
ar
X

iv
:1

31
1.

12
94

v2
 [

cs
.N

E
]

 2
7

Fe
b

20
14

Delay Learning Architectures for Memory and

Classification

Shaista Hussain a,∗, Arindam Basu a, R. Wang b and

Tara Julia Hamilton b,c

aSchool of Electrical and Electronic Engineering, Nanyang Technological
University, 50 Nanyang Avenue, Singapore 639798

bUniversity of Western Sydney, Penrith, NSW 2751, Australia
cSchool of Electrical Engineering and Telecommunications, University of New

South Wales, Sydney, NSW 2052, Australia

Abstract

We present a neuromorphic spiking neural network, the DELTRON, that can re-
member and store patterns by changing the delays of every connection as opposed to
modifying the weights. The advantage of this architecture over traditional weight-
based ones is simpler hardware implementation without multipliers or digital-analog
converters (DACs) as well as being suited to time-based computing. The name is
derived due to similarity in the learning rule with an earlier architecture called
Tempotron. The DELTRON can remember more patterns than other delay-based
networks by modifying a few delays to remember the most ‘salient’ or synchronous
part of every spike pattern. We present simulations of memory capacity and classifi-
cation ability of the DELTRON for different random spatio-temporal spike patterns.
The memory capacity for noisy spike patterns and missing spikes are also shown.
Finally, we present SPICE simulation results of the core circuits involved in a re-
configurable mixed signal implementation of this architecture.

Key words: Neuromorphic, Spiking Neural Networks, Delay-based Learning

1 Introduction: Delay-based Learning Approach

Neuromorphic systems emulate the behavior of biological nervous systems
with the primary aims of providing insight into computations occurring in the

∗ Corresponding author
Email address: shaista001@e.ntu.edu.sg (Shaista Hussain).

Submitted to Neurocomputing 15 September 2018

http://arxiv.org/abs/1311.1294v2

brain as well as enabling artificial systems that can operate with human-like
intelligence at power efficiencies close to biological systems. Though initial ef-
forts were mostly limited to sensory systems [1, 2], the focus of research has
slowly shifted towards the implementation of functions of higher brain regions
like recognition, attention, classification etc. However, most of the previous
researchers have primarily focused on the implementations of somatic nonlin-
earity, compact learning synapses and address event representation (AER) for
asynchronous communication [3–9]. As a result, there is a need for modeling
and understanding the computational properties of other components of our
neurons: the axons and dendrites which have been largely ignored till now.
This is also facilitated by recent experimental and computational work which
has shed light on possible computational roles of these structures.

The research on spiking neural networks has led to the emergence of a new
paradigm in neural networks, which has garnered a lot of interest lately. Sev-
eral recent studies have presented spiking neural networks to implement bi-
ologically consistent neural and synaptic mechanisms [10–12]. As shown by
Izhikevich, spiking neural networks with axonal delays have immense informa-
tion capacity [13]. These networks can exhibit a large number of stereotypical
spatio-temporal firing patterns through a combination of spike timing de-
pendent plasticity (STDP) and axonal propagation delays. Learning schemes
based on modifying delays can be utilized to read out these firing patterns.
This has spurred a renewed interest in the possible role of delays and has
even led to analog VLSI implementations of delay models of axons [14, 15].
In this paper we present a computational model-DELTRON which can learn
spatio-temporal spike patterns by modifying the delay associated with the
spikes arriving at a synaptic afferent. Compared to most earlier implementa-
tions [14, 15] that need ‘N’ delay storage elements to memorize a single ‘N’
dimensional pattern, we show much increased memory capacity by modifying
only a few delays to memorize the most ‘salient’ part of each pattern. Here
‘salient’ refers to that part of a spatio-temporal pattern which has maximum
synchrony or the largest number of coincidental spikes when observed at the
soma of the post-synaptic neuron. The synchronous activity of the neurons
has been linked to a variety of cognitive functions. Therefore, delay adapta-
tion, which utilizes the synchrony in spike patterns, can play a role in object
recognition, attention and neuronal communication.

In the past, several delay learning schemes have been presented for non-spiking
networks [16–18] and some of them have been used in applications like word
recognition [19]. In the context of spiking neurons and pulse coupled networks,
delay adaptation was implemented in [20, 21] for biologically motivated net-
works using standard analog hardware elements. The delay learning rule for
recognizing impulse patterns is similar to our method except that in these
studies, the delay parameters are adjusted until all the impulses are coin-
cident while we modify only a subset of delays corresponding to the most

2

�

�
�

��

�
�

��

�

�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

����� �
�
� �

�
�

����� �
�
� �

�
�

����� �
�
� �

�
�

	
���

	
���

����

�
�

�
�

�
�

�
�
�
�
�
�
�
�
�
�

��
���

Figure 1. Delay-based learning model where N synaptic afferents receive incoming
spikes fired at time xi and create EPSP waveforms delayed by di, i = 1, 2, ..., N.
Spike delays d = (d1, d2, d3, . . . dN) are modified such that membrane potential V(t)
crosses the Vthr.

synchronous spikes. Our learning rule, initially presented in [22], is similar to
the one presented in [23] with two differences: we do not have the nonlinear
membrane voltage dependent weighting term and we use a single time-based
delay adjustment instead of an integral over a time period. More importantly,
there is no discussion on the memory capacity of such networks in [23] with
the authors having demonstrated the memorization of a single pattern only.

This paper is organized as follows: introduction to delay-based learning ap-
proaches is given after which, the first section presents the computational
architecture of DELTRON followed by the learning algorithm in the next
section. The fourth section presents simulation results. We discuss details of
an efficient mixed-signal VLSI implementation of this algorithm in the fifth
section and follow it with conclusions in the last section.

2 The DELTRON Model

2.1 Network Architecture

Figure 1 depicts the architecture of the DELTRON that comprises an integrate
and fire (I&F) neuron at the output and N excitatory synapses that receive

3

spiking inputs. Each of these incoming spikes create a delayed excitatory post-
synaptic potential (EPSP) that gets linearly summed at the soma. In the bio-
physical world, such delays could be attributed to synaptic processes [23] or
dendritic propagation times [24]. If the summed membrane potential crosses
a threshold, Vthr, the I&F neuron generates a spike and resets the membrane
voltage [25]. We want to develop a learning rule that can modify the delays
associated with each input so that only a certain desired set of P patterns can
fire the neuron by making the membrane potential cross the threshold.

In this paper, we consider applying the DELTRON to classifying or memo-
rizing patterns in the case where there is exactly one spike on each input i
at a random time xi within a fixed time period T , i.e, xi ∈ [1 T], i = 1, 2,
..., N. This case corresponds to applying the DELTRON to classify signals
coming from a sensor employing time-to-first-spike (TTFS) encoding [26–28].
Time based encoding is becoming popular recently due to the reduced supply
voltage (leading to lower voltage headroom) and increased speeds (leading to
higher temporal resolution) in today’s deeply scaled VLSI processes; hence,
the DELTRON will be very useful as a back end processor for all such tempo-
ral encoding sensory systems. Formally, we can express the membrane voltage
V (t) as a sum of the EPSPs generated by all incoming spikes as:

V (t) =
∑

i

K(t− ti) (1)

where K : R → R is the EPSP kernel function, di is the delay of the
i-th branch and ti = xi + di, i = 1, 2, ..., N. The vector x = (x1, x2,
..., xN) constitute a spike pattern presented to the network. In this work,
we consider the fast rising and slowly decaying PSP kernel to be given by
K(t) = V0(exp[−(t)/τ] − exp[−(t)/τs]), where τ is the synaptic current fall
time constant and τs the synaptic current rise time constant. Our analysis is
quite general and is applicable to other forms of the function K as well. As
mentioned earlier, the I&F output neuron elicits a spike when the voltage V (t)
crosses the threshold voltage Vthr. Let nspk denote the number of spikes fired
by the output neuron for the presentation of a pattern. Then, the operation
of the neuron is described as:

If V (t) > Vthr,

V (t) → 0

nspk(t) = nspk(t− 1) + 1(nspk(0) = 0) (2)

The final output of the network, y, is a logical variable having a value of 1 if
the pattern is recognized. We define this operation by:

y = 1 if nspk,final > 0

= 0 otherwise (3)

4

where nspk,final is the final value of nspk after the presentation of the pattern
is completed. In other words, we declare the pattern recognized if the neuron
fires one or more spikes in the entire duration.

2.2 Input Pattern Space

We mentioned earlier that the input spike pattern to the network is x = (x1,
x2, ..., xN) where xi ∈ [1 T], i = 1, 2, ..., N. For any real world inputs,
there is a finite precision ∆t at which an input xi can change. Without loss
of generality, let us assume that ∆t = 1 so that xi are integers (otherwise, we
can always re-define T ′ = T�∆t and have xi ∈ [1 T ′] be integers). Then, the
total number of possible patterns, PT is given by PT = TN . However, some
of these patterns are very similar to each other and should be considered to
belong to the same category. For example, a TTFS imager presented with the
same scene will produce slightly different spike times on different trials due
to noise inherent in such systems. Hence, we define two patterns x and y to
belong to the same category if:

||x− y||∞ ≤ s, s ∈ N (4)

This results in a total of (2s + 1)N patterns in each category. In some appli-
cations, sometimes spikes may be missing on several inputs. To accommodate
such cases, we can define a pattern to also belong to a category if it is exactly
same as one of the existing patterns in that category but has m missing spikes.
Then, the total number of patterns in each category for cases where the max-
imum number of missing spikes is M is given by Pcat =

∑M
m=0

NCm(2s+ 1)N ,
where NCm is the total number of ways in which m out of the total N
spikes may be missing. This leads to the total number of categories being
PC = PT�Pcat. This provides an upper bound on the total number of pat-
terns P that the network can be trained to recognize. For the parameter values
we use (s << T , N >> 1, P << PC), the probability of two out of P ran-
domly selected patterns to fall in the same category is extremely small. Hence,
unless explicitly mentioned, whenever we mention the capacity of the network
to memorize or classify patterns in the rest of the paper, we mean patterns
belonging to different categories.

2.3 Choice of Threshold and the Two types of error

The DELTRON suffers from two types of errors when used in pattern mem-
orization or classification tasks: false positive (FP) and false negative (FN).
Suppose the network is trained to respond to patterns of class 1 by producing

5

y = 1. In the classification case, it is additionally trained to respond to pat-
terns of class 2 with y = 0. For pattern memorization, this step is not there
and the entire population of patterns excluding those in class 1 act as a class
2 of distractor patterns–hence this is a more difficult task. Now, if a pattern
of class 1 is presented during testing and the network responds with y = 0, it
makes a FN error. On the other hand, if a pattern of class 2 is presented and
the network produces y = 1, it is a FP error.

The threshold for the output neuron is an important parameter in deciding
the balance between FP and FN errors. This is achieved by first computing the
probability distribution of the maximum value (Vmax) of membrane voltage
due to random input spike patterns. As an example, Figure 2(a) shows Vmax for
a random spike pattern while Figure 2(b) depicts the probability distribution
of Vmax (parameters of this simulation are given in Section 4). As shown in
Figure 2(b), Vthr is set as a value ∆V units higher than the value Vpeak at which
the probability distribution is maximum, i.e. Vthr = Vpeak+∆V . It would seem
that larger values of ∆V are better since it reduces FP errors. For example,
setting Vthr to 16 would almost eliminate FP errors. However, this leads to the
problem of ‘trainability’–the network can no longer successfully memorize a
large number of patterns and makes many FN errors. In that case, the optimal
threshold (Vopt) is that which minimizes sum of FP and FN errors as shown
in Figure 2(c). We obtain Vmax distributions after training the network (red)
and when new unseen patterns are presented to the trained network (blue).
The Vmax value at the point of intersection of these two distributions gives us
the optimal threshold, Vopt. The strategy we have taken throughout our work
is to keep a large threshold value during training (Vthr,TR = Vthr) and use the
optimal threshold during recall.

For the classification case, there is another threshold Vthr− = Vpeak − ∆V
and the network is trained to reduce Vmax lesser than Vthr− for patterns in
class 2. Again, the optimal threshold is used during testing. For the sake of
simplicity, in the rest of the paper we refer to the training threshold as Vthr

with the implicit understanding that the optimal threshold is always used
during testing.

3 Learning Algorithms

3.1 Delay Learning Algorithm for Pattern Memorization

The delay-based learning is similar to the learning in the tempotron [29] except
that weights were modified in that case whereas we modify delays. The training
set for the memorization task consisted of P input spike patterns and the

6

0 200 400
0

2

4

6

8

10

12

Time (ms)

M
e
m
b
r
a
n
e

V
o
l
t
a
g
e

(
V
)

8 10 12 14 16
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

V
max

P
r
o
b
a
b
i
l
i
t
y

D
e
n
s
i
t
y

8 10 12 14
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

V
max

P
r
o
b
a
b
i
l
i
t
y

D
e
n
s
i
t
y

t
max

(a) (c)

V
thr−

V
peak

V
max

V
thr

V
opt V

thr

∆V ∆V

(b)

Figure 2. (a) Membrane potential V (t) for a spike pattern. The horizontal line
denotes the maximum value of V (t), i.e. Vmax at time tmax. (b) Probability density
distribution of Vmax for random spike patterns. Vthr is set as ∆V units greater than
Vpeak = 10.2 for memorization task and the two thresholds Vthr and Vthr− are set for
classification task. (c) Determination of optimal threshold Vopt. Vmax distributions
for learnt (red) and new (blue) patterns are obtained. The training threshold Vthr

used here is 11.7 corresponding to ∆V = 1.5. The point of intersection of the two
distribution curves gives Vopt = 10.9 (dashed vertical line).

0 20 40 60 80 100
0

0.5

1

Time (ms)

0 20 40 60 80 100
−0.1

0

0.1

0.2

0.3

Time (ms)

K

K’

Figure 3. Postsynaptic potential due to a spike arriving at a synapse given by kernel
K (top). Derivative of K (bottom).

memory capacity of the network was computed as the number of patterns
learnt. A spike pattern is said to be learnt by the network if output y = 1 in
response to that pattern. The model was not trained on distractor patterns
for this task. Since the training and testing patterns sets are the same in
a memorization task, the problem of overfitting arises. However, in our case
the use of low-pass kernel function K provides some degree of resilience to
overfitting. The network learns spike patterns by modifying the N -dimensional
delay vector d. The learning algorithm consists of the following steps:

(1) Delay vector d = (d1, d2, d3, . . . dN) is initialized by choosing the value of

7

each di from a uniform distribution between 0 and dinit.
(2) In every iteration of the training process, a spike pattern is presented to the

network.
(3) V (t) is computed for the pattern. Maximum value of V (t); Vmax is found.
(4) If Vmax > Vthr, the spike pattern is learnt. Delays are not modified.
(5) If Vmax < Vthr, time tmax at which V (t) attains its maximum value (Vmax)

is found.
(6) The error function is chosen as E = Vthr − V (tmax) since a pattern is learnt

if V (t) crosses Vthr at least once and tmax is the time when it is easiest to do
it. ∆d is calculated using gradient descent on the error function as shown
below.

E = Vthr − Vmax (5)

= Vthr − V (tmax)

∆di = −
∂E

∂di
=

∂V (tmax)

∂di

=
∂[
∑

j K(tmax − xj − dj)]

∂di
+

∂V (tmax)

∂tmax

∂tmax

∂di

= −K ′(tmax − xi − di), since
∂V (tmax)

∂tmax

= 0 (6)

where K ′ indicates the derivative of K. Figure 3 shows the PSP kernel K
and its derivative.

(7) Delays are modified according to d = d + η∆d only if the number of learnt
patterns increases, where η is the learning rate. The boundary values of
delay are 0 and T .

(8) If the number of patterns learnt by the model doesn’t increase in 20 con-
secutive learning iterations, then it is assumed that the algorithm has en-
countered a local minimum. In an attempt to escape the local minimum,
delays are modified in spite of no change in the number of patterns learnt
by the network. The last minimum which gave the highest number of learnt
patterns is remembered.

(9) Learning consisting of steps 2-8 is stopped if any of the following conditions
occurs

(a) All patterns are learnt completing the learning process, which is the more
frequent outcome when trained on small number of patterns.

(b) 100 local minima are encountered, which refer to 100 continuous instances
of learning algorithm getting trapped in a status of no change in the
learning, after which there is no further increase in the number of learnt
patterns. This is the more frequent outcome when large number of patterns
are being learned. The delays corresponding to the best minimum are the
final learnt delays.

The DELTRON maximizes its memory capacity by modifying only some of
the delays preferentially over the others. This choice is guided by the spikes

8

0 200 400 600
0

2

4

6

8

10

V
(t

)
0 200 400 600

0

2

4

6

8

10

0 200 400 600
0

5

10

Time (ms)

V
(t

)

0 200 400 600
0

5

10

Time (ms)

After trainingBefore training

V
peak

V
peak

Class 1

Class 2

Figure 4. Membrane potential generated by a pattern in class 1 (top row) and in
class 2 (bottom row) before and after training show how learning increases Vmax for
the class 1 while reduces it for the class 2. The increased synchrony for class 1 and
decreased synchrony for class 2 are shown.

arriving within a time window before tmax. The length of this window is gov-
erned by the kernel K(t).

3.2 Delay Learning Algorithm for Pattern Classification

We have also utilized the delay-modification learning scheme for training our
model on a classification task. We generated two sets of random spike patterns,
each set consisting of P patterns. Each spike pattern x = (x1, x2, ..., xN)
consists of spike times xi randomly drawn from a uniform distribution between
1 and T as in the first experiment. These two training sets of spike patterns
were arbitrarily assigned to class 1 and class 2. The network was trained such
that the output neuron fires at least one spike (network output y = 1) in
response to the patterns of class 1 and fails to fire for patterns in class 2. The
learning algorithm is similar to that used in the memory capacity experiment
with an extra step for patterns in class 2. The input patterns belonging to
the class 1 and class 2 are presented to the network. The delays are modified
when a pattern of class 1 is presented and Vmax < Vpeak + ∆V or when a
pattern of class 2 is presented and Vmax > Vpeak − ∆V . The thresholds for
training the patterns in the two classes: Vthr for class 1 and Vthr− for class 2
are shown in Figure 2(b). Different ∆V values were used for training. ∆d is
calculated as before and delays are modified as: d = d + η∆d if the pattern
belongs to class 1 and d = d - η∆d if the pattern belongs to class 2. After
training is completed, the classification performance of the network is tested by
presenting all the patterns on which it was trained. The optimal threshold Vopt

9

to test the classification performance of the network is set to Vpeak. Therefore,
a pattern in class 1 is correctly classified if it fires the output neuron by
satisfying the condition Vmax > Vpeak and a pattern in class 2 is correctly
classified if it satisfies Vmax < Vpeak.

This learning process enables us to achieve increased synchrony for patterns
in class 1 and decreased synchrony for patterns in class 2. An example of
this is shown in Figure 4. The details of the simulation setup and parameters
are provided in the next section; this figure gives an intuitive feeling for the
effect of delay changes on V (t). The delays are modified such that a learnt
pattern in class 1 (top), has more synchronized coincident spikes at the soma
to allow membrane voltage, V to exceed Vpeak while a trained pattern in class
2 (bottom) is characterized by asynchronous spikes at the soma, which result
in V falling below Vpeak.

4 Simulation Results

In all the experiments described here, the number of inputs (N) is 100, the
temporal length of a pattern (T) is 400 ms and delays di were initialized from
a uniform distribution between 0 and 50 ms (dinit = 50 ms). The parameters
used for training are as follows: V0 = 2.12, τ = 15 ms, τs = τ/4, initial learning
rate η0 = 5 for the first 500 iterations and then reduced by 0.5 after every
500 iterations. η0 is chosen such that the maximum change in delay in one
iteration is much smaller than T . The peak location of the Vmax distribution
was estimated to be Vpeak = 10.2, as shown in Figure 2(b). Different Vthr values
were used for training by varying ∆V .

(I) Effect of Learning: Vmax and tmax distribution

The first simulation results are shown in Figure 5. We obtained the distri-
bution of Vmax before and after training to see how delay learning changes
Vmax values of spike patterns being learned. The solid blue curves denote
the probability distribution of Vmax for P = 20, 50 and 100 spike patterns
before the network is trained while the red curves with dots show the dis-
tribution after training. There is a clear shift in the peak of the distribution
towards Vthr indicating that the DELTRON is able to learn to respond pref-
erentially to these spike patterns by shifting the Vmax values closer to the
Vthr. The black dashed curves depict the response of the trained network to
a new random set of P patterns showing that its response to new, not learnt
patterns is relatively unchanged. Each row corresponds to the Vmax distri-
bution for a different Vthr value. The Vthr values used were relative to the
peak value of Vmax distribution before training as shown in Figure 2(b). Vthr

was set to 10.7, 11.2 and 11.7 corresponding to ∆V = 0.5, 1.0 and 1.5 units
respectively. We can see from the Figure 5 that as Vthr increases, the separa-

10

8 10 12 14 16
0

0.2

0.4

8 10 12 14 16
0

0.5

8 10 12 14 16
0

0.5

1

P
r
o
b
a
b
i
l
i
t
y

D
e
n
s
i
t
y

8 10 12 14 16
0

0.2

0.4

8 10 12 14 16
0

0.5

1

8 10 12 14 16
0

1

2

P
r
o
b
a
b
i
l
i
t
y

D
e
n
s
i
t
y

8 10 12 14 16
0

0.5

8 10 12 14 16
0

0.5

1

8 10 12 14 16
0

0.5

P
r
o
b
a
b
i
l
i
t
y

D
e
n
s
i
t
y

 P = 20 P = 100P = 50

V
max

V
thr

 = 10.7 V
thr

 = 10.7 V
thr

 = 10.7

V
thr

 = 11.2 V
thr

 = 11.2V
thr

 = 11.2

V
thr

 = 11.7 V
thr

 = 11.7V
thr

 = 11.7

Figure 5. Probability density distribution of Vmax for a set of 20, 50 and 100 random
spike patterns before (blue) and after (red) training showing a clear shift in the peak
of the distribution for trained patterns. Vmax distribution for new patterns presented
to the trained network is shown in black.

tion between the Vmax distributions before and after training also increases
indicating that the network learns the patterns by setting the Vmax values
closer to the Vthr. For larger values of Vthr, less number of “background”
patterns are wrongly recognized to be in the memory and therefore, lower
FP errors are incurred.
Figure 6 shows the distribution of tmax, the time at which V = Vmax.

As we can see, the tmax distribution before delay learning (blue bars) is
evenly spread out across time. After training, the tmax distribution (red
bars) doesn’t change considerably which implies that the delays are modified
such that the EPSPs due to a spike pattern learn to arrive at times closer to
the initial tmax value for that pattern, thereby not changing the tmax values
significantly.

(II) Pattern Memorization

In the next experiment we calculated the memory capacity of the network.
We trained it on P = 10, 20, 30, 50, 70 and 100 random spike patterns us-
ing different values of Vthr as used in the first experiment. Vopt values cor-
responding to a certain value of P and Vthr were determined as discussed
earlier (Figure 2(c)) and were used to test how many of the trained patterns
are recalled by the network. As shown in the Figure 5, the Vmax distribu-
tion for learnt patterns shifts towards Vthr used for training. Therefore, as
Vthr increases, Vopt, which lies at the point of intersection of the learnt and
background Vmax distributions, also increases. Figure 7 shows the percent-
age of patterns memorized by the network averaged over 10 repetitions. As

11

50 100 150 200 250 300 350 400 450
0

2

4

6

8

10

12

14

t
max

F
r
e
q
u
e
n
c
y

Figure 6. tmax distribution for 100 random spike patterns. The tmax values before
(blue) and after (red) training are spread across the entire pattern duration. Vthr =
10.7.

discussed earlier, when trained on small number of patterns, P = 20 and
Vthr = 10.7, the learning process completes by memorizing all the patterns,
which is the exit condition (a) in the step (9) of learning algorithm. When
trained on P = 50 patterns, the learning algorithm stops as in condition (a)
4 out of 10 times it was trained and terminates by encountering 100 local
minima (exit condition (b)) 6 out of 10 times. For large number of patterns,
P = 100, the learning algorithm exits by encountering condition (b) for all
the 10 runs. The network memorizes 90-100% of the patterns when it is
trained on small number (P = 10 − 50) of patterns with Vthr set to 10.7.
The maximum number of patterns learned by the network depend on the
number of synapses on which spike patterns arrive. In our simulations, the
network having N=100 afferents can memorize a maximum of about 84%
of the patterns for P = 100, i.e. about 84 random spike patterns. When
higher threshold is used for training, more number of coincident EPSPs are
needed for Vmax to exceed the higher Vthr, thereby making the delay learning
more difficult. This results in less number of learnt patterns and therefore
a drop in the memory capacity for higher Vthr values, maximum number of
patterns memorized by the network reduces from a mean value of 84 to 64
for the highest Vthr = 11.7 used.
Figure 8 shows the total error given by the sum of FP and FN errors,

incurred by the learning algorithm in the memorization task. We can see
that as the number of patterns increases, the total error increases which
is mainly due to the higher FN error for larger number of patterns. This
has already been shown in Figure 7, where the memory capacity drops and
therefore the FN error increases with the increase in P . For small number
of patterns, P = 10 − 20, the total error is less for higher Vthr and there-
fore higher Vopt values. This is due to low FP errors incurred when higher
threshold is used to recall the patterns. For moderate and large number of

12

0 20 40 60 80 100 120
50

60

70

80

90

100

110

Number of patterns trained on

%

o
f

p
a
t
t
e
r
n
s

l
e
a
r
n
t

V
thr

 = 10.7

V
thr

 = 11.2

V
thr

 = 11.7

Figure 7. Memory capacity of the model. The percentage of patterns recalled as a
function of different number of patterns used to train the network. As the number of
patterns used for training increases the fraction of patterns that the network learns
reduces. The effect of learning with different Vthr values is also shown.

0 20 40 60 80 100 120
20

30

40

50

60

70

80

90

Number of input patterns

%

T
o
t
a
l

E
r
r
o
r

(
F
P

+

F
N
)

V

thr
 = 10.7

V
thr

 = 11.2

V
thr

 = 11.7

Figure 8. Total error given by the sum of false positive (FP) and false negative
(FN) errors in the pattern memorization task as a function of P and the training
threshold Vthr.

patterns, P > 30 the total errors are similar across different Vthr because as
FP error reduces with the increase in ∆V , the FN errors start to rise due
to the decreased ability of the network to learn large number of patterns at
higher thresholds.

(III) Pattern Classification

The network performance in the classification task was determined by train-
ing the network on random spike patterns belonging to class 1 and class 2.
As mentioned earlier, a pattern belonging to class 1 is said to be correctly
classified if Vmax > Vpeak and a class 2 pattern is correctly classified if

13

Vmax < Vpeak. Vpeak = 10.2 and ∆V values used were 0, 0.2 and 0.4. The
Vmax distributions for the learnt patterns (P = 50) in class 1 (red) and
class 2 (blue) for different ∆V are shown in Figure 9. We can see that the
separation between the two learnt distributions increases with ∆V , shifting
towards the training thresholds Vthr and Vthr− for the respective classes.
When new patterns are presented to the network trained on classification
task, the Vmax distribution (black) obtained is same as the distribution for
the learnt patterns before training. As shown in Figure 10, 90-100% pat-
terns are correctly classified when the network is trained on approximately
140 patterns, 70 patterns belonging each to class 1 and class 2. As the num-
ber of patterns are increased, the network correctly classifies a maximum of
about 80% of the 200 patterns it is trained on. When ∆V is increased, the
training thresholds for classifying random spike patterns belonging to the
two classes shift further away from the peak of the initial Vmax distribution,
increasing for class 1 and decreasing for class 2. In this case, it is expected
that the criteria for classifying the patterns in the two classes would be
met more easily and therefore, the classification accuracy should be same
or higher than the case when ∆V = 0. However, the accuracy decreases
slightly because higher Vthr also imposes a limit on the ‘trainability’ of the
network.
As discussed above, the classification ability of the model depends on

the number of input patterns P and ∆V . However, this capacity changes
with the number of synapses N . Therefore, we investigated the capacity of
DELTRON as a function of the parameter α = P/N , where α is a measure
of the load on the system [29]. We tested the performance of the network
in classifying spike patterns for different values of N = 50, 100 and 200
by varying the number of patterns for each case and ∆V = 0. As shown in
Figure 11, the classification capacity is plotted with respect to α for different
N . We can see that the model can learn to classify patterns with 95-100%
accuracy for α ≤ 1. Further, the capacity reduces to about 80% as the load
on the system increases to α = 2.
We can also see that performance of the network on the classification task

is better than that on the memory task. As shown in Figures 7 and 10, the
delay trained network can memorize about 50 random spike patterns with
90-100% accuracy while it can classify about 140 patterns belonging to two
classes with similar accuracy levels. The reason for this is that the memory
task can be considered as a classification task where the entire background
population is the second class. Hence, it is natural that the network will
mis-classify more patterns.

(IV) Effect of non-idealities

We also tested the noise tolerance of the delay learning scheme. These ex-
periments tested the degree of resilience of our model to the overfitting
problem of a pattern memorization task. First, we introduced noise in the
tmax estimate by adding Gaussian noise with zero mean and standard devia-
tion σ ms. We computed the pattern memorization capacity of the network

14

8 10 12 14
0

0.5

1

1.5

2

2.5

3

V
max

P
r
o
b
a
b
i
l
i
t
y

D
e
n
s
i
t
y

8 10 12 14
0

1

2

3

4

5

V
max

8 10 12 14
0

0.2

0.4

0.6

0.8

1

1.2

1.4

V
max

V
peak

V
peak

V
peak

∆V = 0 ∆V = 0.2 ∆V = 0.4

Figure 9. Probability density distribution of Vmax for 50 patterns learnt to be in
class 1 (red) and in class 2 (blue). The effect of learning using different ∆V values
on the Vmax distributions for the two classes is shown. The Vmax distribution for
new unseen patterns presented to the trained network is shown in black. Dashed
vertical lines denote the location of Vpeak.

0 50 100 150 200 250
70

75

80

85

90

95

100

105

Number of patterns trained on

C
l
a
s
s
i
f
i
c
a
t
i
o
n

A
c
c
u
r
a
c
y

∆V = 0
∆V = 0.2
∆V = 0.4

Figure 10. Classification accuracy of the model. The network was trained to classify
random patterns belonging to class 1 and class 2. The fraction of correctly classified
patterns belonging to both classes is a function of the total number of patterns the
network is trained on and the threshold Vthr used for each class.

using the delay learning scheme in which noisy estimates of tmax were used
to modify delays. As shown in Figure 12, memory capacity drops in the
presence of noise in tmax as compared to the case when ideal estimate of
tmax is used (σ = 0). As σ is increased, the estimate of tmax drifts further
away from its ideal value, leading to a more difficult and time consuming
learning process. Hence, for small number of patterns and moderate values
of σ (∼ 5 ms) the capacity is almost unchanged and only when σ is close to

15

0 0.5 1 1.5 2
75

80

85

90

95

100

105

α = P/N

C
l
a
s
s
i
f
i
c
a
t
i
o
n

C
a
p
a
c
i
t
y

(
%
) N=50

N=100
N=200

Figure 11. Capacity of the model as a function of the load on the system. The
network was trained on P patterns for different number of synapses N = 50, 100
and 200, ∆V = 0. The classification accuracy is plotted against α = P/N . The
capacity of the model reduces as α increases.

0 20 40 60 80 100 120
50

60

70

80

90

100

110

Number of input patterns

%

o
f

p
a
t
t
e
r
n
s

l
e
a
r
n
t

σ = 0
σ = 2
σ = 5
σ = 10

Figure 12. Memory capacity of the model in the presence of noise in tmax estimate. A
jitter of σ = 2, 5 and 10 ms was added to the tmax values. The pattern memorization
capacity drops as higher noise level is introduced by increasing σ. Vthr = 10.7.

the synaptic current fall time constant τ , the capacity degrades drastically.
Next, we estimated the capacity of our delay learning model to recall

patterns when presented with incomplete or noisy versions of the trained
input patterns. Jittered versions of spike patterns were generated by adding
Gaussian noise to each spike time. A jitter of 1.5 ms was added to all the
spike patterns. The ability of the network to recognize noisy patterns was
determined by calculating the memory capacity in the same way as before.
The network was first trained on random spike patterns. In practice, it
is useful to set the threshold during recall to be slightly less than Vopt so
that we can recognize jittered patterns at the cost of slightly increased FP
errors. So we have set threshold to the minimum of (Vthr − 0.2) and Vopt in

16

0 20 40 60 80 100 120
50

55

60

65

70

75

80

85

90

95

100

Number of patterns trained on

%

o
f

j
i
t
t
e
r
e
d

p
a
t
t
e
r
n
s

l
e
a
r
n
t

V
thr

 = 10.7

V
thr

 = 11.2

V
thr

 = 11.7

Figure 13. Memory capacity of the model in the presence of temporal noise. Gaussian
noise with standard deviation 1.5 ms was added to all spike times. The ability of the
model to recognize these noisy patterns reduces by 5-15% from its memorization
capacity for unperturbed spike patterns.

order to calculate how many jittered versions of the trained unperturbed
spike patterns are recalled by the network. For small to moderate number
of patterns (P = 10 − 50) and Vthr = 10.7, Vopt estimated is usually higher
than (Vthr − 0.2) and therefore we use this lower threshold for recalling
noisy patterns. This introduces small FP errors in the range of 0.5-2%. For
larger number of patterns and higher Vthr, it is found that Vopt is much lower
than Vthr and therefore the choice of Vopt to recall jittered patterns seems
reasonable with no further increase in the FP errors.
As shown in the Figure 13, the memory capacity drops by about 5-15% in

the presence of temporal noise. The reduction in memorization capacity for
noisy patterns is higher for lower Vthr (= 10.7) while the capacity doesn’t
deteriorate by much for higher threshold (Vthr = 11.7). For example, when
trained on 100 spike patterns, the capacity reduces by about 10% for Vthr =
10.7 while it reduces by only about 4% for Vthr = 11.7. The reason for this
phenomenon can be explained by the fact that the separation between the
Vmax distributions for learnt and background spike patterns is small for low
Vthr as shown in Figure 5. A jittered version of the trained spike pattern has a
higher chance of falling in the Vmax distribution for the background patterns
at lower Vthr than at higher Vthr. Therefore, higher number of noisy versions
of learnt unperturbed patterns become unrecognizable at lower thresholds.
Finally, we evaluated the performance of the model when presented with

incomplete versions of the trained input patterns. Figure 14 shows the per-
centage of patterns memorized as a function of the number of spikes missing
in the spike pattern. The network was trained on 50 random spike patterns
consisting of 100 spikes and Vthr = 11.7 and then 1, 2, 3, 4 and 5% of af-
ferents were randomly selected such that no spikes arrive at these afferents.
The threshold for recalling patterns is set to min[(Vthr − 0.2), Vopt] as in

17

0 1 2 3 4 5 6
40

45

50

55

60

65

70

75

80

% of missing spikes

%

o
f

p
a
t
t
e
r
n
s

l
e
a
r
n
t

Figure 14. Memory capacity of the model for incomplete spike patterns. The capacity
of the network to recall 50 patterns consisting of spikes missing at some of the
N = 100 afferents is shown. Vthr = 11.7.

the last experiment. As we can see that the memory capacity reduces from
the case when complete patterns were being recalled (0% missing spikes),
from a mean value of 74% of complete patterns to about 70% of incom-
plete patterns, when 1 spike is missing. This drop in the network capacity
when recognizing incomplete patterns is related to the probability that the
missing spikes arrive close to the tmax corresponding to each pattern and
also to the difference (Vmax − Vthr) for that pattern. Hence, the reduction
in memory capacity for 1-2 missing spikes is not very significant. As more
number of spikes are removed, the patterns become unrecognizable and the
capacity reduces further.

5 Hardware Architecture and Results

5.1 Architecture

We propose an efficient mixed-signal VLSI implementation of the DELTRON
algorithm. Figure 15 depicts the system level view of our proposed system
where a spiking sensor communicates patterns to be memorized by our net-
work. The network uses digital tunable delay lines as the memory storage
element and communicates output spikes to an analog chip that houses a
synapse and a spiking neuron. The inter-module communication can be han-
dled by the AER protocol [30]. During the learning process, another digital
block is needed to estimate tmax from the output spike train of the neuron
(the connection is indicated by a dashed line in the figure). It should be noted
that since we want to estimate Vmax from the output spike train, we have to

18

�
�
�
��
�
�

�
�
�
���

��

��

��

�
�
�
��
�
	

����	
����
���

�
�
�
���

����
�������
		
������

��
������	���
����

�������

����	�

�
���

Figure 15. System architecture of the proposed hardware implementation of the
DELTRON algorithm uses digital for learning and analog for computation.

ensure that the neuron generates spikes for any value of Vmax. Hence, during
the learning phase, the value of the threshold of the integrate and fire neuron
is kept at zero. An advantage of this algorithm is that synaptic mismatch and
DACs to implement weights are avoided. All the digital blocks, described in
the following paragraphs, are also relatively simple.

(1) Time-keeper: A global counter is kept which counts up till the maximum
value of pattern time which is 400 ms in this case. The corresponding digital
word will be referred to as Ts and indicates the system time.

(2) Delay line: Every axon has two registers, R1 and R2. While R1 stores the
current delay value d, R2 stores the value of (x+ d) which is the time when
it should generate a spike. Whenever there is an incoming spike, R2 will be
updated to the sum of d and Ts, which equals x at that time instant. At
every clock the value in R2 is compared with the current time Ts, and if
found same, the axon fires an output event request to the AERout module.

(3) Estimate tmax: This block comprises two counters, C1 and C2, and two
registers to store the current estimate of Vmax and tmax respectively. We
estimate Vmax by measuring the inter-spike intervals (ISI) – a large Vmax

corresponds to a small ISI and vice versa. At the beginning of every cycle,
C1, C2 and the tmax register are reset to zero while the ISI register is reset to
the maximum time. Every odd spike resets and starts C1 while stopping C2,
while every even spike does the opposite. The counter that is stopped holds
the current ISI which is compared with the current minimum ISI stored in
the ISI register. If the current ISI is smaller, it is stored in the ISI register
while tmax is updated as Ts - ISI/2.

(4) Learning module: After every input pattern presentation is over, the learning

19

module will update the delays before the presentation of the next pattern.
First, every R2 register is updated to the difference of tmax and its current
value (computing tmax - ti in step (5) of the algorithm in Section 3.1). Only
those axons with a positive value in R2 after this step get updated. The
update is done serially by using the value in R2 of a chosen axon to index a
look-up table that stores the values of ηK ′(t). The value in R1 is modified
by adding the value from the LUT to its current value.

5.2 Hardware Simulations Results

It is not obvious that the delay learning algorithm will work well with the
tmax being estimated from the output spike train of the integrate and fire
neuron. Since, it is computationally infeasible to run a co-simulation of the
DELTRON learning algorithm with SPICE, hence we present the results of
the learning algorithm for the hardware system from behavioral simulations
performed in MATLAB. The learning algorithm used in Section 3.1 relied
on estimating tmax from the membrane voltage V (t) generated by summed
EPSPs. Since, we cannot access V (t), we have proposed estimating tmax from
the spike train output of the I&F neuron. Here, we test the capacity of delay
learning algorithm based on the new tmax estimates to memorize random spike
patterns. For this experiment we considered that a spike pattern x = (x1, x2,
..., xN) arriving at N synapses, generates excitatory postsynaptic currents
(EPSCs) which get delayed by d = (d1, d2, ..., dN). The total current due to
all incoming spikes in a pattern is given by:

I(t) =
∑

ti

K(t− ti) (7)

= I0
∑

ti

(exp[−(t − ti)/τ]− exp[−(t − ti)/τs]) (8)

where K is the EPSC kernel as shown in Figure 3 (top), ti = xi + di, nor-
malization factor I0 = 2.12 nA. All the other parameters τ and τs are set
to the same values as before. The total input current received by the neuron
generates membrane voltage (V) calculated using the leaky integrate and fire
neuron model with membrane time constant τn = 5 ms and threshold volt-
age Vthr. The output neuron fires a spike if V > Vthr at a time tspk. After a
spike, the membrane voltage V is reset to zero. An input pattern is said to be
memorized if the network generates output spikes in response to that pattern.
The learning scheme used is briefly discussed next. A set of P random spike
patterns are generated and delays are initialized. The spike times xi are ran-
domly drawn from a uniform distribution [1 400] ms and delay di for the i-th
afferent is initialized between 0 and 50 ms, where i = 1, 2, ..., N and N = 100.
During training, Vthr is set to a small value VthrL = 36 mV, such that all the
untrained input patterns drive the output neuron to fire. Figure 16 shows the

20

30 40 50 60 70 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

V
max

C
u
m
u
l
a
t
i
v
e

P
r
o
b
a
b
i
l
i
t
y

V
thrH

V
thrL

Figure 16. Cumulative distribution function of the Vmax of the I&F neuron. The
thresholds VthrL and VthrH are set as shown.

cumulative distribution plot of the maximum value of the membrane voltage
of the I&F neuron, Vmax. It can be seen that probability P (Vmax ≤ 36) ≈ 0.
Therefore, by setting VthrL = 36 mV we can ensure that Vmax > VthrL and
the output I&F neuron fires for all the untrained input patterns. The higher
threshold VthrH is the one used in actual learning; it is chosen in the same way
as in the earlier sections. The delay-modification involves the following steps:

(1) A spike pattern is presented to the network. The threshold voltage of the
neuron is set to VthrH .

(2) If the output neuron fires, the spike pattern is learnt. Delays are not modified
and the next input pattern is presented.

(3) If the output neuron fails to fire, the spike pattern is not learnt. Threshold
voltage is set to the lower threshold VthrL such that the output neuron
generates spikes in response to this input pattern.

(4) tmax is estimated from the output spike train by calculating the minimum
ISI = tspk2 − tspk1 and setting

tmax =
(tspk1 + tspk2)

2
(9)

(5) Delay changes are calculated as before according to ∆di = K ′(tmax − ti)
where K ′ indicates the derivative of EPSC kernel K.

(6) Threshold voltage is set to VthrH . The new delay values are used to calculate
the number of patterns memorized by the network. Delays are modified only
if the number of learnt patterns increases.

The stopping conditions for the learning process are same as discussed in steps
(8) and (9) of the learning algorithm in Section 3.1. Figure 17(a) shows the
comparison between the tmax estimates obtained in each learning iteration

21

0 50 100
65

70

75

80

85

90

95

100

105

Number of input patterns

%

o
f

p
a
t
t
e
r
n
s

l
e
a
r
n
t

100 200 300 400
50

100

150

200

250

300

350

400

450

t
est

 (in ms)

t
a
c
t

(
i
n

m
s
)

(b)(a)

Figure 17. Results of the learning algorithm for hardware implementation. (a) Ac-
tual tmax in each learning iteration from V (t) (y-axis) and estimated tmax from
spike train output (x-axis). The two estimates are very similar. (b) Pattern memo-
rization capacity using the two learning algorithms. Results of Section 4(II) (blue)
and learning algorithm for hardware system (red) show similar performance.

of the two learning methods. We can see that the tmax computed from V (t)
as in Section 3.1 (tact) and from spike train output (test) are very similar.
The cases for which these two values are significantly different, as shown by
the data points away from the ‘y=x’ line, it was found that V (t) was very
similar at these two tmax locations and therefore translated into similar bursts
of output spikes around these times. Therefore, both the tmax estimates were
valid for pattern memorization task. Further, we have shown that the tmax

estimated from spike train output results in pattern memorization capacity
similar to that obtained in Section 4(II). As seen in the Figure 17(b), the
memory capacity plots corresponding to the two tmax computation methods
are very similar. These results support our proposed hardware implementation
of the DELTRON algorithm.

As mentioned earlier, a non-trivial step in the algorithm is the estimation of
Vmax from the spike train output of an integrate and fire neuron. The rest
of the circuits are based on well known digital circuits and are not discussed
further. We have performed SPICE simulations of this part of the algorithm
using transistor models from the AMS 0.35 um CMOS process. We used an
approximation to a conductance based neuron model [31] for this simulation,
though other neuron circuits can also be used [3, 8]. Figure 18 shows the cir-
cuit schematic of this neuron. We modified the original structure by including
an operational transconductance amplifier (OTA) as an explicit comparator
setting a well-defined value of Vthr. The part of the circuit for spike frequency
adaptation was turned off by setting the bias voltages ‘vlkahp’ and ‘Vthrahp’
to a high and low value respectively. An extra positive feedback loop com-
prising ‘INV0’ and ‘M12’ is added to allow for rapid discharge of the output

22

vlk

vthr

vth

Cmem

Ack_bar

Ack

vrefre

vo

vo

Req

vmem

Req_n

Ack_bar

Vthrahp

Req_n

vw

vlkahp

M1 M2

M3

M5 M6

M7

M4

M8

M9

M10

M11

M12

M13

M14

M15

M16

M17

gm

Iin

M18
Ca

INV0

INV1

Figure 18. The neuron circuit is a modified version of the DPI neuron with an added
transconductor based comparator for explicitly setting a voltage threshold.

0.06 0.07 0.08 0.09
t (s)

Input
Spike

Synaptic
Current

Output
Spike

Figure 19. Current input waveform to the integrate and fire neuron and ISI of the
output spike train in SPICE simulations show that higher the current, smaller is
the ISI and vice versa. Absolute values are not shown for ease of viewing.

voltage of the OTA during reset. The synapse model used in the simulation is
based on the differential pair integrator structure described in [4] and is not
described here.

Figure 19 plots an example of the input current waveform for an input spike
train consisting of 10 spikes at random times. The output spikes from the
neuron can be seen to provide a good estimate of the input current – larger
the input current, smaller is the ISI or equivalently higher is the density of

23

0 20 40 60 80
0

20

40

60

80

t
est

 (in ms)

t ac
t (

in
 m

s)

Figure 20. A plot of the estimated and actual tmax values exhibit a high degree of
correlation in SPICE simulations.

spikes. This validates our earlier assumption that ISI can be used to estimate
Vmax (in this case it is equivalent to Iin,max).

Furthermore, Figure 20 plots the relationship between test, (estimated tmax)
and tact (actual tmax) for 10 different random spike trains where the input
consists of 10 spikes at random times between 0 and 100 ms. The high degree
of correlation of these two value again validate the choice of ISI as a metric for
Iin,max. As mentioned earlier, the threshold was kept at a very small value for
this part. It should be noted that in this case Ileak is the effective threshold
since we are sensing the maximum of the input current.

6 Conclusion

We presented a new learning algorithm for spiking neural networks that modi-
fies axonal delays (instead of synaptic weights) to memorize or classify spatio-
temporal spike patterns. Although we have demonstrated the use of our model
in a binary classification problem, its application can be extended to multiclass
problem by having multiple DELTRONs. This is similar to the one-versus-all
or one-versus-one approach used by Support Vector Machines (SVMs) for mul-
ticlass classification. The training algorithm uses a philosophy of updating as
few axonal delays as possible to memorize a single pattern thus preserving
memory capacity. The capacity of the network with 100 axons for classifica-
tion with accuracy greater than 90% is around 100 patterns. It can classify
patterns with about 80-100% accuracy for α ≤ 2. For the tougher memo-
rization task where the entire background population can be considered as
a second class, it can memorize about 50 patterns with 90% accuracy of re-
call. We also presented a mixed-signal VLSI implementation of the algorithm

24

which requires only one tunable parameter, Vthr, depending on the statistics
of the input. In contrast to this, most of the neuromorphic ICs have multi-
ple tunable parameters. This delay learning implementation is simpler than
the weight modification algorithms. However, the capacity of this algorithm
is lesser than weight modification ones because modifying delays can increase
Vmax by a limited amount only. Hence, a possible future avenue of research is
to explore a combination of the two methods.

7 Acknowledgements

The authors would like to acknowledge the contribution and support of UNSW
International Contestable Funding Scheme “Building Asia-Pacific Collabo-
rations in Neuromorphic Research” and also thank Shoushun Chen, Zohair
Ahmed, Roshan Gopalakrishnan and Subhrajit Roy for useful discussions and
help with SPICE simulations.

References

[1] V. Chan, S.-C. Liu, and A. van Schaik, “AER EAR: A matched silicon
cochlea pair with address event representation interface,” IEEE Transactions
on Circuits and Systems I, vol. 54, no. 1, pp. 48–59, 2007.

[2] P. Lichtsteiner, C. Posch, and T. Delbruck, “A 128x128 120dB 15us Latency
Asynchronous Temporal Contrast Vision Sensor,” IEEE Journal of Solid-State
Circuits, vol. 43, pp. 566–76, Feb 2008.

[3] G. Indiveri, B. Linares-Barranco, T. Hamilton, A. van Schaik, R. Etienne-
Cummings, T. Delbruck, S.-C. Liu, P. Dudek, P. Häfliger, S. Renaud,
J. Schemmel, G. Cauwenberghs, J. Arthur, K. Hynna, F. Folowosele,
S. Saighi, T. Serrano-Gotarredona, J. Wijekoon, Y. Wang, and K. Boahen,
“Neuromorphic silicon neuron circuits,” Frontiers in Neuroscience, vol. 5, pp. 1–
23, 2011.

[4] C. Bartolozzi and G. Indiveri, “Synaptic Dynamics in Analog VLSI,” Neural
Computation, vol. 19, pp. 2581–2603, 2007.

[5] A. Basu, S. Ramakrishnan, C. Petre, S. Koziol, S. Brink, and P. Hasler, “Neural
Dynamics in Reconfigurable Silicon,” IEEE Transactions on Biomedical
Circuits and Systems, vol. 4, no. 5, pp. 311–19, 2010.

[6] A. Basu, C. Petre, and P. Hasler, “Bifurcations in a Silicon Neuron,” in
Proceedings of the International Symposium on Circuits and Systems, pp. 428–
31, May 2008.

25

[7] S. Brink, S. Nease, P. Hasler, S. Ramakrishnan, R. Wunderlich, A. Basu, and
B. Degnan, “A Learning-Enabled Neuron Array IC Based upon Transistor
Channel Models of Biological Phenomenon,” IEEE Transactions on Biomedical
Circuits and Systems, vol. 7, pp. 71–81, Feb 2013.

[8] A. Basu and P. Hasler, “Nullcline based Design of a Silicon Neuron,” IEEE
Transactions on Circuits and Systems I, vol. 57, pp. 2938–47, Nov 2010.

[9] A. Basu, S. Shuo, H. Zhou, G. Huang, and M. Lim, “Silicon Spiking Neurons for
Hardware Implementation of Extreme Learning Machines,” Neurocomputing,
vol. 102, pp. 125–134, Feb 2013.

[10] K. Ramanathan, N. Ning, D. Dhanasekar, G. Li, L. Shi, and P. Vadakkepat,
“Presynaptic Learning and Memory with a Persistent Firing Neuron and
a Habituating Synapse: a Model of Short Term Persistent Habituation,”
International Journal of Neural Systems, vol. 22, no. 4, p. 1250015, 2012.

[11] J. Rossell, V. Canals, A. Morro, and A. Oliver, “Hardware implementation of
stochastic spiking neural networks,” International Journal of Neural Systems,
vol. 22, p. 1250014, Aug 2012.

[12] W. Wong, Z. Wang, B. Zhen, and S. Leung, “Relationship between applicability
of current-based synapses and uniformity of firing patterns,” International
Journal of Neural Systems, vol. 22, p. 1250017, Aug 2012.

[13] E. Izhikevich, “Polychronization: Computation With Spikes,” Neural
Computation, vol. 18, pp. 245–282, 2006.

[14] R. Wang, C. Jin, A. McEwan, and A. Schaik, “A programmable axonal
propagation delay circuit for time-delay spiking neural networks,” Proc. IEEE
ISCAS, pp. 869–872, 2011.

[15] R. Wang, J. Tapson, T. Hamilton, and A. V. Schaik, “An aVLSI programmable
axonal delay circuit with spike timing dependent delay adaptation,” in
Proceedings of the International Symposium on Circuits and Systems, (Korea),
May 2012.

[16] P. Baldi and A. Atiya, “How delays affect neural dynamics and learning,” IEEE
Transactions on Neural Networks, vol. 5, pp. 612–621, 1994.

[17] U. Bodenhausen and A. Waibel, “The tempo 2 algorithm: Adjusting time-delays
by supervised learning,” Advances in Neural Information Processing Systems 3,
R.P. Lippman, J.E. Moody, and D.S. Touretzky Eds.,, pp. 155–161, 1991.

[18] D. Tank and J. Hopfield, “Neural computation by concentrating information in
time,” Proceedings of the National Academy of Sciences of the United States of
America, vol. 84, pp. 1896–1900, 1987.

[19] K. Unnikrishnan, J. Hopfield, and D. Tank, “Connected-digit speaker-
dependent speech recognition using a neural network with time-delayed
connections,” IEEE Transactions on Signal Processing, vol. 39, no. 3, pp. 698–
713, 1991.

26

[20] R. Eckmiller and H. Napp-Zinn, “Information processing in biology-inspired
pulse coded neural networks,” in Proceedings of International Joint Conference
on Neural Networks, vol. 1, pp. 643–8, 1993.

[21] H. Napp-Zinn, M. Jansen, and R. Eckmiller, “Recognition and tracking of
impulse patterns with delay adaptation in biology-inspired pulse processing
neural net (BPN) hardware,” Biological Cybernetics, vol. 74, pp. 449–453, May
1996.

[22] S. Hussain, A. Basu, M. Wang, and T. Hamilton, “DELTRON: Neuromorphic
Architectures for Delay based Learning,” in IEEE Asia Pacific Conference on
Circuits and Systems, pp. 304–307, Dec 2012.

[23] H. Huning, H. Glunder, and G. Palm, “Synaptic Delay Learning in Pulse-
Coupled Neurons,” Neural Computation, vol. 10, pp. 555–565, 1998.

[24] P. Hasler, S. Koziol, E. Farquhar, and A. Basu, “Transistor Channel Dendrites
implementing HMM classifiers,” in Proceedings of the International Symposium
on Circuits and Systems, pp. 3359–62, May 2007.

[25] W. Gerstner and W. M. Kistler, Spiking Neuron Models Single Neurons,
Populations, Plasticity. Cambridge University Press, Aug 2002.

[26] X. Guo, X. Qi, and J. Harris, “A Time-to-First-Spike CMOS Image Sensor,”
IEEE Sensors Journal, vol. 7, no. 8, pp. 1165–1175, 2007.

[27] C. Shoushun and A. Bermak, “Arbitrated Time-to-First Spike CMOS Image
Sensor With On-Chip Histogram Equalization,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 15, no. 3, pp. 346–357, 2007.

[28] X. Qi, X. Guo, and J. Harris, “A time-to-first spike CMOS imager,” in
Proceedings of the International Symposium on Circuits and Systems, pp. 824–7,
May 2004.

[29] R. Gutig and H. Sompolinsky, “The tempotron: a neuron that learns spike
timing-based decisions,” Nature Neuroscience, vol. 9, pp. 420–428, 2006.

[30] M. Mahowald, VLSI Analogs of Neuronal Visual Processing: A Synthesis of
Form and Function. PhD thesis, California Institute of Technology Pasadena,
California, 1992.

[31] P. Livi and G. Indiveri, “A current-mode conductance-based silicon neuron
for address-event neuromorphic systems,” in Proceedings of the International
Symposium on Circuits and Systems, pp. 2898–2901, May 2009.

27

	1 Introduction: Delay-based Learning Approach
	2 The DELTRON Model
	2.1 Network Architecture
	2.2 Input Pattern Space
	2.3 Choice of Threshold and the Two types of error

	3 Learning Algorithms
	3.1 Delay Learning Algorithm for Pattern Memorization
	3.2 Delay Learning Algorithm for Pattern Classification

	4 Simulation Results
	5 Hardware Architecture and Results
	5.1 Architecture
	5.2 Hardware Simulations Results

	6 Conclusion
	7 Acknowledgements
	References

