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ABSTRACT

Recent years have witnessed the explosion of online social
networks (OSNs). They provide powerful IT-innovations for
online social activities such as organizing contacts, publish-
ing contents, and sharing interests between friends who may
never meet before. As more and more people become the
active users of online social networks, one may ponder ques-
tions such as: (1) Do OSNs indeed improve our sociability?
(2) To what extent can we expand our offline social spectrum
in OSNs? (3) Can we identify some interesting user behav-
iors in OSNs? Our work in this paper just aims to answer
these interesting questions. To this end, we pay a revisit to
the well-known Dunbar’s number in online social networks.
Our main research contributions are as follows. First, to
our best knowledge, our work is the first one that systemat-
ically validates the existence of the online Dunbar’s number
in the range of [200,300]. To reach this, we combine using
local-structure analysis and user-interaction analysis for ex-
tensive real-world OSNs. Second, we divide OSNs users into
two categories: rational and aggressive, and find that ratio-
nal users intend to develop close and reciprocated relation-
ships, whereas aggressive users have no consistent behaviors.
Third, we build a simple model to capture the constraints of
time and cognition that affect the evolution of online social
networks. Finally, we show the potential use of our findings
in viral marketing and privacy management in online social
networks.

Categories and Subject Descriptors

J.4 [Computer Applications]: Social and behavioral sci-
ences

General Terms

Human Factors, Measuresment

Permission to make digital or hard copies of all or part of thvork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

Keywords

Online social networks, Dunbar’s Number, User Behavior,
Network Evolution Modeling, Viral Marketing, Privacy

1. INTRODUCTION

In this day and age, the online social sites, like Face-
bool«:ﬂ7 Livejournaﬂ7 MySpaceE and etc., provide people with
a new powerful means to communicate and interact with
each other. Through these sites, users can share blogs, pho-
tos and current statuses. They can consolidate friendships
in the real-world by exchanging information online and es-
tablish new virtual friendships with others in the same site.
It is these sites that lead to the formation of a new kind
of social network, which is called the online social network.
Indeed, with the thorough development of online social sites
in the recent decade, the online social network has become
an essential part of our daily life and is changing our social
behaviors potentially. At the same time, different from the
traditional real-world social network, the electric communi-
cation data of the online social network is relatively easy
to collect[5]. Besides, compared with the real-world social
network, its scale is huge. So it is reasonable to conjecture
that this new form of network would give many inspirations
to the previous recognition of the social networks.

Through coupling the number of friendships and the size
of the neocortex in primates, Dunbar found humankind can
only maintain as many as 150 friendships effectively[6]. And
the number 150 is then called the magic number in social
networks. In our experience of using online social networks,
we can easily find that some users have extremely large num-
ber of friends, much more than 150, while others keep only
an averaged level of friends. We believe it is the online mech-
anisms that facilitate the formation of high-degree nodes,
since friends making is so convenient that only requires an
invitation to be added as a friend and an acceptance. There-
fore we may cast doubts on whether online social networks
deviate from the constraint of Dunbar’s number. To ver-
ify the doubts, it is necessary to investigate the following
questions:

e Does there still exist a magic number in online social
networks as Dunbar’s number in the real-world social
networks?
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e If it exists, what’s its value and how it generates?

e How it changes things?

In this paper, we aim to answer the above questions through
the analysis on several datasets coming from some online so-
cial sites. By observing many local measures, we conclude
that there exists a new magic number pervasively, which is
in the range of 200 and 300, greater than 150 found previ-
ously in real-world social networks. We also validate this by
investigating the traces of interaction between many users in
online social sites. We find through our observations that al-
though the online social sites provide us many easier ways to
maintain online friendships effectively, there is still an upper
limit on the number of substantial and meaningful friends.
Furthermore, we believe that users can be distinguished by
the magic number and they exhibit different behaviors and
attitudes, respectively.

Given the fact that many current models cannot interpret
these phenomena, we present a new simple model to inter-
pret how the magic number in online social networks gen-
erates. Finally, we think this number is insightful to guide
the viral marketing strategy and user privacy management.
For instance, hub nodes may not be effective choice in vi-
ral marketing, and certain users call for a detailed privacy
setting mechanism.

The rest of the paper is organized as follows. In Section 2]
some related works will be introduced. In Section Bl we will
define some local and global measures used in the following
analysis. Our observations and findings will be depicted in
Section[dl In Section[B] we present a new model to interpret
the new upper limit existing pervasively in online social net-
works. We also give a talk about the business insights about
the new magic number in Section Finally, we conclude
this paper in Section [

2. RELATED WORK

Our study is related to the work in three areas: the phe-
nomenon of Dunbar’s number, measurement analysis of on-
line social networks and social network modeling.

2.1 The phenomenon of Dunbar’s number

By investigating the relationship between neocortex size
and group size in primates, Dunbar[6] predicted the number
of group size in human beings was 150, which was notable as
Dunbar’s number. According to him, human beings can only
maintain a small fraction of relationships within the circle of
Dunbar’s number, and other relationships beyond that circle
are not reciprocated or personalized. Dunbar’s number tar-
gets on real-world social networks when first put forward.
However, recent works in online social networks have dis-
played similar interesting observations [I} [7]. Roberts et al.
pointed out that time spent using social media, including
online social sites, was not associated with larger offline net-
works [20]. Potential time and cognitive constraints were
also considered in their work. Other work of online social
networks related to Dunbar’s number will be further dis-
cussed in Section

2.2 Measurement analysisof onlinesocial net-
works
Recently, researchers have done intensive study in online
social networks. They measured the property of online so-
cial networks from different perspectives. Phenomena such

as small world, power-law, high clustering, assortativity have
been observed in different social sites, which are believed to
be the common properties of online social networks. Ahn
et al. studied the largest online social networks Cyworld
in South Korea[l]. They experimented on the whole data
of Cyworld and discovered some unique characters of this
site. They found an interesting phenomenon that most user
connections were not active and attributed it to Dunbar’s
number. Mislove et al. used data from Flickr, YouTube,
LiveJounal and Orkut, conducting measurement analysis in
a large scale[I7]. They incorporated various complex net-
work measurements such as degree distribution, clustering
coefficients, degree correlations, connected core etc. in the
research. Golder et al. analyzed Facebook users in North
American colleges or universities[7]. Their results on degree
distribution showed that the number of people who have few
hundreds of friends remained stable, but it started to drop
sharply once the friends number exceeded 250, which also
coincided with Dunbar’s number.

2.3 Social networks modeling

Although Small-World[24] and BA[2] network models lay
a foundation for the complex network, these two models can-
not explain all the phenomena of different types of real net-
works. As for social networks, multiple models have been
proposed to fit their particular properties. Holme and Kim
added a “triad formation step” beyond BA model(HK), i.e.
establishing edges between neighbors of a node[11]. David-
sen et al. imported a similar process in their DEB model[4].
This process in fact corresponds to the real-world social
network situation, as people are easily introduced to meet
friends of their friends and build up connections. Both net-
works generated from HK and DEB have power-law and high
clustering properties. Jin et al. carefully studied the princi-
ples of social network formation, and proposed a social net-
work model (JGN)[I3]. JGN also considered the influence
of mutual friends, cost of friend maintenances and the maxi-
mum connections. JGN and HK are the two early models to
generate social networks, and they both grasp the core prin-
ciple to generate networks-“transitivity”. Thus many suc-
cessive models inherit the idea of “transitivity” from them.
The models mentioned above mainly focus on the real-world
social networks, while online factors are not taken into ac-
count. Although online social networks have gained pop-
ularity in recent research, the work to model this kind of
network is still quite insufficient. Yuta et al. pointed out
that the cost of online friend maintenance was much lower,
and they extended CCN|[22] by adding a process of random
linkage to form a new model CCNR|[25]. Bonato et al. also
adopted transitivity in their model ILT[3].

In summary, almost all the social network models, no mat-
ter online or offline, adopt the rule of transitivity in various
forms. And the networks generated by these models com-
monly have the feature of high clustering due to this fact.

3. PRELIMINARIES

In this section, we depict definitions of some critical global
and local measures which we would use in the following sec-
tions.

An online social network can be intuitively modeled as a
graph G(V, E), where V is the set of users and FE is the set of
ties. For the reason that establishing a new tie usually needs
mutual permission in online social sites, G is undirected.



Generally, the number of a node’s friendships can be defined
as its degree. The averaged degree of the network can be
defined as

_2E|

kmaz is the maximum degree among all the nodes and knin
is the minimum degree. p(k) is the degree distribution of
the graph and for online social networks, it is always power-
law. Usually, the complementary cumulative distribution
function (CCDF) is used to characterize this.

Clustering coefficient of a node is used to characterize how
closely its neighbors are connected. It can be defined as

2| E;

where FE; is the set of ties between i’s neighbors and k; is
the degree of i. For the case of k; = 1, we set C; = 0 in this
paper. Then the averaged clustering coefficient of the nodes
with degree k£ can be defined as
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The averaged clustering coefficient of the network can be
defined as

C(k)
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== 4
c 4 (4)
The averaged clustering coefficient of the social network is
always higher than the technical network.

The averaged degree of a node’s neighbors, denoted as
knn, is always used to depict the assortativity of the net-
work. If the network is disassortative, the nodes with low
degree is preferentially connected to ones with high degrees,
then k., will decrease with the increment of the degree.
Contrarily, the nodes will be connected to those with similar
degrees when the network is assortative. The social network
is usually thought to be assortative. Here we define i’s ky»
as
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Similarly, the averaged k., of the nodes with degree k can
be defined as

_ Z{iev\ki:k}k;'m ©6)
T i eV =kY

It can be divided by kmaz to be normalized.

K-shell (k-core) index, denoted as ks, is usually used to
characterize how far is a node away from the core of the
network. For instance, greater value of ks means the node
is closer to the core. It can be obtained through the fol-
lowing method [14]. First, remove all the nodes with degree
k = 1. After this stage of pruning, there may appear new
nodes with k = 1. Then keep on pruning these nodes, as
well, until all nodes with degree k = 1 are removed. ks of
the removed nodes will be set to 1. Next, we repeat the
pruning process in a similar way for the nodes with degree
k = 2 and subsequently for higher values of k until all nodes
are removed. In [I4], it is found that in many networks, in-
cluding online social networks, high-degree nodes may have
low ks, indicating that those nodes were at the periphery of
the network. The averaged k-shell index of the nodes with

Knn (k)

degree k can be defined as
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where k! is the k-shell index of i.

The strength of a tie between two nodes in a social net-
work is usually defined as the overlap of their friends [, [12].
It means the more common friends they share, the more
familiar they would be. In online social networks, sharing
more common friends usually means they are geographically
close to each other, or share the same profiles, or interact
more frequently online. Online friends with a big value of
tie strength may have a higher probability to be friends in
offline social networks. We define the strength of tie between
i and j as

_ Cij
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where ¢;; is the number of common friends between node
¢ and j, k; and k; is the degree of ¢ and j, respectively.
Based on the definition of tie strength, we can also define
the strength of a node as the averaged strength of all the
ties connected to it. It is
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Then we can define the averaged strength of the nodes with
degree k as
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4. A NEW MAGIC NUMBER

In this section, we start from some observations on the lo-
cal measures of a sampled online social network from Face-
book. By coupling the variation of local measures with
the increment of the degree, we discover an interesting phe-
nomenon. Then we find this phenomenon pervasively exists
in other online social networks. We summarize these ob-
servations to formulate our conjectures. In the end of this
section, we also validate them by investigating the real trace
of online interactions between users.

4.1 Theturning point on local measures

The sample dataset we use comes from [23] and it is
publicly available. This dataset is a snapshot of Facebook
network in the city of New Orleans, so we denote it as
NewOrleans. It contains 63292 nodes and 816886 ties. Its
kmae = 1098, kmin = 1, (k) = 25.8 and C = 0.22.

We firstly analyze the measurement of degree distribution
for the NewOrleans network. As shown in Figure [l we sur-
prisingly find a gentle slope in the interval between [0,200]
in the degree distribution. Unlike a straight line in typical
power-law, an turning point obviously appears and power-
law only exists in the tail.

We calculate the fraction of users in the gentle slope inter-
val and find more than 94% users are in it. Why most users
are so “crowded” in this narrow interval while the number of
users begin to drop dramatically beyond the interval?

In fact, similar degree distribution has already been ob-
served by Golder et al. in [7]. The turning point in their
dataset approaches 250, and they argue that it is because



Figure 1: Degree distribution of NewOrleans

friendship in Facebook cannot completely represent conven-
tional friendship. Nevertheless, they did not further explore
the problem to give a more detailed explanation.

To sum up, node degree k € [200, 300] denote a threshold
value, and distributions are different in the two sides of it.
By revealing the threshold, we may want to know whether
there are any hidden facts lay behind it. To recall Dunbar’s
number mentioned in Section 2] we can see the threshold
is not far from Dunbar’s number 150. So does Dunbar’s
number play a vital role in this phenomenon? Does it exist
or shift to a new magic number in online social networks? To
provide more concrete evidences to explain the phenomenon,
we observe how C(k), knn(k) and w(k) related with k in
this network to see whether turning point also appears in
these measurements, and we conclude our observations and
remarks as follows.

Observation 1. We plot the distribution of clustering
coefficient, as shown in Figure C (k) steadily decreases
with the increment of k at first, however, when k exceeds
a certain threshold in the region of [200,300], the speed of
decrement apparently raises. Therefore the turning point
also exists in C'(k) with almost the same value in the degree
distribution. Here we simply denote it as kr and kr €
[200, 300].

Remark 1. Clustering coefficient reflects the connec-
tions among neighbors of a node. High clustering coef-
ficient indicates tightly connected neighborhood. In view
of Observation 1, we can conclude that users with lower
degrees(k < kr) have a well connected neighborhood, i.e.,
quite a large fraction of these users’ friends are acquainted
with each other. It’s not hard to explain this in the real so-
cial networks, as a person always get acquainted with some
strangers through one of his friends. The behavior of meet-
ing friends’ friends is even strengthened in online social net-
works since it enables users to meet others with no restric-
tion in time and space. For instance, Facebook users will
receive notifications in their News Feed when their friends
establish friendship with another user, and they can click
“add as friend” to become friends as well. Moreover, almost
all the social sites provide the feature of Common Friends,
which lists the other users having common friends with you.
It is this form of friends making mechanisms that leads to
a denser network for lower-degree users. On the contrary,
things cannot hold true for the users with high degrees. The
averaged clustering coefficient drops to a very low point,
meaning that although these users have hundreds of friends,
they do not know them well indeed. In consequence, we

believe that most friends of these users seldom make new
friends by way of them, making them have loose neighbor-
hoods. It seems that users are divided into two types by
the turning point kr, with one type of users positioned in
an acquaintance network and maintaining some meaning-
ful connections, and the other type of users keeping some
formalized relationships.

Observation 2. Figure displays the distribution of
degree correlations, the trend of which can represent the
assortativity of the network. It’s interesting to find there is
a positive trend within k7, and then knn (k) scatters with a
slight negative trend beyond that. The same trend of knr (k)
has also been observed in Mixi, an online social site in Japan
[25].

Remark 2. The positive trend of kn» (k) at the first stage
is consistent with the assortativity property of the offline so-
cial networks [I9]. In this stage, nodes tend to connect to
those with similar degrees. However, the negative scattering
in the range [200, 300] shows that the network transforms to
a disassortative network. That is to say, for the users with
degrees higher than k7, they are not preferentially connected
to the nodes with similar degrees. Results in Observation
2 suggest that users on the two sides of the turning point be-
have differently in establishing friendships. On the left side,
users are prone to connect other users with similar number
of friends, while users on the right side may randomly add
large amount of friends without much consideration. The
results from degree correlations provide another evidence to
prove the distinction of users in online social networks.

Observation 3. It is easy to find that there exists an
turning point in Figure still within the value kr. Be-
fore reaching the turning point, w(k) steadily remains a high
value with slight increment as k grows, but it begins to de-
crease when k is higher than k7.

Remark 3. The previous work [I2] has shown that in
social networks, like mobile communication network, the
tie strength w;; between node ¢ and j is strongly related
with the frequency of interaction between users. It is also
found that in online social networks, nodes with more mu-
tual friends tend to trust each other and share more simi-
lar interests [I7]. So the averaged tie strength w; of user i
can imply the overall quality of relationships with friends to
some extent. View from Observation 3, users with degrees
lower than kr keep a high tie strength value, suggesting that
these users maintain friendships with high quality. In con-
trast, for users with degrees higher than kr, their strength
is weak and become even weaker with the increment of k.
Then we infer that among their friendships, some are frag-
ile and not trusted. In the online social sites, this situation
possibly corresponds to the following scenarios:

e High-degree users are really popular to attract a lot of
low-degree nodes to add them as friends. For example,
they can be a movie star, a notable scientist or even a
famous enterprise, etc. However, they do not commu-
nicate with those “new” friends frequently. Therefore
the ties between them become weak and some may
even vanish eventually.

e It’s human nature to pursue for prestige in the soci-
ety, while the forms may be different. Some people are
eager to gain popularity by randomly sending thou-
sands of invitations to be added as friends in online
social networks. They can probably acquire thousands
of online friends as time goes by, however, most of
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Figure 2: The variations of local measures for NewOrleans.

the relationships are of no meaning and the number of
shared friends is certainly quite small.

We surprisingly find that the same turning point appears
in all the measurements, coinciding with what we’ve found
in the degree distribution. Based on the above observations
and remarks, we can conjecture that in the dataset we used,
there does exist a threshold kr € [200,300]. As a mat-
ter of fact, this magic threshold distinguish users by their
variations of the local topological properties in online social
networks. Furthermore, we have found that users’ online
behaviors can be characterized by these properties.

As Dunbar’s number implies, an individual could not main-
tain more than 150 friendships in the real world effectively
because of the time and cognitive constraints. We unveil
in the previous observations that users beyond the turning
point behave quite differently. They keep loose neighbor-
hood with only a few friends knowing each other, and they
randomly connect to users of different degrees or demograph-
ics with no preference; more importantly, the weak averaged
tie strength of these users indicates poor relationships with
their friends. It seems that the turning point k7 plays a sim-
ilar role in online social networks as Dunbar’s number in the
real society due to these facts. Although it is at low cost to
make new friends and maintain friendships in online social
networks, the number of friendships one can handle is still
limited. In view of this, we infer that the turning point kr
is just the upper limit of well maintained online friendships,
and users can be divided into two categories based on this
point.

Online social networks has gained so much popularity in
the worldwide. However, people’s attitude towards it grad-
ually changes with more intensive use. In this day and age,
logging in your Facebook account is not purely for enter-
tainment but transforms into a habit and everyday life, just
like checking out your emails or browsing a web page. Many
users become rational in using social sites, as they carefully
maintain a well connected neighborhood, most of which are
“cloned” from their offline social networks. So the motives
of using online social networks for the so called “rational
users” become as simple as maintaining friendships. They
stick to this new form of friendship maintenance because it
shortens the distance between friends, as they can be in-
formed of what is happening to their friends through the
news feed with no geographic constraints. In fact, “ratio-
nal users” corresponds to the users within k7. Nonetheless,
users beyond the threshold denote another type of users. We
define them as “aggressive users” as they aggressively accu-

Table 1: Datasets

Dataset 4 |E| kmaax (k) C
Georgetown 9388 425619 1235 | 90.67 | 0.22
Oklahoma 17420 892524 2568 | 102.47 | 0.23
Princeton 6575 293307 628 89.22 | 0.24
UNC 18158 766796 3795 | 84.46 | 0.20
Livejournal | 5203764 | 48709773 | 15017 | 18.72 | 0.27

mulate large amount of friends while most relationships are
inactive and lack of interactions.

However, we draw our conclusions only from one dataset of
Facebook so far. Does the magic threshold exist in other on-
line social network samples? Or if it exists, do users behave
distinctively on the two sides of the threshold? In the next
section, we employ more datasets, either larger or smaller,
to further discuss these issues.

4.2 Pervasiveness

In this section, in order to prove the ubiquity of the phe-
nomena we found above, we import another five datasets of
online social networks. The first four datasets are provided
by [21] and are all publicly available. The four datasets are
the complete Facebook networks whose ties are within four
American universities. The four universities are Georgetown
University(Georgetown), Princeton University(Princeton),
University of Oklahoma(0Oklahoma) and University of North
Carolina at Chapel Hill(UNC), respectively. The fifth data set
was collected from Livejournal, denoted as Livejournal. It
is also public to the research community[I7]. The detailed
descriptions of these datasets are listed in Table [Il

Next, we perform the same measurements on these five
datasets as on NewOrleans. Just as shown in Figure [3] for
all the measures, including CCDF, C(k), knn (k) and w(k),
there still exists a threshold k7 € [200, 300], which is inde-
pendent to |V|. Especially, in the dataset of Livejournal,
the size of the network is as many as five millions, however,
the kr is still in the range between 200 and 300.

In addition, as users’ demographic data is provided in
the datasets of Georgetown, Oklahoma, Princeton and UNC,
we can conduct experiment to examine the homophily[16]
property in the network. In these datasets, we investigate
the homophily in the following contexts, including student
or faculty flag, gender, major, second major, dorm, year
of enrolling and high school. The attribute vector for a
node can be defined as Hi(al, a},al, al,a, al, al, ab), where
ai(l = 1,2,...,7) corresponds to the above properties se-
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Figure 3: Results from other datasets.

quentially. we define binary distance for each attribute ,
which means, || af — a] ||= 1 when a} # a], otherwise,
| @i — a} ||= 0. Then the homophily distance between node
i and j can be defined simply as

dij =|| Hi — Hj 2= (11)

7 .
> llaj —af|2.
=1

The averaged homophily distance for node i can be defined
as

d; = Zje{i’s neighbors} dij

ki ’

where k; is degree of i. Then the averaged homophily dis-
tance for the nodes with degree k can be defined as

(12)
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Figure 4: Homophily property.

As shown in Figure [ there is an explosive increment of
H (k) beyond the same degree value k7. As H(k) measures

the similarity between users’ attributes, it convinces our in-
ference that “rational users” have an tendency to establish
friendships with their familiar friends in the real world, usu-
ally sharing some common demographics such as dorm, ma-
jor etc. While “aggressive users” are somewhat aimless to
add as many friends as possible, so the demographics vary
a lot.

Remark We confirm that our findings from the dataset of
NewOrleans are pervasively existing in online social networks
through the above observations. We even strengthen our
conjectures that many connections of “aggressive users” are
established with no substantial meaning by observing the
homophily property. That is to say, threshold phenomenon
is not a special feature of the sampled dataset, but a general
character of online social networks.

All the previous analysis, based on the six datasets, mainly
relies on the topological feature of the networks. However,
pure structural information cannot be so convinced to repre-
sent the interaction between users. So it is necessary to val-
idate our former conjectures through some real-world traces
of interactions, which will be introduced in the next subsec-
tion.

4.3 Validation

Generally, the interaction data flowing in the online so-
cial sites is hard to collect. Because there are always some
configurations of privacy protection in these sites. To our
best knowledge, we collect two datasets from [23] and [I§],
respectively. Both of the datasets are publicly available and
anonymized for research purpose. Besides, the two datasets
both come from Facebook.

The first dataset was collected from the Facebook net-
work in the city of New Orleans, which was related to the
dataset of NewOrleans mentioned in the previous sections.
They collected the publicly accessible profile pages and ab-



stracted the list of the “Wall” post. So we denote this
dataset as NewOrleans-Wall. “Wall” is a popular feature
of Facebook, through which a user can leave messages on
his friends’ profile pages and the friends can also reply him
by leaving messages, too. It is a classical and easy interact-
ing way in Facebook. The dataset covers as many as 46952
users.

The second dataset was collected through some Facebook
applications developed by the authors of [I8], denoted as

Facebook-Applications. They developed three popular Face-

book applications named as GotLove?, HUG and Fight-
ers’ Club, respectively. The authors collected about 3-week
traces starting from March 20, 2008. Here we only use the
data from GotLove? and HUG. In GotLove?, one node can
send ‘love’ to its friends. And in HUG, a user A can send
a virtual ‘hug’ to a friend B. The dataset from GotLove?
contains 642088 active users and the one from HUG contains
198379 active users.

Based on these traces of interaction in Facebook, we try
to relate the degree of nodes with their activity strength
and then to validate our previous findings. In the dataset of
NewOrleans-Wall, we define the node i’s activity strength as
the length of its list of the wall post, which can be denoted
as L;. The longer the list of the wall post is, the more
interactions between ¢ and its neighbors happen. Then the
averaged activity strength of the nodes with degree k can be
defined as

Lk = Zlevik=n bt
i€ Vik = B}

For the dataset of Facebook-Applications, we simply ex-
tract the number of ‘love’ or ‘hug’ the node 4 has sent (s;)
and received (v;). Then the reciprocation of a node 7, de-
noted as r;, can be defined as the ratio of v; and s;, i.e.,
r; = 7vi/s;. Then the averaged reciprocation of the nodes
with degree k£ can be defined as

(14)
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(15)

Figure 5: NewOrleans-Wall

Observation 1. Just as shown in Figure[d] as k increases,
L(k) increases quickly. However, when k reaches out of the
range [200,300], L(k) stops increasing and begin to fluctuate.
This is consistent with our former finding from the pure
topological data. The fluctuation of L(k) implies that some
of the users with degrees higher than the threshold kr have
shorter list of the wall post and their interaction remains in
a rather low level.

O GotLove?|]
+ HUG

10 10 10 10"

Figure 6: Reciprocation varies with k.

Observation 2. It is obviously shown in Figure [6] that
the reciprocation of the nodes approaches 1 when k < kr.
It means almost all the lower-degree users’ sent ‘love’ and
‘hug’ are reciprocated. However r(k) diverges when k > kr,
indicating that their interaction with friends is not symmet-
ric. As has been illustrated in Section [£1] users accumulate
many friends either because of popularity or eagerness for
prestige, thus we can infer that some are far below 1 since
these users’ behaviors are ignored by their friends, while
some are above 1 because they are popular enough to re-
ceive ‘love’ and ‘hug’ from many fans.

Remark The above experiments further validate our con-
jecture that there exists a degree threshold in online social
networks. If a user’s degree is higher than the threshold, the
user then cannot maintain all its online friendships well and
part of the friendships can be easily ignored by the friends
on the another end.

Summary Until now, by validating from the real-world
traces of user interactions online, we can reasonably con-
clude that there still exists an upper limit on the number of
the friendships in online social networks as Dunbar’s num-
ber in offline social networks. If users have more friends than
the limit, it is impossible for them to treat each tie equally.
Because of this, extraordinary dynamics will be bred when
the degree goes up to the limit. As a result, we see the phe-
nomenon that high-degree users keep overall relationships
of low quality. In a further step, we believe that users with
mediate degrees are “rational users” with the motivation to
maintain old friendships while users who have friends more
than the limit are likely to be “ aggressive users” seeking for
new friends always.

However, little attention has been paid to these phenom-
ena in many current models, and they could not interpret the
generation rule completely. So we aim to understand how it
generates by presenting a new model in the next section.

5. ANEW MODEL

In this section, we present a new model to interpret the
generation of the upper limit found in the previous sections.
We start from summarizing users’ online behaviors from pre-
vious observations and conclusions. Next we introduce an
inspiring model, and point out the imperfections to apply
the model to the situation of online social networks. Then
we incorporate the characters of users’ online behaviors to
propose the new model. At last we examine the properties
of our simulated network to compare with the real networks.

As has been discussed in Section [l users’ online friends



adding follows these rules:

1. When users first register in the sites, they tend to
search for their offline acquaintances, and the network
system would also recommend some friends based on
the user’s profiles. These friends become their initial
online contacts, and they provide the basis for further
friend making.

2. Even more conveniently than that in the real world,
users can set up connections with their friends’ friends
simply by viewing the friends list and choosing who
they already know to add as friends. Besides, some
sites also recommend friends’ friends to help users find
more friends online.

3. As is illustrated in previous sections, most users are
“rational users” to be trapped in a magic number circle.
After the number of friends is accumulated to a certain
upper limit, they would stop adding more friends; or
what’s worse, they may even reject others’ invitation to
be added as friends. While only a few of sociable users
jump out of the circle to become “aggressive users”,
they’d like to add as many friends as possible actively.
In fact, this process results in random linkage since the
“aggressive users” do not have explicit target users to
link to.

4. Though online friendship maintenance costs almost no
money or time, “unfriend” situation still exists. For ex-
ample, Section 1] implies that the ties between “ag-
gressive users” and their friends are fragile and can
vanish in some way. Moreover, social sites like Face-
book will “pull” all friends’ updates to the users’ news
feed; however, some users may be annoyed by contin-
ually receiving one specific friend’s message, thus “un-
friend” happens under this circumstance and the links
are removed.

In order to model the growth of social networks, Jin et
al. [I3] proposed two models based on three general prin-
ciples. First, the individuals tend to meet with those ones
who have one or more commons friends with them. Second,
acquaintances between the individuals who rarely meet de-
cay over time, which means some ties may vanish. Third,
there is a maximum degree limit for an individual. However,
features of the online social network are different from their
assumptions. For instance, the online social networks usu-
ally starts to evolve from a real-world social network. The
site will urge the user to invite their real-world friends to
the site or provide easy way to search them in the site. The
another difference is the limit of the degree. In their models,
a node can not have a higher degree than the maximum de-
gree. But in online social networks, the maximum value set
by the site may be high, like 5000 in Facebook or even more.
Because of this, their model can only control the maximum
degree of the nodes, but can not interpret the threshold de-
gree as we find. In addition, this is also worth to be noticed
that in their model, the constraints of time and cognition
are only associated with the control of maximum degree.
Given these imperfections, we try to model the online social
network based on the following assumptions:

e The network start to evolve from a existing social net-
work. Here, we simply start it from a BA network.
The network evolves only by adding or removing ties.

e New ties between nodes with common friends are pre-
ferred. However, for the nodes with degrees higher
than a threshold, the probability of tie be established
between its neighbors is lower.

e Some nodes may search and add a random node as a
friend.

e Some ties may vanish, especially for the nodes with
high degrees.

Guided by these principles, we present a simple model, called
BA — shift as follows:

e Step 1: load a BA network, denoted as BA(V, Ep),
where V' is the set of nodes and Fj is the set of original
ties.

e Step 2: In each time unit, perform the following ac-
tions:

— Action 1: Select a node ¢ with the probability

- ki(ki — 1) f (ki)
p(r) = )
@) > iev ki(k — 1) f(kj)
where k; is the current degree of i. Here we use

f(k:) to constrain the nodes with higher degrees
than the threshold k7. We define

1
f(kz) = eB(ki—kr) + 17

(16)

(17)

where (3 is a parameter to control the extent of the
constraint. If k; > 2, randomly select two of its
neighbors and establish a tie between them if they
are not connected in the earlier stage. Repeat this
action for

1
Ecz ki(ki — 1) (18)
i€V
times, where c is the speed of adding new ties.
— Action 2: Select a node ¢ with probability

(q) = ke +1
P 7zjev(kﬂ'+1).

If kg > 1, select one of its neighbors randomly
and remove the tie between them. Repeat this

action for
1
5 Z ki (20)
eV

(19)

times, where d is the speed of removing ties.

— Action 3: Randomly select a pair of nodes and
add a tie between them if they are not connected
originally. Repeat this action for |V|r times, where
r is the speed of adding linkage randomly.

e Step 3: If the current averaged degree of the network
reaches (k)maz, stop evolving and return the network.
Otherwise, increase the evolving time and then jump
to Step 2.

Remark 1. In the first step we choose to load a BA net-
work just because it is classical and simple. Many real-world
networks are found scale-free, including the social networks.

Remark 2. In the Step 2 Action 1, the nodes with higher
degrees will be selected to increase the closeness of the net-
work among their friends. However, when the node’s degree



is higher than the threshold kr, the probability of getting
selected will decrease sharply. It responds to the situation
that the nodes whose degrees have exceeded the threshold,
some of theirs online friendships would be weak and it is
hard for their neighbors to get acquainted through them.
This is the essential part of the model, which is different
from the others.

Remark 3. In the Step 2 Action 2, the nodes with higher
degrees will be selected easily to loose a random acquain-
tance. Because for the high-degree nodes, it is easy to ignore
some friendship for the constraints of time and cognition.

Remark 4. In the Step 2 Action 3, a pair of nodes will be
randomly selected and connected. It responds to the phe-
nomenon that some friendships are established casually in
online social sites. For instance, some users may search other
strange ones with common interests or just accept some un-
known invitations.

In the following simulations, we denote the network gener-
ated by the model as BA — shift(|V|, (k)maz, ¢, d, 7, B, kT).
The BA network we use contains 20000 nodes and 39973 ties
originally. As showed in Figure [T} it is easy to find for all
the local measures, including C'(k), knn (k) and w(k), there
exists an turning point near k7 = 200. This result is con-
sistent with the real-world datasets. However, for the BA
network, the variations of C'(k) and knn (k) keep decreasing
steadily with k, while w(k) just increases without any de-
scending tendency. In fact, compared with other models,
such as JGN and BA, BA — shift pays more attention to
understanding how the constraints of time and cognition af-
fect the evolution of online social networks. The aim of the
model is to unveil the generation of the threshold we find.
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Figure 7: BA—shift(20000, 20, 0.0005, 0.0005, 0.0001, 8,200)

Summary In this section ,we present a simple model to
interpret the generation of the upper limit. Compared to
Dunbar’s number, the value of the limit in online social net-
works is greater. We believe it will bring some impact and
insight to the current situation.

6. BUSINESSINSIGHTS

6.1 Onlineviral marketing

Thanks to the thorough growth of online social networks
in the recent decade, a new strategy for marketing has been
deployed. Nowadays we may often see some comments on a
particular product from our Facebook friends’ wall, or adver-
tisements may appear in the form of tweets from the people
we follow on Twitter. That’s indeed an instance of the online

viral marketing, as product information spreads from per-
son to person directly (word-of-mouth) within the networks
and influences people’s purchasing decisions. Viral market-
ing in online social networks may be quite effective as people
may seriously consider friends’ recommendations. However,
questions still remain on how to do it and where to start.
Leskovec et al. [I5] suggest that unlike epidemic spread-
ing models, high-degree nodes are not so influential in viral
marketing situation. This conclusion can be well supported
by our observations, since “aggressive users” with thousands
of friends only interact with a small group of friends. We
validate this in a further step by importing the measure-
ment of ks(k). As shown in Figure [ the averaged k-shell
value stops increasing and remains stable with slight fluc-
tuations after the threshold, meaning that the core effect
is not obvious for high-degree nodes. Just as illustrated in
[14], some high-degree users are wrapped by large amount
of low-degree users in the periphery, so that themselves are
also positioned in the periphery and play a trivial role in
spreading product information.
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Figure 8: Variations of k;(k) with k.

From what we have discussed in previous sections, we be-
lieve that due to the loosely connected neighborhood and
lacking of interactions, the messages sent out by the “ag-
gressive users” may be ignored easily. In contrast, “rational
users” are tightly linked to each other, and these users’ online
friends are largely covered by their offline friends. There-
fore they can be more trustful, and their messages would
be thought highly of by their friends. In consequence, their
friends may be induced by their purchasing suggestions and
behaviors.

6.2 Privacy management in online social net-
works

In order to guarantee a more authentic social network,
most online social sites require users to provide their authen-
tic personal information when firstly register in the sites.
However, this can arouse the concerns for users’ privacy is-
sues as users’ profile information such as ZIP code, gender
and birthday may be stolen for improper use [9].

At the same time, users have begun to recognize the ne-
cessities of privacy protection in online social networks, espe-

cially the “rational users”. Since these users have “moved” quite

a number of offline friends to the social sites, they regard the
social sites as personal space to interact with their friends,
so that the interaction can be quite private, even secret.
In view of this, current social sites such as Facebook has
already started to provide the service of privacy settings.



Users themselves can determine whether to reveal their in-
formation only to friends or to the public. In fact, friend-
ships are regarded as binary in this situation, that is to say,
all the private settings are equally effective to each friend-
ship. However, as shown in our discussions, users cannot
treat each tie equally. “rational users” indeed have different
attitudes toward their online friends, so they may desire for
a more detailed and flexible mechanism that enables them to
have different privacy settings for different groups of friends.

However, things are different for “aggressive users”. They
do not care too much about privacy, and instead they are
willing to disclose their information to more users in order
to gain popularity. Another particular phenomenon should
be noted is that there exist “spammers” in online social net-
works. “Spammers” disguise as “aggressive users”, usually
with fake profiles of celebrities, to establish so many con-
nections with the intention to carry out identity theft [10],
which is a great threat to online users. To detect such “spam-
mers”, we can examine its interaction records because they
only add friends but do not interact at all.

7. CONCLUSION

Just as unveiled in social networks, there is still a magic
upper limit on users’ number of friendships that they can ef-
fectively maintain in online social networks. Through abun-
dant experiments and validations, we conclude that users
with considerable circles of friends within the magic number
are “rational users”. They mainly use online social networks
on the purpose of maintaining their old friendships. In con-
trast, “aggressive users” reach out of the magic number with
the desire to make as many new friends as possible. We
also propose a new online social network model to further
explain users’ online behaviors. We think the findings of
the new magic number and distinction of users are helpful
in viral marketing and privacy management issues in online
social networks.
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