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Abstract
Given several different new product developmenjguts and limited resources, this paper is conckrne
with the optimal allocation of resources amongpfagects. This is clearly a multi-objective optimaion
problem (MOOP), because each new product developpneject has both a profit expectation and a loss
expectation, and such expectations vary accoraingllocated resources. In such a case, the goal of
multi-objective new product development (MONPD) ts maximize the profit expectation while
minimizing the loss expectation. As is well knoviRgreto optimality and the Pareto front are extrgmel
important to resolve MOOPs. Unlike many other MO@Bthods which provide only a single Pareto
optimal solution or an approximation of the Pafebat, this paper reports a novel method to cateutae
complete Pareto front for the MONPD. Some thecatéttonditions and a ripple-spreading algorithm
together play a crucial role in finding the compld®areto front for the MONPD. Simulation results
illustrate that the reported method, by calculatirggcomplete Pareto front, can provide the begta to
decision makers in the MONPD.

Key words: Multi-Objective Optimization, New Product Developnt, Pareto Front, Ripple-Spreading
Algorithm.

1 INTRODUCTION

New product development plays an extremely cru@éd in company survival and success in the
modern increasingly competitive global market; gwezar, billions of dollars are invested in varioew
product development projects (NPDPs) worldwide[Bl]-Obviously, not all NPDPs are successful, and
there never lack examples where a big-brand compaltigpses after an NPDP because it misjudges
market trends and/or consumes considerable ofatapib avoid such a tragedy, an effective pradsce
"not to put all eggs in one basket". Thereforegmpgany may often have several NPDPs proceedingeat o
time. Each NPDP has both a profit expectation aridsa expectation, and such expectations vary
according to the resources allocated to the NPRBic&lly, the greater the allocated resourcesitjiesh
the profit expectation is. Increased allocated ueses may reduce the failure possibility during the
development stage of an NPDP, but cannot necespaoVide a better guarantee of market success. If
anything goes wrong during the marketing stagetdungany external, uncertain and uncontrollablecfies;t
the larger resource allocation only means a bilggsr. Common sense in the financial sector prethets

a high profit expectation usually comes with alogs expectation [6]. Therefore, decision maketsrof



have to make a choice between high-profit-big-ogkions and low-profit-small-risk options, based on
their risk taking willingness and understandingaofarket environment. Since available resources are
always limited, decision makers usually need tanoige their investment portfolio, in order to maxa®a

the profit expectation while minimizing the losgpextation — two conflicting objectives. In this papwe

are particularly concerned with the problem of editing limited resources among several NPDPs,ao th
the overall profit expectation can be maximizedle/the overall loss expectation can be minimizéds T
clearly fits in the scope of a multi-objective opization problem (MOOP), and hereafter we call the
concerned problemnulti-objective new product development (MONPD).

To resolve the MONPD, we need to make use of tmet®dront. As the most important concept in
MOOPs, the Pareto front originates from the concé@areto efficiency proposed to study economic
efficiency and income distribution [7]. In geneMDOPSs, a solution is called Pareto optimal if there
exists no other solution that is better in termatdéast one objective and is not worse in terhadl @ther
objectives [8] [9]. The projection of a Pareto o solution in the objective space is called a&Rgpoint.

All Pareto points, i.e., the projections of all &aroptimal solutions, compose the complete Péretd of
an MOOP.

The history of such problems is long resulting e tdevelopment of many methods for resolving
various MOOPs. Basically, most methods can be ifladsnto three categories: aggregate objective
function (AOF) based methods [10]-[14], Pareto-cbam ranking (PCR) based methods [15]-[25], and
constrained objective (COF) function based methH@@$-[30]. An AOF method combines all of the
objectives of an MOOP to construct a single agdeegsbjective function, and then resolve the
single-objective problem to get a Pareto optimdutsan. However, it involves subjectiveness in
constructing an AOF, and it often fails to find sofareto optimal solutions if the Pareto frontas n
convex. A PCR method may overcome such drawback&8QF methods by operating on a pool of
candidate solutions and favoring non-dominated tewis. Population-based evolutionary approaches
(such as genetic algorithms, particle swarm optitin and ant colony optimization) often play a kelg
in PCR methods to identify multiple Pareto optircahdidate solutions. It should be noted that, dube
stochastic nature of PCR methods, their outputdareto optimal candidate solutions, not necegsaril
real Pareto optimal solutions. Theoretically, CO&tmods, by optimizing only one single objective hhi
treating all other objectives as extra constraimigy avoid both the subjectiveness of AOF methods a
the loss of Pareto optimality in PCR methods.

Calculating complete Pareto front is a relativebgd discussed topic in the study of MOOPs.

Theoretically, some nonlinear AOF based methodgpcave that for any Pareto point on the Paretotfron



a set of AOF coefficients definitely exists whicdiindead to that Pareto point. However, the difticig
that there a lack of a practicable method to fimasé sets of coefficients that will help to identifie
complete Pareto front [28]. For PCR methods, guesng the complete Pareto front is theoretically a
mission impossible, largely because of the stoahastture of employed population-based approaches
[15]. COF methods, given well posed objective fiorctconstraints, may theoretically guarantee the
finding of the complete Pareto front but like AOFetimods, how the practicality of finding proper
constraints is a big issue [30]. Therefore, mosstayg methods can only produce an incomplete or
approximate Pareto front [10], [15], [26]-[30]. particular, as pointed out in [26], very few resudire
available on the quality of the approximation af Pareto front for discrete MOOPs.

We have recently proposed a deterministic methodwban, theoretically and practically, guarantee
the finding of complete Pareto front for discret®©MPs [31]. Some theoretical conditions and a génera
methodology were reported in [31], and a case strdy multi-objective route optimization problem
(ROP) was used to prove the correctness and pabdtig. In this paper, we will particularly apptie
method of [31] to the MONPD. Actually, there isubstantial body of literature on optimizing investmh
portfolios [6], [32]-[38] similar to MONPD, but ke work has been reported to calculate completet®a
front of such investment portfolio optimization ptems. To calculate the complete Pareto front for
MONPD, firstly, we will improve the theoretical coitions and the methodology reported in [31]. The
most challenging part in the method of [31] is &sidn an algorithm that is capable of finding thabgl
K™ best solution for any givenin terms of a given single objective. Designingtsan algorithm is largely
problem-dependent, and is often difficult becausstroptimization algorithms only calculate the glbb
1% best solution. MONPD is quite different from th©R in [31]. For example, in the ROP, every
objective needs to be minimized; however, in MONR®BiZ profit expectation needs to be maximized
although the loss expectation is to be minimizeder&éfore, MONPD demands a new algorithm to
calculate the generdl best (rather than only thE" smallest) single-objective solution. By successfully
developing a new ripple-spreading algorithm for MRIN this paper will further prove the practicalilit
and the potential of the methodology of resolvilgete MOOPS by calculating complete Pareto front.

The remainder of this paper is organized as folowiSection 2 gives some theoretical results for
calculating complete Pareto front for discrete M@O®ection 3 describes mathematically the detéils o
MONPD. Section 4 reports a ripple-spreading alganitor MONPD. Simulation results are given in

Section 5, and the paper ends with some conclusiotgliscussions on future work in Section 5.



2 THEORETICAL RESULTSFOR CALCULATING THE COMPLETE PARETO FRONT

We have recently reported some theoretical resaftd a general methodology to guarantee,
theoretically and practicably, the finding of tremplete Pareto front for discrete MOOPs [31]. Thoekv
in [31] is the theoretical foundation of this apgliion paper. In this section, we will introducemnso
improvements to the work of [31], in order to bedpply to MONPD later.

First of all, we need a general mathematical foetoih of discrete MOOPSs as following:

MiN[9.(x), 9, (X),..., gy, (1", (1)
subject to
h (x)<0, 2)
he () =0, ©)
xdQy, (4)

whereg; is theith objective function of the tot&op; objective functionsh, andhg are the inequality and
equality constraints, respectivekyis the vector of optimization or decision variabbelonging to the set
of Qx, andx is of discrete value. A Pareto-optimal solutidrio the above problem is so that there exists

nox that makes
g, (x) < g,(x"), for alli=1,.. No;, (5)
g,(x)<g,(x), for at least ong €[1,..,Nop]. (6)
The projection of such aff in the objective space is called a Pareto pdihe above problem usually has
a set of Pareto optimal solutions, whose projestmympose the complete Pareto front.
2.1 Theoretical conditions

According to the theoretical results in [31], wevdhe following statements for discrete MOOPSs.
Lemma 1: Suppose we sort all discretd]1Q, according to a certain objective functig(x), andx;;
has thdth smallesy;. For a given constawt if there exists an indekthat satisfies
9;(Xj,) €< 9 (X)) s (7)
Then the number of Pareto points whgse is no more thak, and all the associated/alues are included
in the setX; 1,....% 4.

Lemma 2: Suppose we have a constant vegor...,c, 1. the element; is for objective functiory,

and after sorting all discrete(1Q, according to each objective functigy we havek; satisfying

Condition (7). If for any=1,... No;,



9 (X4, ) £ 9 (x ), for alliz, 8) (

then the total number of Pareto points is no mioaa t

Nop

Neo < > K, 9)
=1

and all associatexivalues are included in the union set

Nog;

QUl = U[Xj,li'--lxj,kj]! j=1""’NObj' (10)
j=1

For more details about Lemma 1 and Lemma 2, onerefayto [31]. Based on Lemma 1 and Lemma
2, [31] reported a methodology which employs armatien process to calculate tkebest solutions in
terms of objective functiog, for allj=1,... Noy. In the iteration procesk;, is increased step by step for all

J=1,... Noy, until a set oi[kl,...,kNObj] is found to make Condition (8) hold.

In this paper, we give an upper boundKdior upper bound fot;), j=1,...Noy, in order to improve the
computational efficiency of the methodology in [3TIb this end, we need the following new theorems.

Theorem 1: Suppose there exisg,..., X, such that for anyj U[l,...,Ng,] ,

g (X;) < g,(x), for alli=1,.. Nop;. (11)
Then all Pareto-optimal solutions are includechia tinion set
Nobj
Qu, = Ufx:g,()=g,(%)}- f12

=1
Proof: Assume Theorem 1 is false. Therefore, tbgigts at least one Pareto-optimal solution &ay

that does not belong to the union 8gb, which means, according to the definitiontaf, in Eq.(8), we

have g, (x) < g; k*)for alli=1,..Nop;. Then for anyj O[L,...,Ny, 1, we have
g (X)) <9 (x)<g(x), for alli=1,.. Nop;. (13)
This means,,..., X, are all more Pareto efficient that In other wordsx* is not a Pareto-optimal

solution at all. Therefore, the assumption mudalse, and Theorem 1 must be true.

Corallary 1: Obviously, the set of the first best single-objex solutions[x,,,....Xy,, ;] satisfies
Condition (11) in Theorem 1. Therefore, all Parepdimal solutions are included in the union set

Nob;

Qy; = iL-le{X:gi(X)SQi(Xi,l)}- {14
With the union set defined by Eq.(14), we have
Theorem 2: The constant vectc[cl,...,cNObj] in Lemma 2 has an upper bound defined by

Ej = maxgj(Xi,l)’j:]'""'NObj' (15)

i:l""NObj

Suppose the; in Eq.(15) is thek; )" best solution in terms of, thenk; can be used as an upper bound



for ki in Lemma 2j=1,... No;.
Proof: Assume Theorem 2 is false, i.e., for attleagll[1,...,Ny;], there exists ne, <c; that can

make Condition (8) hold. This means that the cotefareto front is not covered by the union(sgt in
other words, there exists at least one Pareto-apsolutionx* that hast; < g, (x'). Then according to
Eq.(14) and EqQ.(15), one has that tkiiss not included in the union s&,3, which is obviously against
Corollary 1. Therefore, Theorem 2 must be true.

2.2 General methodology

In this sub-section, based on Theorem 1 and The@reme will modify the methodology reported in
[31], in order to improve the computational effitdy. The modified general methodology to calcuth&e
complete Pareto front for discrete MOOPs is desdrits following:

Step 1. Design a problem-dependent determinigjirithm that is capable of calculating any glddal

best solution in terms of a single objective fumet;, for anyj=1,... Nop;.

Step 2. Calculate the set of the first best simgiective solutiongx,,,...,xy ;1. and then determine
the upper bound s«{afl,...,ENom] according to Eq.(15).

Step 3. Initializek=1, for everyj=1,... Nop;. Initialize the Pareto front associat&dvalue set as

Q. =0. Calculate the K+1)th global best solutions in terms of the singdgective functiorg;,
i.e., calculatex;, ,,, for everyj=1,... Nop.
Step 4. If for every=1,... Nop;,
9 (X4 ) < G (X 0) (16)
i (X4, )< 9 (X ) for alli#, 17]

then go to Step 6. Otherwise, fixfor anyj that has Conditions (16) and (17) both satisfietlas
g, (xj’ki ) 2C,, and increask by one, i.e.k=k+1, for thej that has Condition (16) satisfied for the

mosti values.
Step 5. For the newly increasigdcalculate the k(+1)th global best solutions in termsgpfi.e., update

X; 1+ GO 10 Step 4.
Step 6. Calculate the union set[af ,,....x; , 1,]=1,...Nov; denoting a2, .
Step 7. For ankJQ,, , if there exist noxJQ,,, such thatg, (X) < g,(x), for all i=1,..Noy, and
g,(X)<g;(x), for at least ong¢ €[1,..Noy], then we know the poir[tgl,...,gNObJ] Is a Pareto point.

Therefore, ada into Q. , i.€., Qpry = Qpey +{X}.



The basic methodology in [31] needs to keep calinigathe k best solutions in terms of each
single-objective function in the iteration processilst the modified methodology only calculatee ki
best single-objective solution in Step 2, Step 8 &tep 5. Another improvement in the modified
methodology is the introduction of upper bourjdin Step 4, which avoids unnecessary operation of

increasing any; with 9;(X,,) 2T These modifications may obviously improve the patational

efficiency to find the complete Pareto front fadiacrete MOOP.

3 AMATHEMATICAL FORMULATION OF MONPD

Basically, MONPD is to allocate limited resourcesomg several different new product development
project (NPDPs), in order to maximize the profipegtation and minimize the loss expectation. Heze w
give a mathematical description of the MONPD akfaing, which is illustrated by Fig.1.

Objective 1
(profit expectation):

=2 2, (x(1)

Objective 2
(loss expectation) :

€= 2 &, (x(0)

gri(x(1) 220(x(Vp))

g21(x(1

New product | | New product New product
development development development
project 1 project 2 project Np
(NPDP 1) (NPDP 2) (NPDP Ne)

x:N x(z)f /(Np')

_ N
Limited resources X = Z x(i)

i=1

Fig.1. lllustration of MONPD
Suppose we have limited resourcés, to supportNe NPDPs. Lek denote an allocation strategy, and

0<x(i)< X denote the resources allocated to NPI6ri=1,...Np. With allocated resources), the profit
expectation of NPDRis gi(x(i)), and the associated loss expectatiog i&(i)). Then for an allocation
strategyx, the total profit expectation and loss expectadion

0= > 0, (x(0) |

(18)



Np
9, = Z Py (x(i)) , (29)
i=1
respectively. Then, with; andg, as two objective functions, MONPD is formulated as
max9. ,anamin 9: (20)
X X

subject to (18), (19) and

X = Z X(i) . (21)

The work in [31] is used to calculate complete Rafeont for discrete MOOPSs. In this study, we

assume there is a minimal investment uxtfor resource allocation, and for amd,...Np, we have
X(i) = n(i)Ax , (22)
wheren(i)>0 is an integer. Suppose there fg,u investment units in total, i.e.,
X = Npyy AX (23)
then we know for eackr1,...Np, x(i) has Nrvu+1) choices, i.e.X(1) O {0, AX,..., Ny, A%} . With

the minimal investment uniax, Constraint (21) is equivalent to

Np
Ny = Z n(i) . (24)
i=1
gl ' 9 ) A
a11(x(1)) g22(x(2))
g 5
S g
2 3 g:3(x(3))
g 5
E 212(x(2)) 2 i
~ = i
| g21(x(1))
0 : > 0 . . . >
0 x11 xm2 XT3 x(i) 0 xt1 am XT3 x(i)
Resources allocated to different NPDPs Resources allocated to different NPDPs
(a) Contribution curves tgy (b) Contrilart curves tay,

Fig.2. lllustration of contribution curves

The complexity of MONPD mainly comes fragn(x(i)), which determines the contribution of NPDP



i with allocated resource$i) to objective functiom;, i=1,...Np, andj=1,2. Basically, a contribution curve
is nonlinear, and the MONPD involves a combinatbulifferent shaped nonlinear contribution curves.
The complexity is illustrated by the contributiaurees in Fig.2, where there are 3 NPDPs, and thier &
contribution curves of different shapes, which #&oglly project-dependent. Regarding the profit
expectation of NPDR, there is usually a threshatgl;, and if the allocated resources to NPO® below
the threshold, i.ex(i)<xt;, then the project has no way to succeed, andftrereill make no profit at all.
Regarding the loss expectation of NPDR®henx(i)<xt;, the loss often linearly increasesxé3 goes up,

and the gradient largely depends on what percemtiagé is invested in reusable facilities.

Loss expectation g2

A\

Profit expectation g;

Fig.3. Complete Pareto front and approximations

For discrete MONPD, a typical complete Pareto fismjiven in Fig.3, which is composed of squares
and solid lines. Since the MONPD needs to maxirgizend minimizeg, simultaneously, the Pareto front
is an increasing curve. It should be noted thatRtéeeto front of the ROP in [31] is a decreasiny&u
because all objectives need to be minimized tidrerefore, as will be explained later in Sectid?, the
method design for MONPD is rather different fromttfor the ROP in [31]. Such an increasing curve in
MONPD implies a large profit expectation always esnvith a large loss expectation. Any point in the
right-bottom side of the Pareto front is impossitdeachieve. For any point in the left-top sidetlod
Pareto front, the associateds not Pareto optimal, which means there exislsast one solution leading
to a larger profit expectation without increasihg toss expectation, or a smaller loss expectatitrout
decreasing the profit expectation. Fig.3 also gives approximations of the Pareto front and one is
plotted by circles and dash-and-dot lines, andther by triangles and dash lines. As illustrateéig.3,

there is often a difference between the completet®dront and an approximation. The difference is



usually uncertain to decision makers, in other \gpifdan approximation of the Pareto front is pded,
decision makers will have no idea whether therstexany other Pareto-optimal solution (e.g., inJig
Approximation 2 misses out one Pareto point, wiggirobably the best tradeoff between two objes)ive
or even whether a provided solution associated wigloint on the approximated Pareto front is really
Pareto-optimal (e.g., in Fig.3, Approximation 1uadly has 3 false Pareto points). Therefore, using
approximation of Pareto front implies (i) some s$ioins most preferable by decision makers might be
actually missed out, and (ii) arguments might odouthe decision making process because different
decision makers could choose different approxinmatieethods. Obviously, if we can calculate the
complete Pareto front rather than approximatinthén decision makers will be free of the abovaeass
With the complete Pareto front at hand as illusttah Fig.3, decision makers in MONPD can easily an
accurately find an ideal resource allocation sgai@ccording to, say, their risk-taking willingnessd

market uncertainties.

4 A RIPPLE-SPREADING ALGORITHM FOR MONPD

4.1 Basic idea of ripple-spreading algorithm (RSA)

It is well known that many successful computation&lligence techniques are actually inspired by
certain natural systems or phenomena [39]. Foaint®, genetic algorithms are inspired by natural
selection and evolutionary processes, artificialrak networks by the animal brain, particle swarm
optimization by the learning behavior within a ptgtion, and ant colony optimization by the foraging
behavior of ants. Following the common practickeafning from nature in the computational intellige
domain, we have recently reported some ripple-siimgamodels and algorithms [40]-[44]. The
hypothesis behind these is the following: the radtuipple-spreading phenomenon, as a pervasive
phenomenon in the universe, reflects certain furesdah organization/optimization principles in natur
and such principles are to be found in many systenasproblems around us. Taking such inspiration
when developing models and algorithms to study sydtems and problems, we are likely to better
match/reflect the embedded principles of theseesyst and therefore generate more effective sokition
For example, by mimicking the natural ripple-spiaggohenomenon, we developed some useful models
to study complex networks [40], air traffic managemm[41], and epidemic dynamics [42], and some
effective algorithms to tackle ROPs [43], [44].

Basically, ripple-spreading algorithms (RSAs) aubieoptimality by taking advantage of the
optimization principle reflected in the naturalpig-spreading phenomenon, which is very simple@e

spreads out at the same speed in all directiomistreamefore it reaches spatial points in order atng to



their distance from the ripple epicenter, i.egliways reaches the closest point first. Intuitiyelye may
get a feeling that this optimization principle adble used to find the closest interesting points (& find
the closest gas station), or more generally, to five shortest path. Therefore, we successfullgldped
some effective RSAs for ROPs in [43] and [44]. Mesisting methods for ROPs are centralized,
top-down, logic-based search algorithm. DifferentRSAs are actually decentralized, bottom-up,
agent-based simulation model. By defining the b&haf individual nodes, optimality will automatitya
emerge as a result of the collective performandaefmodel. As illustrated in Fig.4, the first ripistarts
from the source node, i.e., node 1; when a ripgdehes a directly connected but unvisited nodé nna
node will be activated to generate its own rippleen all of those nodes that are directly connetdede
epicenter node of a ripple are visited (not neaégsay the same ripple), that ripple will then ptand be
eliminated; when the destination node, i.e., nodis #isited for the first time, the first shortesute is
then found [43]; the simulation keeps going onluthé destination node is reached for kfigime, then
the k shortest routes are found in order [44]. The alqmeeess is likened to a ripple relay race, where
ripples compete with each other to reach the dastim node. During the entire process, all ripjpllegys

travel at the same preset constant speed.

Fig.4. lllustration of RSA to find the shortest path



4.2 Bespoke RSA for MONPD

The most difficult part of the general methodolagysection 2.2 is to find/design a problem-specific
algorithm to calculate thebest single-objective solutions to an MOOP. Is gub-section, we will design
an RSA which is capable of calculating thbest solutions in terms of the profit expectatprand the
loss expectation,, respectively.

As discussed in Section 4.1, the RSA in [44] caolke thek shortest paths problem. To apply a RSA
to the MONPD, we need to transform the MONPD ingpacial ROP. Please note that the ROP in [44] is
a minimization problem, whilst optimizing profit p&ctation is a maximization problem. Therefore, we
have to make some modifications before we can a@Rfl to the MONPD.

To transform the MONPD into a ROP, we need to cogsttwo directed route networks for the
MONPD, one fog; and the other fag. In the route network fag;, firstly we set up a dummy source node.
Then we add\Nryu+1 new nodes, representing different resource aiilmes to NPDP1. Then we establish
directed links from the source to each of tHeggu+1 nodes. In the route network g, the length of the

link which connects to the node nfAx allocation to NPDP1 is set as
s = 911(X) = 93, (nAX) , n=0,...., Ny, (25)
and in the route network fgp, the length is
l.1 = 95, (nAX), n=0,..., Nrnwu. (26)

Assume we have addé&gyy+1 nodes associated with different resource aliogatto NPDH, i<Np-1.
Then we add anoth@&rnu+1 new nodes, representing different resource aloes to NPDR+1. Then
we establish directed links from NPDRodes to NPDP+1 nodes subjected to Constraint (21) or (24). In
the route network fog;, the length of the link which connects to the notleAx allocation to NPDR+1
(i.e.,x(i+1)=nAx) is set as
lnisr = G102 (X) = 93,2 (NAX) , n=0, .., Nt (27)

and in the route network fap, the length is

lis1 = 9241 (NAX) , N=0,..., Nrniu. (28)

After we have addeNm\y+1 nodes associated with different resource alioeatto NPDRNp-1, then we
add a dummy destination node, and establish atdddiok from every NPDIRl-1 node to the destination.
As will be explained later, the length of a linknoected to the destination, denoted ag, will be
dynamically set up during the following ripple releace. Fig.5 gives a simple illustration about how

construct a route network for MONPD, whé&ig=4 andNtniu=3.



With the constructed route network fgr we can develop a ripple relay race to calculagktbest
solutions in terms of objectivg for MONPD. Basically, the new race process is ginto that in [44],
which aims to resolve theshortest paths problem, and the major modificatiane: (i) a new ripple at a
node needs to select out feasible links from eistadadl links according to Constraint (21) or (24);the
lengthl,ne Needs to be dynamically reset according to theuresaallocations of NPDP1 to NPINg-1.
Since a ripple-spreading algorithm is actually &dro-up, agent-based simulation model we can easily
define problem-specific node behavior to achieeediove two modifications. Therefore as a resutef
above two modifications, the route network dom MONPD can be viewed as a dynamic network rather
than the static ones in [31], [43] and [44].
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Fig.5 The construction of route network fpin MONPD

The following are the details of the new rippleasetace to calculate thebest solutions in terms of

objectiveg; for MONPD.

Step 1. Set the ripple spreading speesl 8st time=0. Letnpng=0 denote how many times the dummy
destination node has been reached by ripples. &tanitial ripple at the dummy source node. In the
relay race, every ripple needs to record whichtegsipple triggers it, and which node it origieat
For the initial ripple at the dummy source nodés iriggered by no other existing ripple.

Step 2. Ifnpnr<k, update=t+1, and repeat the following process. For eachiegisipple, increase its
radius bys. Compare its radius with the length of every felesiink. As emphasize before, the route
network of MONPD is a dynamic network. Although heve established a static network topology

to run the ripple relay race, for a ripple origingtfrom the NPDR node ofn(i)Ax, i=2,...Np-2, not



all established links are feasible to travel omp&ise a stimulating ripple passes the NPDRode

of n(m)Ax, m=1,...j-1, and then trigger a new ripple at the NAD#®de ofn(i)Ax. Then, for this

new ripple, an established link connected to th®RP-1 node ofn(i +1)Ax is feasible if
_ i+l
X 2 n(m)Ax. (29)
m=1

The dynamic feature of the MONPD network also rssinbm the length of a link from an NPDP
Np-1 node to the dummy destination node, which depemdthe so-far route along which the
stimulating ripple of the current NPINR-1 ripple travels. Suppose the stimulating ripsges the
NPDPi node ofn(i)Ax, i=1,...Np-2, and the current NPDRp-1 ripple originates from the NPDP
Np-1 node ofn(N, —1)Ax, then in the route network fag, the link length from the NPDRp-1

node ofn(N, —1)Ax to the dummy destination node is

Np-1

lone = Gan, (X) = G, (X = Do 0()AX), (30)
i=1
and in the route network fgp, the link length is
Np-1
In,NP = gz,Np (X - ZH(I)AX) (31)

i1

If the radius is larger than a feasible link,

Step 2.1. If the end node of the feasible linkas the dummy destination node, then a new ripple
will be triggered at the end node of the feasilvlk, land the initial radius of the new ripple i€th
radius of the stimulating ripple minus the lengthhe feasible link.

Step 2.2. If the end node of the feasible linkhis tummy destination node, then updaigr=
npnrt1. Track back the current ripple to reveal thgg)th best solution in terms of objectige
If nonr=K, go to Step 3.

Step 3. Stop the ripple relay race, and outpukthest solutions in terms of objectige

It is easy to derive that thé shortest path in the constructed route networkjfisrassociated with the
K™ best solution in terms of optimizing the valuegpfi.e., maximizingg; or minimizingg,). With the
above ripple-spreading algorithm, the methodolog8eéction 2.2 becomes practicable for MONPD. One
may argue that, for the sake of computational iefficy, the methodology in Section 2.2 demands an
algorithm to calculate tHé" best single-objective solution rather thankiest single-objective solutions.
This is not a problem at all. When integrating éweve ripple-spreading algorithm into the methogglo

in Section 2.2, the ripple relay race will be ialized once and only once. Every time when the dymm



destination node is reached by a ripple, the racegss will be paused or frozen. Then the newlyndou
best solution will be checked with all previoustyihd best solutions, to see if the complete Pdireid is

covered. If not, then the race process will beresalito find the next best solution.

The optimization of profit expectatian defined in (20) is a maximization problem, to whibe RSA
in [26, [43] and [44] cannot apply directly. Theawge of link length according to (25), (27) and (30)
the route network fog; actually converts the original maximizationgafinto a minimization problem.
This design enables the calculation of #i& largest profit expectation by the RSA. Similar to
approaches in [43] and [44], one may derive thataptimality of the RSA reported in this section is
guaranteed by the optimization principle refledtethe natural ripple-spreading phenomenon. Inrothe
words, the reported RSA can theoretically guaratitedinding of the&" best single-objective solution
for MONPD. Therefore, applying the general methodglin Section 2.2 to calculate the complete

Pareto front of MONPD becomes practically possible.

5 SIMULATION RESULTS

In this section, we present some simulation resoltemonstrate the practicability and effectivenas
the proposed method to calculate the complete @dreht for MONPD. There are three parts of
simulation results: (i) comparative results withrate-force search (BFS) method to prove the disgov
of the complete Pareto front; (ii) comparative tsswith an aggregate objective function (AOF) lzhse
method and a Pareto-compliant ranking (PCR) bastiod to show the advantage of new method,; (iii)
analyses based on the complete Pareto front tstrdite the usefulness of the new method. In the
simulation, the total budgeX has 9 options: [10 15 20 25 30 35 40 45 50] (orllimoney unit), which
represent 8 scenarios. Resources need to be alioafive different NPDPs, whose profit expectasio
and loss expectations are given in Fig.6. Basicalilg profit expectations all go up as the allodate
resources increase. For NPDP1 to NPDP4 (e.g.titadi categories of products such as clothes,dogs
food), the profit expectation will approach a certapper bound gradually, while for NPDP5 (e.g.,
high-tech products such as online games), thetpeafiectation rises exponentially. Both expectation
curves of NPDP3 are piece-wise, and this is usuelited to contracted order of customized prodact.
other words, a new product is especially devel@gmbrding to the order of a certain customer, amao
developed successfully, will be sold for sure (@iere the loss expectation may become zero once the
basic order is fulfilled), but only to that custaomEurther development may be carried out beyoed th
basic order, but the customer is not contractdaliyoor pay a higher price. Therefore, the loss etgtion

goes up from zero again. NPDP2 is a more genedatiase of NPDP3.



In the comparison with BFS, the minimal investmamt Ax is set as 1 million, so that the simulation
results can be better plotted to demonstrate tharadge of new method. Some results are givenlteTa
1 and Fig.7, wherBlys is total number of solutions explored by a methidigh=is number of Pareto points
found by a method\iss is the total number of solutions in the solutipace, andNys/Nss indicates the
search efficiency of a method. Firstly, the simolaresults confirm that the Pareto fronts ideatlfby the
new method are exactly the same as those fourtieliES. Table 1 shows that the Pareto fronts fdwynd
the new method have exactly the same number ofdaoits as those by the BFS. From Table 1, one ca
also see the new method has a much better sedicbrefy than the BFS, and in general, the advantag
becomes more significant as the problem complémitseases (i.e., wheX goes up). Fig.7 gives four
examples to illustrate why the new method is mudrercomputationally efficient. According to the
theories in [31], the solutions explored by the maethod are only those pink star points (includatig
Pareto point plotted as red circles), which areweadr on the right-hand side of the yellow dasledimn
Fig.7. Those yellow dash lines are drawn accorttnipek™ best solutions which trigger the termination
criteria of the new method, i.e., Conditions (1) §17) in Section2.2. For example, in the cage@f7(c),
the 7" best solution in terms a@f and the 8 best solution in terms af satisfy the Conditions (16) and
(17). Because of the ripple-spreading nature wieanching for thé" best single-objective solution, the
new method simply stops before any more solutioexigored. Those green star points in Fig.7 are all
solutions which are not explored by the new methidden comparing those green star points and those
pink ones, one may get an intuitive feeling how patationally efficient the new method could be agai
the BFS.
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Table 1 Comparative results between BFS and thenmetivod (\x is set as 1 million)

X =10m X=15m X=20m X=25m X=30m X=35m X=40m X =45m X =50m

Nus 1001 3876 10626 23751 46376 82251 13575211876 316251
BFS Npps 5 10 9 10 13 7 5 12 29
Nye/Nse 1 1 1 1 1 1 1 1 1
New Nus 12 62 122 83 198 34 12 66 306
method  Nppe 5 10 9 10 13 7 5 12 29

Nng/Nse ~ 0.0120 0.0160 0.0115 0.0035 0.0043 0.0004 0.0001 0004. 0.001

(@) X =20m (b)X =30m
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Fig.7 Completeness of the calculated Paretds (Ax is set as 1 million)

Now, we compare the new method with two of the npmgiular MOOP methods: one is an AOF
method, and the other is a well known PCR methed,the NSGA-II in [19]. This time, we increase th

problem complexity by settingx=0.2 million. In the AOF method, in a similar faghito traditional



portfolio optimization [32], the two objective futh@nsg; andg, are integrated as follows

Jpor = WO, +A-W)Q,, (32)
where0 < w<1 is a weight. In the simulation, for each scenafiMONPD, we change value offrom O
to 1 with a step of 0.01. For eastvalue, we run the AOF method, and get a Paretatpbihen we use all
Pareto points generated by the AOF method to appeig the true Pareto front. In the simulation, the
NSGA-II has a population size of 100, a crossovebability of 0.5, a mutation probability of 0.1nd
evolves 200 generations. For each scenario of MOQNRDNSGA-II is run for 100 times. Fig.8 gives the
complete Pareto fronts found by the new method Taude 2 gives the results of different methodsgseh
Npprshows how many real Pareto points a method hamlfdlipp is total number of real Pareto points in
a certain scenario, afmicpris the probability for a method to find the contpl@areto front. From Table
2, one can see clearly that: (i) the reported nesthod is the best, because it can always guarémeee
finding of the complete Pareto fronts for the MONRIL) except in the scenario of =40m (where the
Pareto front is convex), the AOF method cannot &ing complete Pareto front, because those froets ar
not convex (see Fig.8); (iii) NSGA-Il is better ththe AOF method, but due to its stochastic nature,
NSGA-II cannot guarantee to find the complete Rafreint for the MONPD every time, in particulareth
probability of success drops significantly in compscenarios such as=45m andX =50m. Please note
that, during a run of the NSGA-II, a set of curlgmon-dominated solutions is developed, and thes
final set of currently non-dominated solutions, tfwe last generation of chromosomes, that is uged t
approximate the Pareto front. Therefore, in the aisX =50m, although the population size, i.e., 100, is
smaller than the total number of Pareto points, Ng=176, the NSGA-Il may still find the complete
Pareto front in some runs. However, when compai#dthhe new method, the chance for the NSGA-II to
success is very poor in the caseXof50m. From Table 1, Table 2, Fig.7 and Fig.8, oag nonclude that
the capability of calculating complete Pareto frgivies the new method an obvious advantage against

existing methods.

Table 2 Comparative results between AOF, NSGA-dl tie new methodAx is set as 0.2 million)

X=10m X=156mr X=20m X=25m X=30m X=35m X=40m X =45 X =50

AOF Npee/Nrpe  17/19 42/44 7/40 40/44 40/57 4/17 12/12 26/55 4a/17
Prcpr 0 0 0 0 0 0 1 0 0

NSGA-Il  Npee/Nrpr  18.25/19 41.28/44 37.92/40 41.35/44 53.19/57 14.84/17 10.29/12 47.51/55 122.52/176

Prcpr 0.96 0.91 0.92 0.90 0.86 0.88 0.86 0.72 0.35

New  Nps/Nppr 19719 4444 40/40 44144 57/57 17/17 12/12 55/55  /17®
method Prcps 1 1 1 1 1 1 1 1 1
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Fig.8 Calculated Pareto fronts in different scevedf MONPD

(x axis is g1, and y axis is g2&x is set as 0.2 million)

Finally, we will show what good things a completedto front may do for decision makers in MONPD.
One reason for why AOF methods are widely accepteithie practice of MOOP is because decision
makers have to make only one single choice any@age decision makers can agree on and provide a set
of weights, AOF methods will output a unique Pamgbtimal solution as the final choice. Given adfet

weights, a complete Pareto front can no doubt laédp decision makers with making the same single



choice. In the case of MONPD, decision makersnegd to provide a coefficientto indicate how much
loss risk {1,) they are willing to take to get a unit profit egation ¢;). Then in the objective space, we
move a straight-line with as the gradient, from the right-bottom towardsléfietop, until it touches the
Pareto front, and the point of tangency gives dleali choice to decision makers. Although AOF meshod
can also find such an ideal choice given the vafug the new method offers much more detail to degisio
makers. In particular, a complete Pareto front ey the most comprehensive support to backup
solutions. Fig.9 gives some examples in the MONBEnario of X =40m andAx=0.2m. Basically, a
gambling manager may go with the Pareto pointaritiht top (e.g., s/he is willing to take a ridkl6.2
units of loss for one unit profit). A cautious mgeacan choose the Pareto point at the left botem,
even a risk of 0.1 units of loss seems too muchasonable manager willing to take a risk of BRs

of loss for one unit profit can choose the greeref®gpoint. Although the AOF method can do the same
thing oncen is specified, it cannot provide sufficient baclegbutions. For example, from Fig.9, one can
see that, once the complete Pareto front is avajldien for the gambling manager willing to takisé of
16.2 units loss for one unit profit, s’/he may altjuzhoose the second right top Pareto point, wieitars
almost the same profit expectation but with an obsity smaller loss expectation. This is a signiftba

beneficial thing offered by the new method.
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Fig.9 Using complete Pareto front to helpwsingle-choice makingX =40m andAx =0.2m)

As mentioned in Section 1, AOF methods are oftdiciaed for their elements of subjectivity as they
demand weights from decision makers. For the nethaode the coefficient: largely relied on the risk
attitudes of the decision makers and their undedstg of the current and future market environmeis
doubt there are significant uncertainties and raisiten makers can be 100% sure about the valuéhady
provide. A complete Pareto front can minimize thfeuience of such uncertainties. With a completetear
front at hand, we can easily and accurately wotkauwvhat range od value each individual Pareto point
may serve as the ideal choice for decision makagsl0 gives an illustration in the MONPD scenarfo
X =20m andAx=0.2m. If we invest 8.6m and 11.4m in NPDP1 andRB, and nothing in NPDP2,
NPDP4 and NPDP5, respectively (the associated d?geint is plotted as a solid green circle),
respectively, then the complete Pareto front teld, for any 0.34 « < 3.79 (because of uncertainties in
risk taking willingness and market environmentg #olution is still the ideal choice. The capapibf
accurately assessing to what extent a solution seaxe as the ideal choice is no doubt highly useful
decision makers in MONPD. This is another goodghime new method can do beyond the existing
methods. Obviously the new and advantageous deemsaking analyses demonstrated by Fig.9 and
Fig.10 are firmly rooted in the capability of calating complete Pareto front. This apparently vesithe
importance of the methodology described in Secion
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Fig.10 The extent to which a Pareto-optimal soluserves as the ideal choic¥ €20m andAx =0.2m)
6 CONCLUSIONSAND FUTURE WORK

Profit expectation and loss expectation are twoceoms of decision makers in front of several new
product development (NPD) projects. The decisionaf to allocate limited resources among projetts i
order to maximize the profit expectation and mirzienihe loss expectation (a challenging task) faltee
scope of a multi-objective optimization problem (K8). As a key concept in the study of MOOPs, the
Pareto front can theoretically provide the bespsupto decision makers, but unfortunately, therefien
a lack of practical methods to find the completeeRafront, and most existing methods only give an
approximation to it. Based on our previous theoattivork, this paper develops a practicable metbod
calculate the complete Pareto front for multi-objeenew product development (MONPD). Some new
theoretical results are reported to guarantee @fityn and then a ripple-spreading algorithm for
calculating thek" best single-objective solution is developed tdveelpracticability. The simulation
results clearly show that finding the complete Raf®nt can provide the best support to decisiakens
of MONPD, because, for example, it enables decisiakers to conduct many new useful analyses which
are basically impossible based on an approximatidrareto front.

It should be emphasized that the design of algoritbr calculating thek™ best single-objective
solution is highly problem-dependent and often aoteasy task, so, the general applicability and
tractability of the theoretical methodology adoptemands further sustained effort to be reinfoiced
future study. In particular, more comparisons rnedae conducted not only for benchmark MOOPs which
already have many mature methods to calculate &*amatt, but also for those newly emerging MOOPs
which lack effective methods to resolve them. Omiythis way can the potential of the reported

methodology be fully explored.
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