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Abstract 

With the rapid advance of Internet technology and smart devices, users often need to 

manage large amounts of multimedia information using smart devices, such as 

personal image and video accessing and browsing. These requirements heavily rely on 

the success of image (video) annotation, and thus large scale image annotation 

through innovative machine learning methods has attracted intensive attention in 

recent years. One representative work is support vector machine (SVM). Although it 

works well in binary classification, SVM has a non-smooth loss function and can not 

naturally cover multi-class case. In this paper, we propose manifold regularized kernel 

logistic regression (KLR) for web image annotation. Compared to SVM, KLR has the 

following advantages: (1) the KLR has a smooth loss function; (2) the KLR produces 

an explicit estimate of the probability instead of class label; and (3) the KLR can 

naturally be generalized to the multi-class case. We carefully conduct experiments on 

MIR FLICKR dataset and demonstrate the effectiveness of manifold regularized 

kernel logistic regression for image annotation. 

Index Terms- Manifold regularization, kernel logistic regression, Laplacian 

Eigenmaps, semi-supervised learning, image annotation. 



 

1. Introduction 

Today, smart devices e.g. smart phone, table PC which equipped with a digital camera 

have become more and more popular, and people can easily produce millions or even 

billions of multimedia information such as personal photos or videos. However, it is 

not convenient to effectively manage the photos or videos at the semantic level, and 

therefore large scale image/video annotation through innovative machine learning 

methods has attracted intensive attention in recent years and been successfully 

deployed for many practical applications in multimedia, computer vision and image 

processing [14] [16] [17] 0. 

There are a number of machine leaning algorithms have been employed for image 

annotation. One of the representative methods is support vector machine (SVM) that 

tries to find a separating hyperplane to maximize the margin between two classes.[12]  

SVM usually minimizes a hinge loss to train the maximum-margin classifier. 

Although hinge loss is a convex function, it is not differentiable and can not naturally 

be generalized to multi-class cases[15] . 

On the other hand, it is a very expensive labor to label a large number of images to 

learn a robust model for image annotation. Then semi-supervised learning (SSL) has 

been employed for semi-automatic image annotation[7] [8] . SSL can improve the 

generalization ability with only a small number of labeled images by exploiting the 

intrinsic structure of all the training samples including labeled and unlabelled 

images[1] . The most traditional class of SSL methods is manifold regularization that 



tries to explore the geometry of intrinsic data probability distribution by penalizing 

the objective function along the potential manifold [1] [4] . 

Considering the above analysis, in this paper, we replace hinge loss in SVM with 

logistic loss and propose manifold regularized kernel logistic regression (KLR) for 

web image annotation. Particularly, we employ the representative Laplacian graph to 

exploit the geometry of the underlying manifold. Compared to SVM, manifold 

regularized KLR has the following immediate advantages: (1) the KLR has a smooth 

loss function; (2) the KLR produces an explicit estimate of the probability instead of 

class label; (3) the KLR can naturally be generalized to the multi-class case; and (4) 

Laplacian regularization can well utilize the intrinsic structure of the data distribution. 

We carefully conduct extensive experiments on the MIR FLICKR dataset. The 

experimental results verify the effectiveness of Laplacian regularized KLR for web 

image annotation by comparison with the baseline algorithms. 

The rest of this paper arranged as follows. Section 2 briefly reviews the related work 

of image classification. Section 3 presents the proposed manifold regularized KLR 

framework. Section 4 details the implementation of Laplacian regularized KLR. 

Section 5 demonstrates experimental results on the MIR FLICKR dataset. And 

Section 6 concludes the paper. 

 

2. Related work 

In recent years, there are many algorithms been proposed for multimedia retrieval 

including image annotation/classification, video indexing, and 3D object retrieval etc. 



Briefly, the related image/video annotation methods can be divided into three 

categories based on the employed machine leaning schemes which are unsupervised, 

supervised, and semi-supervised learning. 

Unsupervised learning methods use unsupervised machine learning methods such as 

nonnegative matrix factorization [3] , clustering[10] to annotate images/videos. 

Supervised leaning methods such as support vector machines [13] , decision trees[11]  

aim to find the relationship between labels and visual features. Considering the 

growing large amount of samples, some active learning methods [14] are introduced 

to interactively select only effective samples for labeling. 

Considering the heavy user labeling effort, semi-supervised learning methods exploit 

both a small number of labeled samples and a large number of unlabeled samples to 

boost the generalization of learning model and receive more and more intensive 

attention recently [9] . 

 

3. Manifold regularized kernel logistic regression 

In semi-supervised image annotation, we are given a small number of labeled images 

               
  and a large number of unlabeled images             

   
, where 

           is the label of    and     denote the number of labeled and 

unlabeled images respectively. Typically,    . Under the assumption of 

semi-supervised learning, the labeled images          are drawn from a 

probability  , and unlabeled images      are simply drawn from the marginal 

distribution    of   where    is a compact manifold  . This assumption 



indicates that the conditional distribution        varies smoothly along the 

geodesics in the underlying geometry of   and then close images pairs induce 

similar conditional distribution pairs.  

The manifold assumption is widely employed in SSL because it is a key point to 

precisely explore the local geometry of the potential manifold. Then the SSL problem 

can be written as the following optimization problem by incorporating an additional 

regularization term to exploit the intrinsic geometry: 

       

 

 
           
 
          

        
            (1) 

where   is a general loss function,     
  penalizes the classifier complexity in an 

appropriate reproducing kernel Hilbert space (RKHS)   ,     
  is the manifold 

regularization term to penalize   along the underlying manifold, and parameters    

and    balance the loss function and regularization terms     
  and     

  

respectively. 

Although there are different choices for the manifold regularization terms     
 , 

Laplacian regularization is promising to preserve the local similarity. In this paper, we 

introduce the Laplacian regularized kernel logistic regression to web image annotation. 

In this paper, we employ logistic loss            for the loss function to construct 

a kernel logistic regression (KLR) model. Logistic loss is equivalent to the cross 

entropy loss function. Some traditional loss functions are plotted in Figure 1. The 

dashdot line is 0-1 loss, the dotted line is Hinge loss, and the solid line is logistic loss. 

From Figure 1 we can see that the negative log-likelihood loss is smooth and has a 

similar shape to Hinge loss that used for the SVM. Hence it is expected that the KLR 



has similar performance with the SVM. 

 

Figure 1. several loss functions 

Therefore, we incorporate Laplacian regularized term into the objective function with 

logistic loss. And then we have the following equivalent optimization problem. 

       
 

 

 
       

 

         
             

 

         
   

          
     

     (2) 

where                          
 ,   is the graph Laplacian given by 

     .  Here   is a diagonal matrix given by         
   
    where   is 

the edge weight matrix for data adjacency graph. 

Theorem 1: The minimization of (2) w.r.t.      exits and has the following 

representation 

             
   
   .                         (3) 

where         is a valid kernel in RKHS. 

The representer theorem shows the solution of (2) exists and has the general form in 

terms of the expansion of both labeled and unlabeled images. The proof of this 

representer theorem can be sketched as below. 

Proof: Suppose the subspace                         is spanned by the 

kernels centered at labeled and unlabeled images and    is the orthogonal 



complement of  . Thus any      can be represented as         , wherein    

is the projection of   onto   and     is the projection of   onto   . Then we 

have          
       

      
 . 

On the other hand,   is a valid (symmetric, positive definite) kernel in RKHS and 

graph Laplacian   is semi-definite positive. Thus              
        

  

   
       

    is a monotonically increasing real-valued function on    . Then 

we have               
  . This implies that        is minimized if   lies in 

the subspace  . 

Note the reproducing property of the kernel  , then                   

                                 . Therefore, the solution of the optimization 

problem (2) can be obtained when   lies in the subspace  , that is 

             
   
   . This completes the proof of Theorem 1. ■ 

Substituting (3) into (2), we have the following Laplacian regularized kernel logistic 

regression 

          
 

 
       

 

            
             

 

            
   

       
       

     . (4) 

Because the objective function is differential, we have many iterate numerical 

solutions for problem (4), e.g. gradient descent algorithm, Newton-Raphson method. 

In the next section, we describe the conjugate gradient algorithm employed in this 

paper to solve problem (4). 

 

4. Algorithm 

In this section, we employ the conjugate gradient algorithm to optimize problem (4). 



The gradient of the objective function in (4) can be written as: 

       
    

 
            

         
 

            
                

 

            
  

 

   

                           

Then we have the optimization procedure of conjugate gradient algorithm as below: 

Step 1: Initialize                          . 

Step 2: Do 

                   , 

                         
          

 

        
   . 

     Until                  . 

Step 3:      . 

The optimization of problem (4) is efficient and effective due to the smoothness 

character of the objective function. From the illustration of different loss functions in 

Figure 1, the logistic loss can achieve almost equivalent performance to hinge loss. In 

the following section we describe the comparison experiments. 

 

5. Experiments 

To evaluate the effectiveness of the proposed algorithm, we carefully conduct web 

image annotation experiments on the MIR Flickr dataset [6] that is offered by the 

LIACS Medialab at Leiden University, the Netherlands and introduced by the ACM 

MIR Committee in 2008 as an ACM sponsored image retrieval evaluation. The 

dataset contains 25,000 images of 38 categories including animals, baby, baby*, bird, 

bird*, car, car*, clouds, clouds*, dog, dog*, female, female*, flower, flower*, food, 



indoor, lake, male, male*, night, night*, people, people*, plant_life, portrait, portrait*, 

river, river*, sea, sea*, sky, structures, sunset, transport, tree, tree*, water. Figure 2 

shows some example images in the dataset. 

 

Figure 2. Example images of the MIR Flickr dataset 

In our experiments, 25000 images are randomly split into equal-sized two parts as 

training set and test set. And for the semi-supervised learning experiments, we 

randomly select the same number                       for positive and 

negative labeled samples for each class and all the rest samples are unlabeled ones. 

In our experiment, we employ GIST descriptor extracted by Guillaumin [5] . GIST 

descriptor is a biologically-inspired image feature which describes image features 

from the visual cortex cognitive mechanism. 

We compare the proposed Laplacian kernel logistic regression algorithm with some 

baseline algorithms including SVM classifier and kernel logistic regression method. 

For Laplacian kernel logistic regression method, parameter    and    are tuned 

from the candidate set                     .  

In our experiments, we measure the performance by using the average precision 



(AP) and mean average precision (mAP). Particularly, AP and mAP are computed by 

using the PASCAL VOC method [2] . 

   
 

  
     

   
                         

 

 

and  

    
    
 
   

                        
 

Where      is the precision at recall  . 

Figure 3 shows the average precision (AP) performance of some representative 

objects. Each subfigure of this figure shows the performance curves of a particular 

category from sky, sunset, structures, clouds, clouds*, animals, indoor, people*, tree, 

female, female*, male, transport, water. The x-coordinate of each subfigure is the 

number of the labeled (unlabelled) samples in the training set and the y-coordinate is 

the average precision. It shows that kernel logistic regression can achieve similar 

performance to SVM classifier and Laplacian kernel logistic regression outperforms 

the baselines in most cases. 

Figure 4 illustrates the mean average precision (mAP) boxplots of different 

methods. There are five subfigures each of which demonstrates the performance of a 

particular number of labeled and unlabeled samples. The mAP performance also 

shows that Laplacian kernel logistic regression algorithm performs better than 

baseline methods.  



 

Figure 3. Average precision of several representative objects. 



 

Figure 4. The mAP performance of different methods. 

 

6. Conclusion 

This paper studies manifold regularized kernel logistic regression (KLR) for web 

image annotation. Technically, we develop Laplacian regularized kernel logistic 

regression and implement image annotation task on MIR Flickr dataset. Compared to 

the representative SVM classifier, the KLR has a smooth loss function and produces 

an explicit estimate of the probability instead of class label. The carefully conducted 

experiments demonstrate the effectiveness of manifold regularized kernel logistic 

regression for image annotation. 



In the future, we will apply the proposed Laplacian regularized kernel logistic 

regression to other applications. We will also further extend the proposed method to 

other manifold regularizations and explore the relation of the different regularizations. 
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