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Abstract

Finding mucosal abnormalities (e.g., erythema, blood, ulcer, erosion, and polyp) is one of the most

essential tasks during endoscopy video review. Since these abnormalities typically appear in a

small number of frames (around 5% of the total frame number), automated detection of frames

with an abnormality can save physician’s time significantly. In this paper, we propose a new

multi-texture analysis method that effectively discerns images showing mucosal abnormalities

from the ones without any abnormality since most abnormalities in endoscopy images have

textures that are clearly distinguishable from normal textures using an advanced image texture

analysis method. The method uses a “texton histogram” of an image block as features. The

histogram captures the distribution of different “textons” representing various textures in an

endoscopy image. The textons are representative response vectors of an application of a

combination of Leung and Malik (LM) filter bank (i.e., a set of image filters) and a set of Local

Binary Patterns on the image. Our experimental results indicate that the proposed method achieves

92% recall and 91.8% specificity on wireless capsule endoscopy (WCE) images and 91% recall

and 90.8% specificity on colonoscopy images.
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1. Introduction

Endoscopy was introduced to examine the interior of a hollow organ or cavity of the body

by directly inserting an endoscope inside the body. It has shown tremendous success in

examination of gastrointestinal (GI) tract. Currently, there are various types of endoscopy

available, namely, colonoscopy, bronchoscopy, gastroscopy, push enteroscopy, wireless

capsule endoscopy (WCE), and upper endoscopy. The main aim of an endoscopy procedure

is to find abnormal lesions (abnormalities) in the inspected human organ. Important

abnormalities include erythema, blood (bleeding), ulcer, erosion, and polyp. We define that

a frame showing an abnormality is an abnormal image, and a frame not showing any

abnormality is a normal image. Fig. 1 shows examples of abnormal and normal images of

WCE and colonoscopy. Our work focuses on abnormal image detection of two main

endoscopy procedures: WCE and colonoscopy, which is briefly summarized as follows.

Most types of endoscopy have limited capability in viewing the small intestine. To address

this problem, wireless capsule endoscopy (WCE), a device that integrates wireless

transmission with image and video technology, was first developed in 2000 [1–3].

Physicians use WCE to examine the entire small intestine non-invasively. A typical WCE

capsule is 11 mm in diameter and 25 mm in length. The front of the capsule has an optical

dome where white light emitting diodes (LEDs) illuminate the luminal surface of the gut,

and a micro camera sends images via wireless transmission to a wireless receiver worn by a

patient. The capsule also contains a small battery that can last up to 8 ~ 11 hours. Once the

capsule is swallowed, it passes naturally through the digestive system taking thousands of

images (typically around 50,000 images) for about 8 hours. These images are transmitted to

a receiver worn on the patient's belt. An expert later reviews these images to check whether

any abnormal lesions are present. Although WCE is a technical breakthrough, the video

viewing and interpretation time takes up to one hour even for an experienced

gastroenterologist because of the large number of frames. This limits its general applications

and incurs a considerable amount of healthcare costs. Thus, there is significant interest in the

medical imaging community to discover a reliable and automated method for distinguishing

abnormal images from normal images in a WCE video. Important abnormal lesions

(abnormalities) in WCE are blood (bleeding), ulceration, erosion, erythema, and polyp.

Details about these abnormalities can be found in [1–3]. Fig. 1 (a-e) show five abnormal

images from WCE videos.

Colonoscopy is a preferred screening modality for prevention of colorectal cancer---the

second leading cause of cancer-related deaths in the USA [4]. As the name implies,

colorectal cancers are malignant tumors that develop in the colon and the rectum. The

survival rate is higher if the cancer is found and treated early before metastasis to lymph

nodes or other organs occur. The major abnormality in a colonoscopy video is the polyp.

Fig. 1(f) shows a colorectal polyp image from a colonoscopy video. Early detection of

polyps is one of the most important goals of colonoscopy. Recent evidence suggests that

there are numbers of polyps that are not detected during colonoscopy [4]. To address this

issue, we propose a texture-based polyp detection method.
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Distinguishing abnormal images from normal images in endoscopy is very challenging since

endoscopy images are hampered by various artifacts. The aim of this work is to propose one

method which can detect multiple abnormalities present in endoscopy images. The intended

abnormalities include erythema, blood, polyps, ulcer and erosion. It is clear that erythema,

polyps, ulcer and erosion do not have a dominant color. Therefore, when developing

multiple abnormality detection methods color based approaches are not reliable. It is

apparent that blood, erythema, ulcer and erosion do not possess a regular shape. Thus the

shape-based approaches are not dependable when designing a multiple abnormality

detection method. It has been shown that all these abnormalities can be successfully detected

using a good texture analysis method [16, 18, 20–22, 27, 28]. Most abnormalities in

endoscopy images have unique textures that are clearly distinguishable from normal

textures, which make texture-based detection a preferred option for detecting multiple

abnormalities. Fig.3 in Section 3.1 gives a clear picture about the inconsistent color and

shape information and clear texture information of the endoscopy abnormalities. After all

the abnormal frames are identified from an endoscopy video, finding a particular

abnormality is not very time-consuming. Thus, a method to detect multiple abnormal frames

is desirable.

We design a multi-texture analysis method to detect multiple abnormalities. Over the years,

numerous methods have been proposed to represent image textures. They include co-

occurrence matrix, wavelets, local binary pattern, and many others [5]. Among them, texton-

based texture analysis, first proposed in [6], is one of the most recent image texture analysis

approaches. In general, the definition of a texton is vague. Theoretically, a texton is defined

as a fundamental microstructure in natural images, and considered as the atoms of pre-

attentive human visual perception [6]. However, in practice, a texton of a particular texture

is a set of feature values that are most likely to occur after applying a feature detection

method. Each type of texture has its own set of textons. Moreover, texton-based texture

analysis supports classification of multiple textures with very high accuracy as shown in [7–

11].

Here, we propose a multi-texture analysis method based on textons to discern abnormal

images from normal images in endoscopy videos. It was found that the best way to generate

textons is to use a set of filters such as Gaussian filters [7–11]. This set of filters is called a

“filter bank”; each filter in the filter bank can extract a different texture feature of an image.

By applying a filter bank to an image, a mixture of texture features such as directionality,

orientation, line-likeness, and repetitiveness could be extracted. For the texton generation,

the most commonly used filter banks are Leung-Malik (LM), Schmid (S), Maximum

Responses (MR), or Gabor (G) [7–11]. After performing an extensive study, we found that

using a new combination of Leung and Malik (LM) filter bank and a set of local binary

patterns [12] can represent textures of endoscopy images more accurately compared to other

filter banks. We call this hybrid model as the “LM-LBP” filter bank. In our method, a texton

of a particular WCE or colonoscopy texture is the set of feature values generated by the LM-

LBP filter bank, which are most likely to occur for only that texture. We combine all textons

from all texture types (i.e., both abnormal and normal), and build a model called “texton

dictionary.” We classify an unseen image as abnormal or normal by analyzing its

distribution of textons (which is called “texton histogram”) with the texton dictionary.
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Our experimental results on wireless capsule endoscopy (WCE) videos indicate that the

proposed method achieves 92% recall and 91.8% specificity. Corresponding values for

colonoscopy videos are 91% and 90.8%, respectively. Our contributions are as follows.

• We have shown that the textures of endoscopy images can be represented as

textons using a filter bank. We have proposed a new filter bank (i.e., LM-LBP)

which is a combination of the LM filter bank and four local binary patterns.

• This new filter bank works well for multiple abnormality detection in endoscopy

images. This is significant since most endoscopy abnormality detection methods

consider only one or two abnormalities in their schemes. With the capability of

filter banks in detecting many different texture features, and with the capability of

textons and texton histograms in representing these features, our proposed method

can detect multiple abnormalities.

• We have provided an extensive experimental study to show the effectiveness of the

proposed LM-LBP filter bank by comparing it with other existing filter banks and

related methods for endoscopy abnormal detection.

The remainder of this paper is organized as follows. Related works on wireless capsule

endoscopy and colonoscopy are discussed in Section 2. Our proposed method for

abnormality detection is described in Section 3. We discuss our experimental results in

Section 4. Finally, Section 5 presents concluding remarks.

2. Related Works

The WCE and colonoscopy video processing has been one of the active research areas in

medical image processing recently. The related works on WCE can be divided into three

main categories: (1) video preprocessing such as image enhancement, frame reduction, and

so on, (2) detection of abnormalities such as bleeding and ulceration, and (3) segmentation

of WCE video into smaller segments corresponding to different types of the organs. Most of

the research works in WCE aim at developing automated algorithms for abnormality

detection using either color or texture analyses. Coimbra and Cunha proposed a method to

detect multiple abnormalities such as blood, ulcer, or polyp, using MPEG-7 visual

descriptors [14]. Penna et al. implemented a blood detection algorithm based on color

modeling, edge masking, and RX detection [15]. In [16, 17], Li and Meng proposed

individual methods to identify ulcers, polyps, and tumors. The ulcer detection method uses a

curvelet transform, local binary pattern, and a multilayer perceptron neural network [16].

Polyp detection method in [17] is based on MEPG-7 region-based shape descriptors, Zernike

moments, and a multilayer perceptron neural network for classification. Wavelet-based local

binary pattern for texture feature extraction and Support Vector Machine (SVM) for

classification are used in [18] for small bowel tumor detection. Two methods by Karargyris

and Bourbakis for detection of ulcers and polyps are based on HSV color information and

log-Gabor filter [19, 20]. In [21], the authors use statistical texture descriptors based on

color curvelet covariance to identify small bowel tumors. A multi-texture abnormal

detection method based on the bag of visual word approach is proposed in [22] to detect

blood, polyp and ulcer images. The texture features are generated using Gabor filters and the

classification is performed using the support vector machine classifier. In [23] a set of
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multiple abnormalities is detected using color histograms, color statistics and local binary

patterns as features and combined patch classifiers as the classifier. Table 1 (first 10 rows)

gives a summary of the detected abnormalities, features used, dataset used, classifiers used

and the performance of each of the above method. The main limitation we see is that most of

the WCE abnormality detection methods in Table 1 are focused on detecting only one type

of abnormality [15–21], and the reported performances of multiple abnormality detection

methods in [14], [22] and [23] are somewhat low. For instance, the given recall values of

[14], [22] and [23] are 58%, 77% and 76%, respectively.

The related works on colonoscopy video processing could be divided into two main

categories: (1) quality analysis of colonoscopy procedures and (2) detection of abnormalities

such as polyps and ulcers. In [24], quality metrics were introduced to measure the quality of

colonoscopy procedures. Most recent methods for automatic colorectal polyp detection are

based on shape, color and/or texture. In [25] and [26], Hwang et al. proposed a polyp

detection method based on a marker-controlled watershed algorithm and elliptical shape

features. Because this technique relies on ellipse approximation, it can miss polyps in which

their shapes are not close to ellipse. A texture-based polyp detection method [27] uses region

color, local binary pattern (LBP), and SVM for classification. In [28], performance

comparison was conducted to determine the best features among LBP, opponent color-LBP,

wavelet energy, color wavelet energy, and wavelet correlation signatures for colonoscopy

polyp detection using the same videos as training and testing data. The limitations of the

methods in [25–28] are a high false alarm ratio and very slow detection speed. In [29], a

framework for polyp detection in colonoscopy is proposed using a combination of spatial

and temporal features. Spatial features include both texture and shape features which are

represented as eigenvectors. They also incorporate some other features such as the number

and size of the edges and the distance between the specular reflections and edges. A

conditional random field (CRF) model is used for the classification. Although polyps can be

detected more accurately when both shape and texture features are combined as outlined in

[29], the method can be computationally complex since more features (i.e., texture and

shape) need to be calculated. Also, this method cannot be used for multiple abnormality

detection as shape is not common for other abnormalities such as ulcers. The work in [30]

presents a polyp detection method based on edge cross section profiles (ECSPs). This

method computes features by performing derivative functions on the edge cross section

profiles. The feature values are fed into the decision tree and support vector machine

classifiers to distinguish polyp images from non-polyp images. Although this technique

detects various types of polyps with a higher accuracy it cannot be applicable to multiple

abnormality detection as abnormalities such as ulcer do not have unique edge cross section

profiles. Other research works on polyp detection in colonoscopy videos can be found in

[31]. Detected abnormalities, features used, dataset used, classifiers used and the

performance of each of the above polyp detection methods are listed in Table 1 (last 5 rows).

Although most of the methods have provided very good classification performance they are

specifically designed only to detect colorectal polyps.

In summary, most of the aforementioned abnormality detection methods focused on

detecting only one type of abnormality, or the overall accuracies for detecting multiple
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abnormalities are somewhat low. The proposed method detects multiple abnormalities with

a higher accuracy.

3. Proposed Method

The proposed method consists of two training stages (Training stage 1 and Training stage 2),

and a detecting stage. Fig. 2 shows a summary of the proposed method. Training stage 1

finds textons to represent WCE and colonoscopy textures using the proposed LM-LBP filter

bank. The input for this stage is a set of image regions from each WCE and colonoscopy

texture where each image region is covered entirely by one type of texture. The output of

Training stage 1 is the collection of all textons from all types of textures of WCE and

colonoscopy (i.e., both abnormal and normal). We call this collection the “texton

dictionary.” In Training stage 2, we build an “image block dictionary (IBD)” classifier. The

inputs for Training stage 2 are the texton dictionary and a significant number of sample

image blocks (128 by 128 pixels) extracted from abnormal and normal textures from WCE

and colonoscopy images. IBD is a trained classifier with k-nearest neighbor (KNN) method,

which classifies an image block (128 by 128 pixels) as abnormal or normal based on its

texton distribution. In the detecting stage, we evaluate an unseen image to determine

whether it is abnormal or normal by scanning the image in both row wise and column wise.

The inputs for the detecting stage are the unseen images, the texton dictionary from Training

stage 1, and the IBD from Training stage 2. The output of the detecting stage is a label of an

unseen image, which can be either abnormal or normal. Since our classification is a multi-

class classification, the abnormal label is referred by the name of the abnormality. That is,

for WCE, abnormal label can be one of erythema, blood, polyp, and ulcer-erosion. For

colonoscopy the abnormal label can be polyp. In the following subsections, these three

stages are discussed in detail.

3.1. WCE and Colonoscopy Textures

Before presenting our proposed method, we discuss the WCE and colonoscopy textures that

are considered in designing the method. In WCE, we consider erythema, blood, ulcer,

erosion, and polyp as abnormal textures. We observe that the ulcer and erosion show a

similar kind of texture, so we combine ulcer and erosion as a one type of texture named UE.

In colonoscopy, polyp is considered as the only abnormal texture, and other abnormal

textures will be added later. Analyzing the normal textures is very complex due to their

diversities. Fortunately, when we closely analyze the normal textures, we can categorize

them into a handful of texture types. After analyzing these textures, WCE normal textures

are divided into 10 types, and colonoscopy normal textures are divided into 8 types. Table 2

shows all textures types used to develop the proposed method.

In Fig. 3, we show five sample image blocks (texture area is marked using blue rectangles)

for each abnormal texture of WCE and colonoscopy. We do not show normal textures to

avoid having a very large figure. For each abnormal texture in Fig.3, the first row shows the

original image block and the second row shows the same image block which is normalized

using for example, z-score normalization (see Section 3.2.2). This step is done to show that

one abnormality can have different combinations of colors and textures. In material textures

we can highlight one type of arrangement of pixels as line-likeness, checkerboard and so on.
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But, it is important to realize that it is not possible to highlight one type of arrangement of

pixels for endoscopy textures. The texture of blood is more or less uniform. The proposed

method has detected the blood images in our dataset with a very high accuracy. Our

assumption is that there is a texture in blood which cannot be seen by the human eyes.

Sometimes the erythema texture can be seen as a thin cloud or salt and pepper noise. Polyp

texture is similar to a surface of a caterpillar (animal) or some kind of a fungus. Texture of

ulcer and erosion appear as a thick cloud of pixels. All the above descriptions are what can

be observed by the human eyes. Fig. 3 shows all the above mentioned texture properties

using the original and their corresponding normalized image areas for each abnormal image

texture. For instance, the area of blood in normalized images is seen as black except the

images in the 3rd and the 5th columns that have a different texture. Erythema and UE

textures can be seen as clouds. The both WCE and colonoscopy polyp texture stands out

from other textures showing fungus like texture. Also within one abnormal texture slight

variations of textures can be seen. In the proposed method, we can represent these slight

variations with textons. Moreover, Fig. 3 illustrates that it is very hard to find common

shape or dominant color information from these abnormalities.

3.2. Training Stage 1: Generation of Textons and Texton Dictionary

To generate textons first we collect multiple image regions for each texture presented in

Table 2. Since each image region contains one type of texture, the regions may not have the

same size. Extracted image regions are similar to the ones marked using blue rectangles in

Fig. 3. Within one texture, we observe slight variations due to illumination changes. We

make sure that all variations are included in the extracted image regions for each texture.

3.2.1. LM-LBP Filter Bank—As mentioned in Section 1, the most commonly used filter

banks for texton generation are Leung-Malik (LM), Schmid (S), Maximum Responses

(MR), or Gabor (G) [7–11]. Our study focuses on the LM filter bank since it contains a

variety of Gaussian filters. We conducted an extensive experimental study to demonstrate

that the Gaussian filters can represent the endoscopy image textures more effectively than

other filters. This study is presented in Section 4.

The LM filter bank consists of 48 different Gaussian filters. Fig. 4 shows the 48 filters in the

LM filter bank. 18 first-order derivative of Gaussian filters in three different scales and six

different orientations (See Fig. 4(a)), and another 18 second-order derivative of Gaussian

filters in three different scales and six different orientations (See Fig. 4(b)) give 36 filters in

total. The three scales are  and six orientations are (0°, 30°, 60°,90°, 120°,

150°). The remaining filters are 8 Laplacian of Gaussian (LoG) filters with

, Considering P equally spaced pixels on a circular

neighborhood with radius R, the local binary pattern (LBP) of the central pixel is defined as

given in Equation (1) [12]. 12) (See Fig. 4(c)) and 4 other Gaussian filters with

 (See Fig. 4(d)). When an image is convoluted with the LM filter bank,

we obtain 48 responses from each pixel.
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(1)

In Equation (1), gc and gp are gray values of the central pixel (x, y) and the pth pixel (xp, yp)

on the circular neighborhood; s is a function used to calculate the binary values. The

location of the pth pixel, (xp, yp) is calculated using the formula (-Rsin(2πp/P), Rcos(2πp/

P)). If the location is not the center of the pixel, the gray value is approximated using

interpolation as mentioned in [12]. We experimentally found that a set of four LBPs with (P

= 4, R = 1.0), (P = 8, R = 1.0), (P = 12, R = 1.5), and (P = 16, R = 2.0) shown in Fig. 5 best

represents the WCE and colonoscopy textures with the highest accuracy for abnormal image

detection. In fact, we do not observe any significant change in accuracy with R = 2.0 or

larger. It makes sense that the pixels too far away from their center do not contribute much

to the pattern of the center pixel. LBP responses are converted to values in the range

between 0 and 1 (i.e., normalization) to make it consistent with the responses from filters in

the LM filter bank. We combine the LM filter bank and the set of four LBPs to form the

LM-LBP filter bank. By applying the LM-LBP filter bank to a pixel we get 52 filter

responses (48 from LM and 4 from LBP).

3.2.2. Preprocessing and Filter Response Generation—Since various illumination

and/or lighting effects of the camera distort endoscopy images, preprocessing is performed

on the image regions before applying the LM-LBP filter bank to them. Due to illumination

changes we can observe different textures of the same image tissue captured from different

locations. Sometimes we see similar texture from different tissues located at different

locations also due to illumination changes. However, once the illumination changes are

removed, we can obtain a unique texture for each type of abnormal and normal textures. In

the preprocessing step, we convert each region into grayscale and perform the z-score

normalization by normalizing the image region to have zero mean and unit standard

deviation. This is to ensure that we obtain exact textural information rather than color

variations in the pixels. Our experimental results confirm that the proposed method has

overcome this problem up to some extent. In Fig. 3, images in the second row of each

abnormality show the preprocessed image blocks for each texture. After the preprocessing

step, each region is convoluted with each filter in the LM-LBP filter bank. We arrange all

the 52 responses into one vector of 52 dimensions, and call it a “response vector”. Each

resulting filter response is normalized using the Webber's formula [7], which is defined in

Equation (2). In Equation (2), F(x) and L(x) are the filter response and its L1-norm value,

respectively. This step ensures that when calculating Euclidean distance (i.e., k-means

clustering) the scaling and the range of each filter response are the same. The total number

of response vectors in each texture is equal to the total number of pixels in all image regions

of that particular texture.

(2)
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3.2.3. Texton Generation Using K-means Clustering—We generate the textons as

follows. Fig. 6 shows the process of generating the texton dictionary step by step. We cluster

the response vectors from each texture using k-means clustering [7, 13] with the aim of

finding a set of cluster centers This is because, in general a texton is a cluster center from the

k-means clustering of response vectors. For an abnormal texture, we apply k-means

clustering by setting k = 20 (based on our experiments). The resulting cluster centers are

called “textons.” That means “textons” are representative response vectors of each texture.

We apply k-means clustering to the normal texture in two steps. The purpose of the two-step

approach is to reduce the dimension of the feature vectors by reducing the number of textons

for the normal textures, which speeds up the overall procedure (to be described in Section

3.3). In Step 1, k-means clustering is applied to each type of normal texture by setting k =

20. This produces 200 textons for WCE normal textures and 160 textons for colonoscopy

normal textures since WCE normal textures have 10 different types, and colonoscopy

normal textures have 8 different types. In Step 2, k-means clustering is applied with k = 5 on

the cluster centers obtained in Step 1. Overall, we generate 20 textons from each abnormal

texture and 5 textons from each normal texture for both WCE and colonoscopy. The

collection of all textons from all texture types (i.e., both abnormal and normal) is called the

“texton dictionary.” Basically, the texton dictionary contains a set of representative response

vectors that are generated by applying the LM-LBP filter bank to a particular WCE or

colonoscopy image pixel. The WCE texton dictionary has 130 textons (80 from 4 abnormal

textures and 50 from 10 normal textures), and the colonoscopy texton dictionary has 60

textons (20 from the polyp texture and 40 from 8 normal textures). In this way, any

endoscopy image textures can be represented using the texton dictionary.

3.3. Training Stage 2: Generating the Image Block Dictionary (IBD)

First, we extract a significant number of image blocks (of size 128 by 128 pixels) of

abnormal and normal textures from WCE and colonoscopy images. All extracted image

blocks were verified by the domain experts. We use fixed size image blocks instead of

regions segmented using a region segmentation algorithm because it is simple to implement

and fast to compute, and we do not need to concern about the accuracy of region

segmentation. We initially tried segmentation algorithms such as Watershed [5] which did

not provide a proper segmentation result. We experimentally found that the image block size

of 128 by 128 pixels provides the best accuracy for our proposed method. Each selected

image block contains a particular abnormal or normal texture. We make sure that the set of

image blocks extracted for each texture include examples from all different illumination

changes, viewing angles, and patients in our dataset. Since we extract the image blocks so

that they contain as many abnormal areas as it does not matter whether the image blocks are

overlapping or non-overlapping. Fig. 7 shows how an abnormal image block is extracted

from an image to include as much abnormal area as possible. The normal image blocks are

similarly obtained.

3.3.1. Texton Histogram Generation—We preprocess each image block and generate

filter responses by applying the LM-LBP filter bank as mentioned in Section 3.2.2. For

instance, we get 16,384 response vectors from an image block of 128 by 128 pixels. Using

these response vectors, we build a histogram for each image block, which is called “texton
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histogram”. A texton histogram of an image block is a representation of the number of

occurrences of the textons in the texton dictionary generated in Training stage 1. The

number of bins in the histogram is equal to the number of textons in the texton dictionary. It

shows how the texture of the image block is formed using the textons. In most cases

multiple textures can be seen in the endoscopy tissue of the image block. Hence, to represent

the texture of an image block accurately, we require textons corresponding to all abnormal

and normal textures. This is the motive behind the fact that we include all textons from

abnormal and normal textures in the texton dictionary created in Training stage 1 and use

them as bins in the texton histogram.

A texton histogram for an image block of WCE has 130 bins, and a texton histogram for an

image block of colonoscopy has 60 bins. The texton histograms are normalized to have

values from 0 to 1. To build a texton histogram, we map each response vector to the closest

matching texton in the texton dictionary, and increase the count of the bin corresponding to

the matching texton. To decide the closest matching texton of a response vector, we

calculate the Euclidean distance between the response vector and each texton in the texton

dictionary. We find a texton with the minimum Euclidean distance as given in Equation (3).

In Equation (3), RV = (RV1, …, RV52) is the response vector, Ti = (Ti1, … , Ti52) is the ith

texton in the texton dictionary. The value of i varies from 1 to 130 for WCE, and from 1 to

60 for colonoscopy.

(3)

From this process, we get a texton histogram for each image block, and the total number of

texton histograms is equal to the number of selected image blocks for that texture. In this

way, a group of histograms that represents a particular texture could be derived.

3.3.2. Image Block Dictionary (IBD) Generation—In the next step, we train a

classifier that can distinguish abnormal image blocks from normal ones. The process of IBD

generation is shown in Fig. 8 step by step. The texton histograms of image blocks are

considered as feature vectors for the classifier. The dimension of a feature vector is

equivalent to the number of textons in the texton dictionary. Using the trained classifier,

previously unseen image blocks are evaluated. We tested five of the most popular

classification algorithms used in machine learning [13]: K-nearest neighbor (KNN), Support

vector machines (SVM), Decision tree (DT), Naïve Bayes, and Artificial neural networks to

find the best one for our domain. We omitted the details about these classifiers due to space

constraints, which can be found in [13]. In order to train a classifier, we used the 10-fold

cross validation [13]. Experimentally, we found that the KNN classifier performed better

than the other four classifiers. In the KNN classifier, the distance between texton histograms

is calculated by employing the chi-square distance as given in Equation (4). In Equation (4),

THi = (THi1, …, THiN) and THj = (THj1, …, THjN), are two texton histograms. The values of

N are 130 and 60 for WCE and colonoscopy, respectively.
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(4)

We call this trained classifier “Image Block Dictionary (IBD).” Image block dictionary is a

trained classifier which can classify image blocks. It basically contains a set of texton

histograms that represents the textures of abnormal and normal image blocks. IBD classifies

an input image block using these representative texton histograms. The set of texton

histograms acts like a dictionary or a database. Hence we named this model as the image

block dictionary.

Basically, IBD decides whether an image block is abnormal or normal. An IBD has three

components: a filter bank to generate the response vectors, image block size, and a classifier.

Hence, we represent an IBD with three parameters, for example, IBD (filter bank, block

size, classifier).

3.4. Detecting Stage: Evaluating Images for Abnormal Detection

In this stage, we evaluate an unseen image to determine whether it is abnormal or normal.

The image is scanned both row and column wise using image blocks having a predefined

overlap with the previous scan as shown in Fig. 9 (red and green squares). We

experimentally verified that with overlapping image blocks the proposed method performs

better compared to non-overlapping image blocks. Texton histogram of each resulted block

from the scanning is evaluated with the IBD. Thus, the texton histograms of the image

blocks are used as the input to the trained KNN classifier. The number of blocks detected as

abnormal is counted during the scanning. If the abnormal block count of an image is more

than a certain threshold value, the image is categorized as an abnormal image. For instance,

if 4 blocks are detected as erythema, then the input image is labeled as ‘erythema’.

Otherwise, the image is categorized as a normal image. This threshold value is decided to

compensate the accuracy of block evaluation. Theoretically, if at least one block is detected

as abnormal, then image should be labeled as abnormal. However, since it is very hard to

achieve 100% accuracy for image block evaluation, the threshold value could be more than

one. We decide this threshold value experimentally, which will be discussed in the following

section.

4. Experimental Results and Discussion

In this section, we assess the effectiveness of the proposed abnormal image detection

technique. Two separate experiments were carried out for WCE and colonoscopy videos and

summarized as follows.

• We compare the results from the proposed LM-LBP filter bank with those from

three other filter banks: LM, MR8, and Gabor (G).

• We also compare the results from the proposed LM-LBP filter bank with textons

generated only using the set of four LBPs discussed in Section 3.2 and with the

textons generated using image patch exemplars [9, 31]. Image patch exemplars are

a very good candidate for texton generation as described in [9]. We named the
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method as the ‘local neighborhood method’. To generate textons, the local

neighborhood method considers the 3 × 3 local neighborhoods around each pixel as

the response vectors [32] (see Section 3). We tested larger neighborhood such as

5×5 and 7×7 pixels. For 5×5 local neighborhoods we observed 1–2% improvement

in the performance compared to 3×3 local neighborhoods. However, for 7×7 local

neighborhoods we saw a 2–3% decrease in performance compared to 3×3 local

neighborhoods. We call the local neighborhood based method as “LN filter bank”,

and the local binary pattern based method as “LBP filter bank” for easier reference.

For both LN and LBP filter banks the filter responses are normalized to have values

from 0 to 1.

• To verify that IBDs based on image blocks of 128 by 128 pixels perform better

than the other sizes of image blocks, we tested our method on two different image

block sizes: 64 by 64 and 128 by 128 pixels.

• To show that IBDs based on the KNN classifier outperform IBDs based on other

classifiers, we present the results for KNN, SVM, and Decision Tree (DT) classifier

based IBDs. Due to the space limitations we have only provided the results of

KNN, SVM and DT classifiers. KNN, SVM and DT are the top three classifiers in

terms of performance. Experiments with KNN classifier were performed with

different values of “K”, which is the number of nearest neighbors. Since K=1

produced the best classification accuracy, we reported the performance measures

only for K=1. Sequential minimization optimization (SMO) and C-SVM based

implementation [13] were used for the SVM classifier, in which the Gaussian radial

basis function (RBF) kernel [13] was used as the kernel function. We obtained the

best results when the cost parameter (C) was 1. The reported performance values

for SVM classifier were obtained when using the set of parameters which gave the

best classification performance for SVM classifier. We tested the SVM classifier

with the polynomial, normalized polynomial and radial basis function (RBF)

kernels. We concluded that the RBF kernel provides the best performance.

Similarly we tuned the cost parameter c and found that c = 1 gave the best

performance. For the decision tree classifier we used the J48 based decision tree.

Three classifiers were tested using the 10-fold cross validation [13]. As mentioned

in Section 3.3.2, texton histograms were used as the input to a classifier. Thus the

10-fold cross validation was used on these texton histograms by creating 10

different training and testing combinations.

• To verify the effectiveness of the filters in the LM-LBP filter bank and the size of

the texton dictionary, we show the performance of various combinations of filters

exists within the LM-LBP filter bank.

• To show the soundness of selecting four original LBPs in the LM-LBP filter bank,

we compare the results with other variants of LBPs.

For Training stage 1, we created texton dictionaries with LM, MR8, G, LN, LBP, and LM-

LBP filter banks by applying the algorithm mentioned in Section 3.2. For Training stage 2,

we generated 36 IBDs by using the algorithm mentioned in Section 3.3 and by varying the

filter bank type, image block size, and the classifier. All combinations of six filter banks,
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two block sizes, and three classifiers give us 36 different IBDs as outlined in Table 3. The

same filter bank used for the texton generation in Training stage 1 is used to generate the

IBDs in Training stage 2. We show that the proposed method works best with the

combination of LM-LBP filter bank, 128 by 128 (pixels) image blocks, and KNN classifier

(i.e., IBD (LM-LBP, 128, KNN) (No. 34)).

We present our results using commonly used performance metrics: recall (R), specificity

(S), precision (P), and accuracy (A). Table 4 shows the definitions of True Positive (TP),

False Positive (FP), False Negative (FN), and True Negative (TN). Recall (R) is the

percentage of correctly classified positive instances and it is defined as TP/(TP+FN).

Precision (P) computed from TP/(TP+FP) is the percentage of correctly classified positive

instances from the predicted positives; specificity (S) is the percentage of correctly classified

negative instances and it is calculated from TN/(TN+FN). The accuracy (A) which is equal

to (TP+TN)/(TP+FP+FN+TN) is the number of correctly classified instances. All

experiments were performed on a computer with Intel(R) Core i7 2600K, 64-bit, 3.40 GHz

processor and 8 GB memory. The programming environment was Matlab R2012b. SVM

and decision tree classifiers were tested using the corresponding implementations in the

WEKA package [33].

The remainder of the experimental section is organized as follows. Experiments performed

with WCE videos are described in the Subsection 4.1, and experiments performed with

colonoscopy videos are described in the Subsection 4.2. In both Subsections 4.1 and 4.2, we

present the performance of IBDs (i.e., Training stages). Then, we present the performance of

the abnormal image detection (i.e., Detecting stage). In Section 4.3, we provide

experimental evidence to show selection of filters in the LM-LBP filter bank and the size of

the texton dictionary.

4.1. Experiments with WCE Videos

We extracted a set of images from five real WCE videos for each abnormal and normal

textures outlined in Table 2. All WCE images are generated from the MicroCam capsule

from IntroMedic. The resolution of an image is 320×320 pixels. Our domain expert verified

the ground truth of the WCE images. We made sure that as many as possible texture

variations are included in both abnormal and normal images extracted. From each texture, a

portion of the image set was used for the training (Stage 1 and Stage 2), and the remaining

portion was used for the detecting stage. The number of images used for the two training

stages and the detecting stage are given in Columns 2 and 3 of Table 5. The number of

image regions extracted for Training stage 1 (i.e., texton generation) and the number of

image blocks extracted for Training stage 2 (i.e., IBD generation) are given in Columns 4–6

of Table 5. Both image regions for Training stage 1 and image blocks for Training stage 2

were extracted from the set of training images listed in Column 2 of Table 5. We made sure

that the extracted regions for Training stage 1 listed in column 4 of Table 5 include as many

variations as possible for each WCE texture as mentioned in Section 3.2. For instance, 50

examples for erythema regions include five different textures. Moreover, we ensured that

extracted image blocks for training stage listed in column 5 and column 6 of Table 5 contain

as many as possible variations of abnormal and normal areas as mentioned in Section 3.3.
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Using the image regions in Training stage 1 and the image blocks in Training stage 2, we

built the 36 IBDs listed in Table 3 for WCE. We used the same image set for both training

stage 1 and 2 since they are two steps of one continuous training process. Input from the

training stage 1 (i.e., texton dictionary) is used to build the texton histogram in the training

stage 2. The main goal of the whole training process is to create a set of histograms which

can accurately represent abnormal and normal image blocks. The best way of generating

textons to be used in the texton histograms is to generate them from the same image set.

4.1.1. WCE IBD Performance analysis—Average performance of the four abnormal

(i.e., erythema, blood, polyp and UE) and other normal textures of the 36 IBDs are given in

Table 6. Fig. 10 gives a graphical comparison of the average recall and specificity values of

each IBD. Fig. 11 and Fig. 12 show comparisons of the recall and specificity values of each

IBD for four abnormal and other normal textures.

When analyzing Table 6 and Fig. 10, we see that IBD No. 34 (LM-LBP, 128, KNN) shows

the highest average recall of 91.0% and the highest average specificity of 97.3%. IBD No.

19 (LM, 128, KNN) and IBD No. 31 (LBP, 128, KNN) perform with average recall values

of 84.4% and 83.1%, and average specificity of 96.1% and 95.3%, respectively, which are

very close to IBD No. 34 (LM-LBP, 128, KNN). It is apparent that when LM filter bank and

a set of LBPs are combined to form the LM-LBP filter bank, we can see a significant

improvement in the recall and the specificity. Fig. 11 shows that the IBD No. 34 (LM-LBP,

128, KNN) provides the highest recall values for all abnormal textures, and a very high

recall value of 94.1% for other normal textures. Note that the IBD No. 34 (LMLBP, 128,

KNN) provides 100% recall for blood, which is the same with IBD No. 19 (LM, 128, KNN)

and IBD No. 35 (LM-LBP, 128, SVM). As seen in Fig. 12, the specificity values of most of

the IBDs are above 80%. Except for normal textures, the specificity values of the IBD No.

34 (LM-LBP, 128, KNN) for other textures are not the highest but very close to the highest.

Its specificity values for four abnormal textures and other normal textures are 98.7%, 99.2%,

99.2%, 97.6%, and 92.0%, respectively, which are good enough even if they are not the

highest. However, the average specificity of the four abnormal and other normal textures

(i.e., 97.3%) is the highest of all 36 IBDs. These prove that the IBD No. 34 (LM-LBP, 128,

KNN) classifies the 128 by 128 image blocks with better recall values while maintaining

very high specificity values for all types of textures compared to other IBDs. The IBD No.

34 (LM-LBP, 128, KNN) is selected for the WCE abnormal image detecting stage.

LBP and Gabor filters have successfully been used for WCE abnormal detection [16, 22]. In

a similar work to the proposed method in [22], Gabor filters are used to generate the bag of

visual words (similar to textons). Our experimental results for IBDs based on the Gabor

filter banks (i.e., IBDs 7, 8, 9, 25, 26, and 27) for WCE shows that the proposed method

outperforms the Gabor filter bank based abnormal detection. When analyzing the LBP based

IBDs (i.e., IBDs 7, 8, 9, 25, 26, and 27 in Table 3, Section 4, page 21) we can conclude that

our proposed LM-LBP filter bank outperforms the LBP based methods for abnormal

detection as well.

4.1.2. WCE Abnormal Image Detection Analysis—We evaluated the detecting stage

of the proposed method using our IBD No. 34 (LM-LBP, 128, KNN). We used 100
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abnormal images (25 from each texture) and 400 normal images as outlined in Column 3 of

Table 5. We intentionally made the dataset imbalance to resemble real world scenario in

WCE where the numbers of abnormal and normal images are imbalanced. Each image was

evaluated using IBD No. 34 (LM-LBP, 128, KNN) as described in Section 3.4 for abnormal

image detection. We experimented with abnormal block thresholds (see Section 3.4) of 1

through 20. Table 7 shows performance comparisons of the detecting stage with abnormal

block thresholds of 4, 5, and 6. We found that the threshold value of 5 provides the best

image classification performance when both recall and specificity are considered. When

abnormal block threshold is 5, the proposed method classifies abnormal and normal images

with recall value of 92.0% and a specificity of 91.8%. That means, 8 abnormal images (out

of 100) (i.e., false negatives) are missed by our method. This contains 3 erythema, 2 polyp

and 3 UE images. Also, there are 33 normal images detected as abnormal images (i.e., false

positives). These include 11 erythema, 2 blood, 7 polyp and 13 UE detections. The

confusion matrix given in Table 8 shows the detections of each texture. Our WCE abnormal

image detection is a multi-class classification problem having erythema, blood, ulcer-

erosion, polyp and normal as classes. Hence, in Table 8 we have provided the confusion

matrix for those five classes. Overall, the accuracy of erythema and UE image detection is

somewhat lower compared to blood and polyp image detection. Despite these false positives

and false negatives, a recall of 92.0% and a specificity of 91.8% for abnormal image

detection are very high since we detect multiple abnormalities. Normally, the physician’s

recommendation is to reduce the miss rate of abnormal images (i.e., true positives) as much

as possible while keeping true negatives at a reasonably higher value. Hence, our recall and

specificity values are adequate for WCE abnormal image detection.

We compared the effectiveness of the proposed method with the LBP and the Gabor filter

bank based methods. For the LBP and the Gabor filter bank based methods, full image

evaluation was performed with IBD No. 31 (LBP, 128, KNN) and IBD No. 25 (G, 128,

KNN), respectively. Fig. 13 depicts the performance comparisons of the three methods using

receiver operating characteristic (ROC) and precision-recall plots. ROC and precision-recall

plots were generated from the precision, recall, and specificity values obtained by varying

the abnormal block thresholds from 1 through 20. Fig. 13 clearly shows the superiority of

the proposed method over LBP and Gabor filter bank based methods for WCE image

evaluation. According to Fig. 13, ROC and precision-recall plots of the proposed method are

better compared to those of the LBP and Gabor filter bank based methods. Moreover from

the precision-recall plot of the proposed method in Fig. 13(b), it can be seen that the

imbalanced nature of our dataset has not caused a major drop in the performance.

4.2. Experiments with Colonoscopy Videos

In this experiment, seven real colonoscopy videos were used to classify images showing

polyps from those not showing any polyp. All colonoscopy videos were generated from the

Fujinon scope having an image resolution of 720×480 pixels. The same experimental setup

used for the WCE experiment was used in this experiment as well (see Section 4.1). Our

domain expert verified the ground truth of colonoscopy images. Columns 2 and 3 of Table 9

provide the numbers of images used for the two training stages and the detecting stage. The

number of image regions extracted for texton generation (i.e., Training stage 1) and the
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number of image blocks extracted for IBD generation (i.e., training stage 2) are given in

Columns 4–6 in Table 9. The image regions and the image blocks were extracted from the

training images (Column 2 in Table 9). We included as many variations as possible of each

colonoscopy texture as mentioned in Section 3.1 in the extracted regions listed in Column 4

of Table 9. For instance, the 80 examples for the polyp texture include eight different

textures. We ensured that extracted image blocks for IBD generation listed in Column 5 and

Column 6 of Table 9 contain as many variations as possible of abnormal and normal areas in

the colonoscopy training set as mentioned in Section 3.3. Similar to the WCE experiment,

we used the same image set for both training stage 1 and 2. Using the image regions in

Training stage 1 and the image blocks in Training stage 2, we built the 36 IBDs listed in

Table 3 for colonoscopy abnormal image classification.

4.2.1. Colonoscopy IBD Performance Analysis—Performance of each IBD with

polyp texture as the positive class is summarized in Table 10. A graphical comparison of the

average recall and specificity values of each IBD is shown in Fig. 14. When analyzing Table

10 and Fig. 14, we see that both recall and specificity values are very high for most of the

IBDs. We have obtained the best recall value of 98.2% with a very high specificity value of

95.1% for IBD No. 34 (LM-LBP, 128, KNN). In these results, we see almost all trends we

observed with the WCE IBDs. LM and LBP filter bank based IBDs (i.e., IBD No. 19 (LM-

LBP, 128, KNN) and IBD No. 31 (LM-LBP, 128, KNN)) distinguish abnormal and normal

image blocks with very high recall values (96.0% and 92.5%) and specificity values (94.0%

and 93.9%). It is clear that when the LM filter bank and a set of LBPs are combined, we see

improved recall and the specificity values for colonoscopy abnormal region detection as

well. Hence, we used IBD No. 34 (LM-LBP, 128, KNN) in the detecting stage of

colonoscopy polyp image classification. In the missed polyp image blocks by IBD No. 34

(LM-LBP, 128, KNN), the polyp region is either partially blurred or partially covered by

specular reflection. The partial blurriness and the specular reflections wipe out some of the

polyp texture.

4.2.2. Colonoscopy Abnormal Image Detection Analysis—We evaluated the

performance of colonoscopy polyp detecting stage using our IBD No. 34 (LM-LBP, 128,

KNN). A data set of 500 colonoscopy images were used for the polyp detection in which

100 of them were polyp and 400 of them were normal as given in Column 3 of Table 9. In

100 polyp images there were 8 distinct types of polyps. As in WCE abnormal detection, the

dataset was intentionally made to be imbalanced to resemble real world scenario in

colonoscopy where the number of abnormal and normal images are imbalanced. Each image

was evaluated using IBD No. 34 (LM-LBP, 128, KNN) as described in Section 3.4. We

experimented with abnormal block thresholds (see Section 3.4) of 1 through 20, and found

that the threshold of 4 provides the best performance. Table 11 shows performance of

colonoscopy polyp abnormal image detection with abnormal block thresholds of 3, 4 and 5.

The confusion matrix in Table 12 outlines the number of detections of polyp and normal

images. In colonoscopy abnormal detection, we have only considered polyp as the abnormal

class. Hence, our colonoscopy abnormal detection is a binary classification problem having

polyp and normal as classes. Thus Table 12 shows the confusion matrix of the binary

classification of polyp and normal classes. We obtained the best recall value of 91.0% and
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the best specificity value of 90.8% when the abnormal block threshold is 4. Confusion

matrix in Table 12 shows the number of missed polyps and normal images by the proposed

mehtod. These recall and specificity values prove that our method works for colonoscopy

abnormal image detection as well.

As in the WCE experiment, the performance of the proposed method for colorectal polyp

detection was compared with the LBP and Gabor filter bank based methods. IBD No. 31

(LBP, 128, KNN) and IBD No. 25 (G, 128, KNN) were used for colonoscopy full image

evaluation for the LBP and Gabor filter bank based methods, respectively. The

performances of the three methods are presented as ROC and precision-recall plots in Fig.

15. The resulting precision, recall and specificity values for the abnormal block thresholds

from 1 through 20 were used to generate ROC and precision-recall plots. Fig. 15 clearly

shows that the performance of the proposed method is better compared to the LBP and the

Gabor filter based methods. According to Fig. 15, the proposed method has provided better

ROC and precision-recall plots compared to the LBP and Gabor filter bank based methods.

Similar to WCE abnormal detection, from the precision-recall graph of the proposed in Fig.

15(b), it can be seen that the imbalanced nature our dataset has not caused a major drop in

the colonoscopy abnormal detection performance as well.

4.3. Analysis of the Filters in the LM-LBP Filter Bank and the Size of the Texton Dictionary

This section summarizes the experimental study we conducted to show the soundness of the

selection of filters in the LM-LBP filter bank and the size of the texton dictionary.

4.3.1. Analysis of filters in the LM-LBP Filter Bank—We tested all filter

combinations of LM filter bank with four LBPs to find the best combination of filters for

WCE and colonoscopy abnormal image detection. It was found that the best abnormal

detection can be obtained when all 48 filters in the LM filter bank and four LBPs are

combined. The same trend was seen for both WCE and colonoscopy. We conducted this

experiment by creating an IBD with 128×128 image blocks and the KNN classifier for each

filter combination. Table 13 outlines the average performance of each of those IBDs for both

WCE and colonoscopy. Table 13 clearly shows the necessity to use all filters in the LM

filter bank and the four LBPs. In terms of the recall, full LM-LBP filter bank is 10% to 25%

and 2% to 6% better compared to other filter combinations for WCE and colonoscopy,

respectively. In terms of the specificity, it is 2% to 6% and 2% to 4% better for WCE and

colonoscopy, respectively.

We analyzed the importance of each individual filter in the LM-LBP filter bank towards

abnormal image detection. For that we removed each individual filter from the 52 filters in

the filter bank and created IBDs with the remaining 51 filters. IBDs are created using

128×128 image blocks and the KNN classifier. To analyze the performance we introduce a

new measure called ‘g-mean’. The g-mean measure is defined as given in Equation (5).

(5)
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The g-mean value gives a combined performance of recall and specificity. Larger g-mean

values imply larger values for both recall and specificity. Column graphs that are shown in

Fig. 16 demonstrate the performance in terms of g-mean measure of each of those IBDs for

both WCE and colonoscopy. In Fig. 16, lower g-mean indicates a greater significance of the

filter to the filter bank. In Fig. 16(a) and 16(b), the column 0 represents the case with no

filter is removed. Table 14 summarizes the top 5 most important filters in the LM-LBP filter

bank for WCE and colonoscopy abnormal image detection.

Several variants of LBPs can be found in the literature. We experimentally verified our

selection of LBPs over the other variations of LBPs. Our LBPs are based on the original

LBP operator proposed in [12]. We compared the performance of the original LBPs with

rotationally invariant LBPs [12], local ternary patterns (LTP) [34], and local derivative

patterns (LDP) [35]. We tested each LBP variant by creating IBDs with 128×128 image

blocks and the KNN classifier. A bank of four rotationally invariant LBPs with (P = 4, R =

1.0), (P = 8, R = 1.0), (P = 12, R = 1.5), and (P = 16, R = 2.0) was implemented as put

forward in [12]. Our LTPs are based on the proposed method in [34] where we created a

bank of four LTPs with threshold values of 5, 10, 15 and 20 [34], respectively. Each

threshold provides two LTPs as stated in [34] and hence our LTP filter bank has 8 LTPs. A

bank of three LDPs with order 1, 2, and 3 was created for the testing using the method

proposed in [35]. For that we adopted the code provided in [36]. All three banks of

rotationally invariant LBPs, LTPs and LDPs are corresponding to the best performance

provided on our dataset. The outcomes from the experiment are presented in Table 15. Table

15 proves our selection of bank of four original LBPs over the other variants of LBPs. The

performances of the rotationally invariant LBPs and LTPs are somewhat closer to the

original LBPs whereas the performance of LDP is relatively low for both WCE and

colonoscopy. Further, the simplicity of original LBPs compared to other three LBP variants

helps to achieve a slightly lower computational cost in the proposed method.

4.3.2. Analysis of the Size of the Texton Dictionary—The size of the texton

dictionary plays an important role in delivering high abnormal detection performance while

keeping the computational cost to a minimum. The number of textons in the texton

dictionary is the number of bins in the texton histogram (see Section 3.3.1). As a result when

the number of textons in the texton dictionary increases the computational cost also

increases. Therefore, we must ensure that the number of textons created for each texture is

not that high. As mentioned in Section 3.3.2, we determine the number of textons for each

texture using the k-means clustering algorithm. The ‘k’ value (i.e., number of cluster

centers) used for k-means clustering is the number of textons from each texture. We

investigated the effect of the k value using two separate experiments for abnormal and

normal textures. To verify the selection of the ‘k ‘value (i.e., number of textons) for

abnormal textures, we conducted one experiment by varying the ‘k’ value for abnormal

textures while fixing the ‘k’ value to 5 (in the second stage) (see Section 3.2.3) for normal

textures. In the other experiment, we varied the ‘k’ value (in the second stage) for normal

textures while keeping the ‘k’ value for abnormal textures to 20. First we generated texton

dictionaries for each different ‘k’ value. Using the texton dictionaries we created IBDs with

the LM-LBP filter bank, 128×128 image blocks and the KNN classifier. We calculated the
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g-mean for each of the IBD for both WCE and colonoscopy. Table 16 and 17 show the

results of the two experiments. When Table 16 is analyzed, no major improvement in the g-

mean value can be seen for ‘k’ values above 20 for both WCE and colonoscopy. Even we

can see a drop in the g-mean after k = 40 for WCE and after k = 30 for colonoscopy. Hence

we decided to use a ‘k’ value of 20 in the k-means clustering (i.e., number of textons) for

each abnormal texture in an attempt to reduce the execution time. Table 17 shows that ‘k’

value for each normal texture can be as low as 5. For the ‘k’ values above 5, we do not see

any significant improvement in the g-mean. This is very essential as the size of the texton

dictionary gets very big when the ‘k’ value for normal textures increases. For instance, when

k = 20 for normal textures, it produces a texton dictionary of size 290 for WCE compared to

a texton dictionary of size 130. This would increase the execution time more than twice of

the execution time for the texton dictionary with 130 textons.

5. Concluding Remarks

Distinguishing abnormal images such as erythema, blood (bleeding), ulcer, erosion, and

polyp from normal images in endoscopy videos is a major concern when a gastroenterologist

reviews the videos. It is reported that the reviewing takes very long time, which limits its

general application and incurs considerable amount of healthcare costs. In this paper, we

propose a novel multi-texture analysis method for multiple abnormality detection in

endoscopy videos. It is apparent that color and shape based approaches provide very limited

support in detecting abnormalities such as erythema, ulcer, erosion, or polyp since they do

not possess any unique color range or common shape information. When endoscopy images

are closely analyzed, we notice that each abnormality has a unique texture that can be

distinguishable from normal ones using an advanced texture analysis method. We found that

variety of normal textures can be divided into a handful of textures. We represent these

textures as “textons” and propose a new filter bank called LM-LBP to generate the textons.

We created a model called Image Block Dictionary (IBD) including a trained KNN

classifier, which can classify an image block based on its distribution of textons (i.e., texton

histogram). To classify an image, we divide it into blocks. These image blocks are classified

as either abnormal or normal blocks using the generated IBD. If the abnormal block count is

greater than a certain threshold value, the image is classified as an abnormal image.

Otherwise, it is classified as a normal image. The proposed method was tested with two of

the most popular endoscopy methods: wireless capsule endoscopy (WCE) and colonoscopy.

We found that our IBD (LM-LBP,128, KNN) provides the best classification accuracy for

both WCE and colonoscopy videos used in the study. The IBD (LM-LBP, 128, KNN) based

abnormal image detection achieves 92.0% recall and 91.8% specificity. Corresponding

recall and specificity for colonoscopy videos are 91% and 90.8%, respectively.

The advantage of the proposed method over existing methods is that one scheme finds

multiple abnormalities. The LM-LBP filter bank has the ability to generate a unique set of

textons for each chosen texture. In this study we have introduced the concept of filter banks

for multiple abnormality detection in endoscopy. To verify this, we have presented a broad

experimental study which proves the applicability of the proposed LM-LBP filter bank over

the other existing filter banks and the related methods. In the future, we will improve the

accuracy for ulcer-erosion detection in WCE videos, and detect more abnormalities such as
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angioectasia (in WCE) and ulcers (in colonoscopy). Moreover improving the computational

cost is one of our major future works. The computational cost of the method was not a focus

in this work. Most computationally intense part of the proposed method is the convolution of

image blocks with the LM-LBP filter bank. We aim to speed up the process by using GPU

computing capabilities.
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Fig. 1.
Sample WCE and colonoscopy abnormal and normal images. (a) WCE erythema, (b) WCE

blood, (c) WCE polyp, (d) WCE ulcer, (e) WCE erosion, (f) colonoscopy polyp, (g) – (i)

WCE normal images, and (j) – (l) colonoscopy normal images. In abnormal images, an

abnormal area is manually marked inside a rectangle.
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Fig. 2.
An overview of the proposed abnormal image detection method.

Nawarathna et al. Page 27

Neurocomputing. Author manuscript; available in PMC 2015 November 20.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 3.
Sample abnormal image textures from WCE and colonoscopy. For every abnormal texture,

top row shows the original image texture and bottom row shows the normalized image

textures. Blue rectangles point to the exact abnormal texture region. For training stage 1

(i.e., texton generation), we extract the regions shown using blue rectangles.
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Fig. 4.
Filters in the LM filter bank. a) 18 first derivative of Gaussian filters with three scales and

six orientations, b) 18 second derivative of Gaussian filters with three scales and six

orientations, c) 8 Laplacian of Gaussian filters, and d) 4 Gaussian filters.
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Fig. 5.
Four LBPs with different P and R values. In a), b), c) and d), (P, R) values are (4, 1.0), (8,

1.0), (12, 1.5), and (16, 2.0), respectively.
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Fig. 6.
A summary of the training stage 1: Textons and their dictionary generation.
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Fig. 7.
Two examples of abnormal image block extraction. a) An image with ulcer in WCE, b) an

image block (128 by 128 pixels) of ulcer from a), c) an image with polyp in colonoscopy,

and d) an image block (128 by 128 pixels) of polyp from c).

Nawarathna et al. Page 32

Neurocomputing. Author manuscript; available in PMC 2015 November 20.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 8.
A summary of the training stage 2: Generating the IBD.
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Fig. 9.
A summary of the detecting stage.
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Fig. 10.
a) Average recall and b) average specificity analysis of 36 WCE IBDs.
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Fig. 11.
Comparison of recall values of a) erythema, b) blood, c) polyp, d) UE and e) other normal

textures for 36 WCE IBDs.
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Fig. 12.
Comparison of specificity values of a) erythema, b) blood, c) polyp, d) UE and e) other

normal textures for 36 WCE IBDs.

Nawarathna et al. Page 37

Neurocomputing. Author manuscript; available in PMC 2015 November 20.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 13.
Performance comparison of the proposed method with LBP and Gabor filter banks based

methods for WCE abnormal detection using a) ROC, and b) precision-recall plots.
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Fig. 14.
Comparison of a) recall and b) specificity values of polyp texture for each IBD. Specificity

of value of polyp texture is the same as the recall value for normal texture.
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Fig. 15.
Performance comparison of the proposed method with LBP and Gabor filter bank based

methods for colonoscopy abnormal detection using a) ROC, and b) precision-recall plots.
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Fig. 16.
Analysis of individual filters in the LM-LBP filter bank for a) WCE and b) colonoscopy. X-

axis represents the number of the removed filter. Zero represents the case where no filter is

removed (i.e., full LM-LBP filter bank).
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Table 2

Normal and abnormal textures of WCE and colonoscopy.

WCE Colonoscopy

Normal Texture Abnormal Texture Normal Texture Abnormal Texture

Before Stomach Erythema Blurry Polyp

Stomach Type I Blood Colon with Folds

Stomach Type II Polyp Colon with Blood vessels

Stomach Type III UE (Ulcer-Erosion) Colon without Blood vessels

Small Intestine Type I Colon with Lumen

Small Intestine Type II Stool

Colon Type I Specular Reflection

Colon Type II Water

Stool

Specular Reflection
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Table 4

Accuracy metrics.

Actual Texture
Predicted Texture

Positive Negative

Positive TP FN

Negative FP TN
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Table 7

Evaluation of the WCE abnormal image detection with IBD No. 34 (LM-LBP, 128, KNN).

Abnormal Block Threshold P R S A

4 52.8 94.0 79.0 82.0

5 73.6 92.0 91.8 91.8

6 79.4 85.0 94.5 92.6
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Table 11

Evaluation of colonoscopy abnormal image detection with IBD No. 34 (LM-LBP, 128, KNN).

Abnormal Block Threshold P R S A

3 50.5 95.0 76.8 80.4

4 71.1 91.0 90.8 90.8

5 79.2 84.0 94.5 92.4
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Table 12

Confusion matrix of colonoscopy abnormal image detection for the abnormal block threshold = 4.

Actual/Predicted Polyp Normal

Polyp 91 9

Normal 39 361
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Table 14

Top five most important filters in the LM-LBP filter bank (See Section 3.2.1 for details on each filter)

WCE Colonoscopy

Filter No. Description Filter No. Description

21
Second derivative Gaussian filter with  and
orientation = 60°

7 First derivative Gaussian filter with σ = 2 and
orientation = 0°

11 First derivative Gaussian filter with σ = 2 and orientation
= 120°

24
Second derivative Gaussian filter with  and
orientation = 150°

42 Laplacian of Gaussian filter with σ = 6 50 Local binary pattern with P = 8 and R=1

2
First derivative Gaussian filter with  and
orientation = 60°

30 Second derivative Gaussian filter with σ = 2 and
orientation = 150°

51 Local binary pattern with P = 12 and R=1.5 42 Laplacian of Gaussian filter with σ = 6
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Table 16

Effect of the ‘k’ value of the k-means clustering for abnormal textures (i.e., number of textons for each

abnormal texture in the texton dictionary). The ‘k’ value is fixed to 5 for normal textures.

k (number of textons for each abnormal
texture)

Size of the texton dictionary (Number of
bins in the texton histogram) G-mean for WCE G-mean for Colonoscopy

10 WCE-90, Colonoscopy-50 89.6 94.4

20 WCE-130, Colonoscopy-60 94.1 96.6

30 WCE-170, Colonoscopy-70 94.4 97.3

40 WCE-210, Colonoscopy-80 94.8 96.5

50 WCE-250, Colonoscopy-90 93.2 95.3

60 WCE-290, Colonoscopy-100 91.1 93.8
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Table 17

Effect of the k value of the k-means clustering for normal textures (number of textons for each normal texture

in the texton dictionary. The ‘k’ value is fixed to 20 for abnormal textures.

k (number of textons for each normal
texture)

Size of the texton dictionary (Number of
bins in the texton histogram) G-mean for WCE G-mean for Colonoscopy

5 WCE-130, Colonoscopy-60 94.1 96.6

10 WCE-180, Colonoscopy-100 94.2 97.0

15 WCE-230, Colonoscopy-140 95.0 96.8

20 WCE-280, Colonoscopy-180 95.6 96.7

Neurocomputing. Author manuscript; available in PMC 2015 November 20.


