where W1, W2, b1, and b2 are the MLP parameters, according to
(1), and κi > 0, i = (1 . . . 4) are regularization hyperparameters.
Such method was theoretically analyzed by [12], which con-
cludes that the bounds on the expected risk of MLPs depends
on the magnitude of the parameters rather than the number of
parameters. Namely, in [12] the author showed that the misclas-
sification probability can be bounded in terms of the empirical
risk, the number of training examples, and a scale-sensitive ver-
sion of the VC-dimension, known as the fat-shattering dimen-
sion1, which can be upper-bounded in terms of the magnitudes
of the network parameters, independently from the number of
parameters2. In short, as regards weight-decay, [12] only shows
that such method can be applied to control the capacity of the
classifier space. However, the best known way to minimize the
capacity of the classifier space without committing the accuracy
on the training data is to maximize the classification margin,
which is the SVM principle. Unfortunately, from the best of
our knowledge, there is no proof that weight-decay can maxi-
mize the margin. Therefore, we propose the eigenvalue-decay,
for which it is possible to establish a relationship between the
eigenvalue minimization and the classification margin. The ob-
jective function of eigenvalue-decay is:

E∗∗ = E + κ (λmin + λmax) (4)

where λmin is the smallest eigenvalue of W1WT
1 and λmax is the

biggest eigenvalue of W1WT
1 .

3. Analysis on eigenvalue decay

In this section we show a relationship between eigenvalue
decay and the classification margin, mi. Our analysis requires
the following lemma:

1See Theorem 2 of [12]
2See Theorem 13 of [12]

Lemma 1. [13] Let K denotes the field of real numbers, Kn×n a
vector space containing all matrices with n rows and n columns
with entries in K, A ∈ Kn×n be a symmetric positive-semidefinite
matrix, λmin be the smallest eigenvalue of A, and λmax be the
largest eigenvalue of A. Therefore, for any x ∈ Kn, the follow-
ing inequalities hold true:

λminxT x ≤ xT Ax ≤ λmaxxT x (5)

Proof. The upper bound on xT Ax, i.e. the second inequality of
(5), is well known; however, this work also requires the lower
bound on xT Ax, i.e. the first inequality of (5). Therefore, since
this proof is quite compact, we will save a small space in this
work to present the derivation of both bounds as follows:

Let V = [v1, . . . , vn] be the square n × n matrix whose ith

column is the eigenvector vi of A, and Λ be the diagonal matrix
whose ith diagonal element is the eigenvalue λi of A; therefore,
the following relations hold:

xT Ax = xT VV−1AVV−1x = xT VΛV−1x = xT VΛVT x (6)

Taking into account that A is positive-semidefinite, i.e. ∀i, λi ≥

0:

xT V (λminI) VT x ≤ xT VΛVT x ≤ xT V (λmaxI) VT x (7)

where I is the identity matrix. Note that xT V (λminI) VT x =

λminxT x and xT V (λmaxI) VT x = λmaxxT x; therefore, substitut-
ing (6) into (7) yields (5). �

The following theorem gives a lower and an upper bound on
the classification margin:

Theorem 1. Let mi be the margin of the training example i,
i.e. the smallest orthogonal distance between the classifier sep-
arating hypersurface and the training example i, λmax be the
biggest eigenvalue of W1WT

1 , and λmin be the smallest eigen-
value of W1WT

1 ; then, for mi > 0, i.e. an example correctly
classified, the following inequalities hold true:

1
√
λmax

µ ≤ mi ≤
1
√
λmin

µ (8)

where

µ = min
j

yi

WT
2 Γ jW1

(
xi − x j

pro j

)
√

WT
2 Γ jΓ

T
j W2

 , (9)

Γ j =


ϕ
′

(v1) 0 · · · 0
0 ϕ

′

(v2) · · · 0
...

...
. . .

...
0 0 · · · ϕ

′

(vn)

 , [v1, v2, . . . , vn]T =

W1 · xk + b1, ϕ
′

(vn) =
∂ϕ
∂vn

∣∣∣∣
x j

pro j

, x j
pro j is the jth projection of

the ith training example, xi, on the separating hypersurface, as
illustrated in Fig.1, and yi is the target class of xi.
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Figure 1: A feature space representing a nonlinear separating surface with the
projections, x j

pro j, of the ith training example, xi, and examples of orthogonal
distances d(i, j).

Proof. The first step in this proof is the calculation of the gra-
dient of the NN output ŷ in relation to the input vector x at the
projected point, x j

pro j. From (1) we have:

∇ŷ(i, j) =
∂ŷ
∂x

∣∣∣∣∣
x j

pro j

= WT
2 Γ jW1 (10)

The vector

~p(i, j) =
∇ŷ(i, j)∥∥∥∇ŷ(i, j)

∥∥∥ (11)

is normal to the separating surface, giving the direction from xi

to x j
pro j; therefore

xi − x j
pro j = d(i, j)~p(i, j) (12)

where d(i, j) is the scalar distance between xi and x j
pro j. From

(12) we have:

∇ŷ(i, j)

(
xi − x j

pro j

)
= d(i, j)∇ŷ(i, j)~p(i, j) (13)

Substituting (11) into (13) and solving for d(i, j), yields:

d(i, j) =
∇ŷ(i, j)

(
xi − x j

pro j

)∥∥∥∇ŷ(i, j)
∥∥∥ (14)

The sign of d(i, j) depends on which side of the decision sur-
face the example, xi, is placed. It means that an example,
xi, correctly classified whose target class is −1 corresponds to
d(i, j) < 0. On the other hand, the classification margin must be
positive in case of examples correctly classified, and negative in
case of misclassified examples, independently from their target
classes. Therefore, the margin is defined as function of yid(i, j),
where yi ∈ {−1, 1} is the target class of the ith example. More

specifically, the margin, mi, is the smallest value of yid(i, j) in
relation to j, that is:

mi = min
j

(
yid(i, j)

)
(15)

Substituting (14) in (15) yields:

mi = min
j

yi

∇ŷ(i, j)

(
xi − x j

pro j

)∥∥∥∇ŷ(i, j)
∥∥∥

 (16)

Substituting (10) in (16), yields:

mi = min
j

yi

WT
2 Γ jW1

(
xi − x j

pro j

)
√

WT
2 Γ jW1WT

1 ΓT
j W2

 . (17)

Note that W1WT
1 is a symmetric positive-semidefinite matrix,

therefore, from Lemma 1, the inequalities:

λminWT
2 Γ jΓ

T
j W2 ≤ WT

2 Γ jW1WT
1 ΓT

j W2 ≤ λmaxWT
2 Γ jΓ

T
j W2(18)

hold true for any Γ j and any W2. From (18) and (17) it is easy
to derive (8). �

Taking into account that λmax and λmin are the denominators
of the bounds in (8), the training method based on eigenvalue
decay decreases λmax and λmin aiming at increasing the lower
and the upper bounds on the classification margin. However,
eigenvalue decay does not assure, by itself, increasing the mar-
gin, because µ is function of W1 among other NN parameters.
Therefore, to evaluate the effect of eigenvalue decay on the clas-
sification margin, we performed comparative experiments with
real world datasets (see Section 6). Fig. 2 illustrates the separat-
ing surface for the toy examples and Fig. 3 illustrates the mar-
gins3 generated by NNs trained without and with eigenvalue de-
cay. The boundary between white and colored areas represents
the SVM-like classification margin, i.e. for input data belong-
ing to the yellow area, the NN model outputs 0 ≤ ŷi < 1, while
for input data belonging to the green area, the model outputs
0 > ŷi > −1. The boundary between colored areas represents
the separating surface. The training methods proposed in this
paper are similar to SVM, i.e. the data which lie into the col-
ored areas, or fall on the wrong side of the separating surface,
increase a penalty term. The algorithm minimizes the penalty
term in such a way to move the colored area, and so the separat-
ing surface, away from the training data. Therefore, the larger is
the colored area, i.e. the smaller the eigenvalues, the larger the
distance between the training data and the separating surface.

4. Maximum-margin Training by GA

Theorem 1 allows us to propose a maximal-margin training
method quite similar to SVM [14], in the sense that the pro-
posed method also minimizes values related with the parame-
ters of the classifier model, in order to maximize the margin,

3The margins were generated by a dense grid of points. The output of the
trained NN is calculated for each point. If the output is −1 < y < 1, the point
receives a colored pixel.
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Figure 2: First toy example on the effect of eigenvalue decay on the margin:
(a) NN trained without eigenvalue decay, (b) NN trained with eigenvalue de-
cay. The boundary between white and colored areas represents the SVM-like
classification margin, i.e. for input data belonging to the yellow area, the NN
model outputs 0 ≤ ŷi < 1, while for input data belonging to the green area, the
model outputs 0 > ŷi > −1.

allowing the minimization of the classifier complexity without
committing the accuracy on the training data.

The main idea of our method is not only to avoid nonlinear
SVM kernels, in such a way as to offer a faster nonlinear clas-
sifier, but also to be based on the maximal-margin principle;
moreover, the proposed method is more suitable for on-the-fly
applications, such as object detection [15], [16]. The SVM de-
cision function is given by:

c(x) = sgn

 Nsv∑
i=1

yiαiK (xi, x) + b

 (19)

where αi and b are SVM parameters, (xi, yi) is the ith support
vector data pair, sgn(·) is 1 if the argument is greater than zero
and −1 if it is less than zero, and K(·, ·) is a non-linear kernel
function, i.e. the algorithm fits the maximum-margin hyper-
plane in a transformed feature space, in order to enable a non-
linear classification. Notice that (19) requires a large amount of
time when the number of support vectors, Nsv, is big. This fact

(a) 

 
 

(b) 

 

Figure 3: Second toy example: (a) NN trained without eigenvalue decay, (b)
NN trained with eigenvalue decay.

motivated this new SVM-like training method for NN, named
Support Vector NN (SVNN), here proposed.

In order to better understand our method, it is convenient to
take into account the soft margin SVM optimization problem,
as follows:

min
w,ξi

1
2
‖w‖2 + C

N∑
i=1

ξi

 (20)

subject to

∀i |yi (w · xi − b) ≥ 1 − ξi (21)

∀i |ξi ≥ 0 (22)

where w and b compose the separating hyperplane, C is a con-
stant, yi is the target class of the ith training example, and ξi are
slack variables, which measure the degree of misclassification
of the vector xi. The optimization is a trade off between a large
margin (min ‖w‖2), and a small error penalty (min C

∑N
i=1 ξi).

We propose to train the NN by solving the similar optimiza-
tion problem:

min
W1,ξi

λmin + λmax +
C1

N

N∑
i=1

ξi

 (23)
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subject to

∀i |yiŷi ≥ 1 − ξi (24)

∀i |ξi ≥ 0 (25)

where ŷ is given by (1), C1 is a regularization hyperparameter,
yi is the target class of the ith training example, and ξi are also
slack variables, which measure the degree of misclassification
of the vector xi.

The constrained optimization problem (23)-(25) is replaced
by the equivalent unconstrained optimization problem (26)
[17], that has the discontinuous objective function Φ, which
disables the gradient-based optimization methods; therefore, a
real-coded GA is applied to solve (26), using Φ as fitness func-
tion [18].

min
W1,W2,b1,b2

Φ (26)

where

Φ = λmin + λmax +
C1

N

N∑
i=1

H(yiŷi) (27)

and H(t) = max(0, 1 − t) is the Hinge loss.
Note that the last term of (27) penalizes models whose esti-

mated outputs do not fit the constraint yiŷi ≥ 1, in such a way
as to save a minimal margin, while the minimization of the first
two terms of (27) aims at the enlargement of such minimal mar-
gin by eigenvalue decay, as suggested by Theorem 1.

Algorithm 1 details the proposed optimization process. The
chromosome of each individual is coded into a vertical vector
composed by the concatenation of all the columns of W1 with
W2, b1, and b2. The algorithm starts by randomly generating
the initial population of Npop individuals in a uniform distribu-
tion, according to the Nguyen-Widrow criterion [19]. During
the loop over generations the fitness value of each individual
is evaluated on the training dataset, according to (26) and (27).
Then, the individuals are ranked according to their fitness val-
ues, and the crossover operator is applied to generate new in-
dividuals by randomly selecting the parents by their ranks, ac-
cording to the random variable p ∈ [1,Npop] proposed in our
previous work [20]:

p =
(
Npop − 1

) eaϑ − 1
ea − 1

+ 1 (28)

where ϑ ∈ [0, 1] is a random variable with uniform distribution
and a > 0 sets the selective pressure, more specifically, the
larger a, the larger the probability of low values of p, which are
related to high-ranked individuals.

5. Transductive Neural Networks

This section deals with transduction, a concept in which no
general decision rule is inferred. Differently from inductive in-
ference, in the case of transduction the inferred decision rule
aims only at the labels of the unlabeled testing data.

Algorithm 1 Maximal Margin Training by GA
Input: X, y: matrices with N training datapairs;
nneu: number of hidden neurons;
C1 : regularization hyperparameter;
a: selective pressure;
maxgener: maximum number of generations;
Npop: population size
Output: W1, W2, b1, and b2: NN parameters
generate a set of Npop chromosomes, {Cr}, for the initial pop-
ulation, taking into account the number of input elements
and nneu; therefore, each chromosome is a vertical vector
Cr =

[
w1, . . . ,wnw , b1, . . . , bnb

]T containing all the Ng synap-
tic weights and biases randomly generated according to the
Nguyen-Widrow criterion [19];
for generation = 1 : maxgener do

evaluating the population:
for ind = 1 : Npop do

rearrange the genes, Crind, of individual ind, in order to
compose the NN parameters W1, W2, b1, and b2.
for i = 1 : N do

calculate ŷi, according to (1), using the weights and
biases of individual ind;

end for
calculate Φ for the individual ind, according to (26), us-
ing y and the set of NN outputs {ŷi} previously calcu-
lated;
Φind ← Φ: storing the fitness of individual ind;

end for
rank the individuals according to their fitness Φind;
store the genes of the best individual in Crbest;
performing the crossover:
k ← 0;
for ind = 1 : Npop do

k ← k + 1;
randomly selecting the indexes of parents by using
the asymmetric distribution proposed in [20], and
also applied in [21]:
ϑ j ← random number ∈ [0, 1] with uniform distribution,
j = (1, 2);
parent j ← round

((
Npop − 1

)
eaϑ j−1
ea−1 + 1

)
, j = (1, 2);

assembling the chromosome Crson
k :

for n = 1 : Ng do
η ← random number ∈ [0, 1] with uniform distribu-
tion;
Crson

(k,n) ← ηCr(parent1,n) + (1 − η) Cr(parent2,n): calcu-
lating the nth gene to compose the chromosome of
the kth individual of the new generation, by means of
weighted average;

end for
end for

end for
rearrange the genes of the best individual, Crbest, in order to
compose the NN parameters W1, W2, b1, and b2.

5



The SVM-like training method, introduced in the previ-
ous section, can be exploited to address transductive learning.
Therefore, we propose the transductive NN (TNN), which is
similar to the transductive SVM (TSVM) [14]. The transduc-
tive algorithm takes advantage of the unlabeled data similarly
to the inductive semi-supervised learning algorithm. However,
differently from the inductive semi-supervised learning, trans-
duction is based on the Vapnik principle, which states that when
trying to solve some problem, one should not solve a more dif-
ficult problem, such as the induction of a general decision rule,
as an intermediate step.

The proposed TNN accomplishes transduction by finding
those test labels for which, after training a NN on the com-
bined training and test datasets, the margin on the both datasets
is maximal. Therefore, similarly to TSVM, TNN exploits the
geometric structure in the feature vectors of the test examples,
by taking into account the principle of low density separation.
Such principle assumes that the decision boundary should lie
in a low-density region of the feature space, because a decision
boundary that cuts a data cluster into two different classes is not
in accordance with the cluster assumption, which can be stated
as follows: if points are in the same data cluster, they are likely
to be of the same class.

The TNN training method can be easily implemented by in-
cluding in (26) an additional term that penalizes all the unla-
beled data which are near to the decision boundary, in order to
place the decision boundary away from high-density regions.
Therefore, the new optimization problem is:

min
W1,W2,b1,b2

Φ∗ (29)

where

Φ∗ = λmin + λmax +
C1

N

N∑
i=1

H(yiŷi) +
C2

Nu

Nu∑
j=1

H(
∣∣∣ŷ j

∣∣∣), (30)

C1 and C2 are constants, ŷ j is the NN output for the unlabeled
data x j, and Nu is the cardinality of the unlabeled dataset. No-
tice that, the operator |·|makes this additional term independent
of the class assigned by the NN for the unlabeled example, i.e.
independent from the signal of ŷ j, since we are interested only
in the distance from the unlabeled data to the decision bound-
ary.

In order to illustrate the effect of the last term of (30), we
introduce two toy examples which enable a comparative study
on the decision boundaries generated by SVNN and TNN, as
can be seen in Figs. 4 and 5, where circles represent training
data and points represent testing (unlabeled) data.

Note that both toy examples are in accordance with the clus-
ter assumption, i.e. there are low-density regions surrounding
data clusters whose elements belong to the same class. TNN
places the separating-surface along such low-density regions
(see Fig. 4(b)), in order to increase the absolute value of the
margin of the unlabeled data, in such a way as to decrease the
last term of (30).

Empirically, it is sometimes observed that the solution to (30)
is unbalanced, since it is possible to decrease the last term of
(30) by placing the separating-surface away from all the testing

 

Figure 4: Separating surfaces generated by two NNs with 5 hidden neurons.
Circles represent training data and points represent testing (unlabeled) data: (a)
NN trained by SVNN, (b) NN trained by TNN.

instances, as can be seen in Fig. 6. In this case, all the testing
instances are predicted in only one of the classes. Such problem
can also be observed in case of TSVM, for which a heuristic
solution is to constrain the predicted class proportion on the
testing data, so that it is the same as the class proportion on the
training data. This work adopts a similar solution for TNN, by
including in (30) a term that penalizes models whose predicted
class proportion on the testing data is different from the class
proportion on the training data. Therefore, we rewrite (30) as:

Φ∗ = λmin + λmax + C1
N

∑N
i=1 H(yiŷi) + C2

Nu

∑Nu
j=1 H(

∣∣∣ŷ j

∣∣∣)
+C3

∣∣∣∣ 1
N

∑N
i=1 yi −

1
Nu

∑Nu
j=1 sgn

(
ŷ j

)∣∣∣∣ (31)

where C3 is a penalization coefficient. Fig. 7 shows the
separating-surface of TNN after the inclusion of the last term
of (31).
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Figure 5: Separating surfaces generated by two NNs with 4 hidden neurons.
Circles represent training data and points represent testing (unlabeled) data: (a)
NN trained by SVNN, (b) NN trained by TNN.

6. Experiments

In this section our methods are evaluated by means of experi-
ments in three UCI benchmark datasets4 and four datasets from
[22]5. Table 1 details the applied datasets.

Table 1: Datasets used in the experiments
Dataset Attributes # data train # data test Total

Breast-cancer 9 200 77 277

Haberman 3 153 153 306

Hepatitis 19 77 78 155

BCI 117 200 200 400

Digit1 241 750 750 1500

g241c 241 750 750 1500

Text 11960 750 750 1500

The highly unbalanced datasets: Breast-cancer, Haberman,
and Hepatitis, were introduced in our experimental analysis in

4http://archive.ics.uci.edu/ml/datasets/
5http://olivier.chapelle.cc/ssl-book/benchmarks.html

Figure 6: Toy experiment using TNN trained without the last term of (31).
Circles represent training data and points represent testing (unlabeled) data.

Figure 7: Toy experiment using TNN trained with the last term of (31). Circles
represent training data and points represent testing (unlabeled) data.

order to verify the behavior of the optimization algorithms of
transductive methods when working under the constraint on the
predicted class proportion, i.e. the last term of (31). The other
datasets are usually applied to evaluate semi-supervised learn-
ing algorithms. Each dataset was randomly divided into 10-
folds, thus, all the experimental results were averaged over 10
runs.

The datasets were randomly divided into 10-folds, in order to
average the results over 10 runs. Each fold contains all the data
divided into two subsets: half for training and half for testing.
For each training dataset, i.e. half of the data, it was performed
10-folds cross-validation to set the classifier parameters. There-
fore, the parameter setting does not take into account informa-
tion from the testing dataset. In the case of SVM, the soft-
margin parameter C and the RBF parameter γ (in the case of
RBF kernel) were chosen in the set

{
10−3, 10−2, . . . , 103

}
. In

case of SVNN and TNN, the parameters C1, C2, and C3 were
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Table 2: Number of hidden neurons of both SVNN and TNN
Breast-cancer Haberman Hepatitis BCI Digit1 g241c Text

2 4 2 2 2 2 1

chosen in the set
{
102, 103, 104, 105

}
. Table 2 gives the averaged

number of hidden neurons adopted after the cross-validation.
In our experiments SVNN and TNN were compared with

NNs trained by the usual Levenberg-Maquardt (LM), as well
as, SVM and TSVM6. Since SVNN and TNN can perform non-
linear classification, we also evaluated the performance of SVM
and TSVM with RBF kernel. In order to verify the capability
of transductive algorithms in learning from few labeled data,
all the algorithms were trained by using only 10 labeled train-
ing points, as well as, all the training data. In both cases, the
transductive algorithms made use of all the testing (unlabeled)
data. Regarding the GA, the selective pressure was set to a = 6
and the population Npop = 3000.

Tables 3-6 summarize the experimental results. Equations
(32), (33), and (34) define the three indexes adopted to assess
the learning performance, i.e. accuracy (Acc), balanced error
rate (BER), and a measure of precision named positive predic-
tive value (PPV).

Acc =
T P + T N
(np + nn)

(32)

BER =
1
2

(
FP
nn

+
FN
np

)
(33)

PPV =
T P

(T P + FP)
(34)

where T P is the number of positive examples correctly classi-
fied, T N is the number of negative examples correctly classi-
fied, FP is the number of negative examples classified as posi-
tive, FN is the number of positive examples classified as nega-
tive, np is the number of positive examples, and nn is the num-
ber of negative examples.

Tables 7 and 8 report the training and testing time in seconds,
averaged on all the cross-validation runs.

In order to evaluate the influence of eigenvalue decay on
the performance of SVNN, two sets of experiments were per-
formed. In the first set of experiments a SVNN was trained
by minimizing (27) without the first term; therefore, this model
was named SVNN−λmin. In the second set of experiments a
SVNN was trained by minimizing (27) without the first two
terms; hence, this model was named SVNN−λmin − λmax. Both
models were evaluated on all the datasets of Table 1. Moreover,
it was investigated the influence of the term about class propor-
tion on the accuracy of TNN. To do so, a TNN was trained by
minimizing only the first four terms of (31); hence, this model
was named TNN−C3. The results are summarized in Table 9.

As regards the inductive training methods, SVNN had the
best performance and in the majority of the evaluated data sets

6http://svmlight.joachims.org/

Table 3: Accuracy (Acc), balanced error rate (BER), and positive predictive
value (PPV) of inductive methods with 10 labeled training points.

SVNN NN-LM SVM-l SVM-rbf
Breast Cancer dataset

Acc 62.86±9.16 60.26±9.42 61.69±7.83 62.73±5.25
BER 38.92±6.65 42.24±8.11 55.04±3.81 42.15±4.55
PPV 36.37±10.51 33.24±9.82 14.96±8.94 34.34±5.71

Haberman dataset
Acc 26.60±0.00 26.60±0.00 26.60±0.00 26.60±0.00
BER 50.00±0.00 50.00±0.00 50.00±0.00 50.00±0.00
PPV 26.47±0.00 26.47±0.00 26.47±0.00 26.47±0.00

Hepatitis dataset
Acc 61.03±3.44 58.33±3.82 61.79±3.97 53.59±4.50
BER 42.99±2.87 44.21±2.84 47.25±2.92 54.94±4.04
PPV 26.36±2.29 24.97±2.42 23.22±3.16 16.32±3.36

BCI dataset
Acc 51.70±4.18 51.00±5.26 50.15±5.11 50.90±5.67
BER 48.30±4.18 49.00±5.26 49.85±5.11 49.10±5.67
PPV 51.20±3.49 50.50±4.35 49.65±5.08 50.40±4.26

Digit1 dataset
Acc 74.97±4.63 73.76±5.70 69.47±4.22 73.81±4.53
BER 25.54±4.05 26.41±4.98 30.93±4.06 26.32±4.45
PPV 96.73±3.68 77.32±4.11 79.83±3.52 76.20±3.65

g241c dataset
Acc 61.68±3.74 55.84±3.92 57.70±3.17 55.76±3.82
BER 38.32±3.74 44.16±3.92 42.30±3.17 44.24±3.82
PPV 61.61±2.91 55.77±3.52 57.63±2.52 55.69±3.35

Text dataset
Acc 57.68±3.89 57.15±4.07 55.17±3.91 54.33±4.02
BER 42.83±3.80 43.71±4.01 44.21±3.88 44.30±3.97
PPV 57.40±3.53 56.86±3.72 56.52±3.06 55.19±3.32

Table 4: Accuracy (Acc), balanced error rate (BER), and positive predictive
value (PPV) of transductive methods with 10 labeled training points.

TNN TSVM-l TSVM-rbf
Breast Cancer dataset

Acc 71.43±1.83 74.03±0.00 74.03±0.00
BER 30.74±1.53 50.00±0.00 50.00±0.00
PPV 46.41±2.88 25.97±0.00 25.97±0.00

Haberman dataset
Acc 75.95±2.49 73.40±0.00 73.40±0.00
BER 33.47±2.31 50.00±0.00 50.00±0.00
PPV 55.45±3.27 26.47±0.00 26.47±0.00

Hepatitis dataset
Acc 78.72±2.21 78.08±0.00 78.08±0.00
BER 34.03±2.10 50.00±0.00 50.00±0.00
PPV 47.97±3.38 20.51±0.00 20.51±0.00

BCI dataset
Acc 52.20±3.42 50.90±3.55 51.00±4.85
BER 47.80±3.42 49.10±3.55 49.00±4.85
PPV 51.95±1.58 50.65±1.59 50.75±2.23

Digit1 dataset
Acc 82.43±4.02 80.18±4.26 82.20±3.97
BER 17.84±3.94 21.58±4.12 18.33±4.06
PPV 92.77±6.29 90.12±5.01 91.86±4.34

g241c dataset
Acc 77.79±3.18 76.11±3.29 75.29±3.02
BER 22.21±3.18 23.89±3.29 24.71±3.02
PPV 77.74±2.58 76.06±2.55 75.24±2.28

Text dataset
Acc 68.82±3.67 69.03±3.22 65.44±4.01
BER 32.10±3.21 31.72±3.38 35.06±3.43
PPV 68.53±3.21 68.95±3.05 64.63±4.08

by using only 10 labeled data. In the case of the Haberman
dataset, all the algorithms fail, predicting all the testing data in
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Table 5: Accuracy (Acc), balanced error rate (BER), and positive predictive
value (PPV) of inductive methods with all the labeled training points.

SVNN NN-LM SVM-l SVM-rbf
Breast Cancer dataset

Acc 73.77±4.11 65.58±4.61 72.72±3.83 73.64±4.61
BER 28.26±3.52 42.22±4.27 37.04±3.71 37.22±5.46
PPV 49.63±5.23 35.93±4.88 47.21±3.79 49.09±5.97

Haberman dataset
Acc 75.29±2.88 74.12±3.19 72.03±2.76 74.51±3.16
BER 32.05±2.67 33.51±3.05 35.44±2.32 32.87±2.84
PPV 53.39±3.01 51.13±4.22 47.25±3.17 51.86±3.87

Hepatitis dataset
Acc 71.79±2.85 68.97±3.11 64.23±2.34 71.15±3.34
BER 30.26±2.81 32.93±2.95 32.67±2.12 30.36±3.20
PPV 38.96±3.20 35.67±4.14 33.06±2.59 38.37±4.08

BCI dataset
Acc 80.15±2.23 72.55±2.83 77.10±2.12 79.30±2.60
BER 19.85±2.23 27.45±2.83 22.90±2.12 20.70±2.60
PPV 79.99±1.95 72.35±2.00 76.92±1.69 79.13±2.21

Digit1 dataset
Acc 95.33±2.61 93.64±2.72 90.77±2.45 94.98±2.13
BER 6.42±2.32 7.72±2.68 10.82±2.29 5.12±2.09
PPV 88.21±2.51 87.75±2.31 75.25±3.47 87.76±2.51

g241c dataset
Acc 79.60±2.64 68.88±2.83 78.79±2.67 78.66±2.81
BER 20.40±2.64 31.12±2.83 21.21±2.67 21.34±2.81
PPV 79.55±2.26 68.82±1.82 78.74±2.23 78.32±2.07

Text dataset
Acc 85.57±1.87 75.13±2.22 86.84±1.82 78.73±2.12
BER 15.49±1.76 26.55±2.13 15.32±1.68 23.05±1.64
PPV 84.92±1.48 74.16±2.06 86.57±1.55 77.35±1.82

Table 6: Accuracy (Acc), balanced error rate (BER), and positive predictive
value (PPV) of transductive methods with all the labeled training points.

TNN TSVM-l TSVM-rbf
Breast Cancer dataset

Acc 75.58±1.41 72.73±1.17 74.81±1.44
BER 26.99±1.12 35.33±1.09 33.21±1.32
PPV 52.31±1.68 47.52±1.58 51.55±2.17

Haberman dataset
Acc 76.01±2.13 73.40±0.00 73.40±0.00
BER 30.81±2.10 50.00±0.00 50.00±0.00
PPV 54.68±2.91 26.47±0.00 26.47±0.00

Hepatitis dataset
Acc 73.85±2.06 80.13±1.22 79.49±1.36
BER 28.72±1.89 24.45±1.18 25.13±1.24
PPV 41.48±2.62 51.18±1.65 50.01±2.33

BCI dataset
Acc 80.60±2.10 80.10±2.07 80.30±2.14
BER 19.40±2.10 19.90±2.07 19.70±2.14
PPV 80.44±1.86 79.94±1.80 80.14±1.88

Digit1 dataset
Acc 95.44±2.12 94.43±2.04 92.37±2.21
BER 5.47±2.25 6.06±1.94 8.24±2.18
PPV 88.78±2.54 88.12±2.96 87.55±2.64

g241c dataset
Acc 82.86±2.24 81.93±2.52 81.88±2.21
BER 17.14±2.24 18.07±2.52 18.12±2.21
PPV 82.82±2.12 81.89±2.31 81.84±2.02

Text dataset
Acc 86.53±1.21 87.12±1.12 79.61±1.48
BER 14.96±1.18 14.24±1.03 21.33±1.39
PPV 85.25±1.32 87.16±2.14 78.22±1.43

the same class (see the value of BER = 50% in Table 3). By
using all the training data, SVNN only was less accurate than

Table 7: Training and testing time, in seconds, of NNs with all the labeled
training points.

SVNN NN-LM TNN
Breast Cancer dataset

Train 24.53 12.55 74.28
Test 0.01 0.01 0.01

Haberman dataset
Train 69.33 14.12 78.37
Test 0.01 0.01 0.01

Hepatitis dataset
Train 29.56 16.76 65.54
Test 0.01 0.01 0.01

BCI dataset
Train 185.34 32.58 214.76
Test 0.01 0.01 0.01

Digit1 dataset
Train 684.95 92.67 996.47
Test 0.02 0.02 0.02

g241c dataset
Train 673.65 89.73 989.75
Test 0.02 0.02 0.02

Text dataset
Train 990.35 193.18 1287.83
Test 0.06 0.06 0.06

Table 8: Training and testing time, in seconds, of SVMs with all the labeled
training points.

SVM-l SVM-rbf TSVM-l TSVM-rbf
Breast Cancer dataset

Train 0.02 0.13 0.28 1.32
Test 0.01 0.02 0.01 0.03

Haberman dataset
Train 37.39 52.45 368.71 87.42
Test 0.01 0.05 0.01 0.05

Hepatitis dataset
Train 1.23 241.36 22.32 287.22
Test 0.01 0.12 0.01 0.12

BCI dataset
Train 5.45 10.36 9.22 75.36
Test 0.01 0.08 0.01 0.06

Digit1 dataset
Train 2.53 19.74 838.29 1442.94
Test 0.04 2.56 0.06 4.16

g241c dataset
Train 1.56 32.04 84.19 242.90
Test 0.03 1.59 0.06 3.92

Text dataset
Train 8.36 3764.61 27.98 5138.61
Test 0.43 3.05 0.63 3.16

SVM in the Text dataset (see Table 5). We believe that this fact
is due to the high-dimensional feature space of Text dataset,
since such fact can favor linear classifiers, such as the linear
SVM.

As regards the transductive training methods, TSVM and
TSVM-rbf predicted all the testing data of the UCI datasets in
the majority class when using only 10 labeled data, i.e. the con-
straint on the predicted class proportion was violated (see the
value of BER = 50% in the first three rows of Table 4). There-
fore, TNN was the best approach for all the datasets, excepting
the Text dataset, for which the linear TSVM was the best ap-
proach. By using all the training data, TNN had the best values
of accuracy, BER, and PPV in five of the seven datasets.

As regards the training and testing time, SVM was, in most
of the experiments, less expensive in training than the proposed
methods; however, the testing time reveals the main advantage
of SVNN and TNN, which can perform nonlinear classification
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Table 9: Performance of SVNN without eigenvalue decay and TNN without the
term about class proportion.

SVNN−λmin SVNN-λmin − λmax TNN−C3

Breast Cancer dataset
Acc 71.04±4.26 68.96±4.12 74.03±0.00
BER 30.23±4.38 33.51±4.19 50.00±0.00
PPV 46.05±5.33 43.14±5.06 25.97±0.00

Haberman dataset
Acc 75.16±2.65 73.86±2.61 73.40±0.00
BER 33.25±2.44 34.12±2.73 50.00±0.00
PPV 53.36±2.88 50.64±3.07 26.47±0.00

Hepatitis dataset
Acc 70.51±2.77 67.95±2.32 73.08±1.36
BER 32.85±2.64 34.12±2.28 29.07±1.34
PPV 36.87±2.82 34.46±3.04 40.58±2.11

BCI dataset
Acc 80.05±2.16 73.50±2.72 80.10±2.31
BER 19.95±2.16 26.50±2.72 19.90±2.31
PPV 79.89±1.88 73.30±1.97 79.94±2.01

Digit1 dataset
Acc 94.67±2.71 90.93±2.63 95.33±2.20
BER 5.83±2.75 10.16±2.50 5.72±2.28
PPV 87±2.65 84.04±3.06 89.24±3.21

g241c dataset
Acc 78.93±2.74 73.20±2.83 82.80±2.08
BER 21.07±2.74 26.80±2.83 17.20±2.08
PPV 78.88±2.30 73.14±2.03 82.76±1.96

Text dataset
Acc 85.33±1.84 82.40±2.01 86.67±1.41
BER 15.12±1.67 19.02±2.12 16.32±1.29
PPV 84.54±1.58 83.13±2.00 86.84±1.16

a few hundred times faster than SVM with nonlinear kernels,
as can be seen, for instance, in the fifth row of Table 7. In this
case, TSVM has 231 support-vectors, while the TNN has only
two hidden neurons; therefore, taking into account that Digit1
dataset has 241 attributes, from the models (1) and (19) it is pos-
sible to realize that the decision function of TSVM requires the
calculation of 56133 products, 55672 sums, and 232 nonlinear
functions, while the decision function of TNN only requires the
calculation of 484 products, 487 sums, and 2 nonlinear func-
tions. Such fact is especially relevant in applications such as
on-the-fly object detection, in which each image frame has to
be scanned by a sliding window, generating several thousands
of cropped images to be classified.

By comparing Tables 9 and 5, it is possible to verify the
positive influence of eigenvalue decay on the performance
of SVNN. Table 9 also reveals the importance of the term
about class proportion on the performance of TNN. Note that,
TNN−C3 is unsatisfactory in classifying the first two datasets,
i.e. TNN predicted all the testing data of datasets Breast
Cancer and Haberman in the majority class (see the value of
BER = 50% in the last cells of the first two rows of Table 9).

7. Conclusion

The analysis presented in this paper indicates that by apply-
ing eigenvalue decay it is possible to increase the classification
margin, which improves the generalization capability of NNs.
The introduction of eigenvalue decay allowed the synthesis of
two novel SVM-like training methods for NNs, including a

transductive algorithm. These methods are suitable options for
a faster non-linear classification, by avoiding the time expen-
sive decision-function of non-linear SVMs, which may hinder
on-the-fly applications, such as pedestrian detection (e.g. see
Section 4.2 of [15]). The experiments indicate that, regarding
the classification accuracy, SVNN and TNN are similar to non-
linear SVM and TSVM; however, regarding the testing time,
the proposed methods were significantly faster than non-linear
SVMs. The experiments also indicate that TNN can take ad-
vantage of unlabeled data, especially when few labeled data are
available, as can be seen in Table 4.
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