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Abstract

Face recognition performance degrades significantly under occlusions that occur
intentionally or unintentionally due to head gear or hair style. In many incidents
captured by surveillance videos, the offenders cover their faces leaving only the
periocular region visible. We present an extensive study on periocular region
based person identification in video. While, previous techniques have handpicked
a single best frame from videos, we formulate, for the first time, periocular region
based person identification in video as an image-set classification problem. For
thorough analysis, we perform experiments on periocular regions extracted auto-
matically from RGB videos, NIR videos and hyperspectral image cubes. Each
image-set is represented by four heterogeneous feature types and classified with
six state-of-the-art image-set classification algorithms. We propose a novel two
stage inverse Error Weighted Fusion algorithm for feature and classifier score fu-
sion. The proposed two stage fusion is superior to single stage fusion. Compre-
hensive experiments were performed on four standard datasets, MBGC NIR and
visible spectrum [1], CMU Hyperspectral [2] and UBIPr [3]. We obtained aver-
age rank-1 recognition rates of 99.8, 98.5, 97.2, and 99.5% respectively which are
significantly higher than the existing state of the art. Our results demonstrate the
feasibility of image-set based periocular biometrics for real world applications.
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Figure 1: Examples where periocular biometrics are more effective than the full face biometrics.

1. Introduction

Face recognition is a well studied area and existing techniques perform well
in controlled environments. However, the performance of face recognition algo-
rithms degrades if the face is partially covered due to head gear or hair style. The
complete face of offenders is often not visible in surveillance videos. Helmets,
that additionally cover faces, are commonly used by motorcyclists and sportsmen.
Helmets and skiing masks have been exploited by offenders to cover their faces
during crimes. Finally, in many countries, women partially cover their faces due
to religious and cultural reasons. In most of these cases, the region around the
eyes, the periocular region is the only visible biometric (see Fig. 1).

Besides robustness to occlusion, periocular region based person identification
offers some advantages over the full face biometrics as it is least affected by ex-
pression variations, aging effects [4, 5] and the changes due to growth of male
facial hair. Moreover, full face recognition performance degrades significantly in
the presence of pose variations whereas the periocular region based identification
is likely to perform better in the case of extreme pose changes when only one
eye is visible. In these cases, the single visible periocular region can be used or
mirrored and matched to the opposite side periocular region in the database.

Periocular biometrics also offer some advantages over the iris biometric [6,
7, 8]. Periocular biometrics can be acquired from a larger distance by surveil-
lance cameras whereas iris scanning requires the subjects to open their eyes fully
and look into a scanner from a very close range. The latter may not be socially
acceptable to users [9, 10]. In many practical scenarios, the subject may not be
cooperative or willing, or even aware that he/she is being imaged. For example,
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Figure 2: Appearance variations of the periocular region of the same subject in the MBGC NIR
video (top row) and UBIPr (bottom row) databases

in banks and shopping malls, valued customers may need to be identified without
causing inconvenience to them.

In this work we present a comprehensive study into the feasibility of the pe-
riocular region as a biometric for person identification. We consider realistic
scenarios such as automatic detection of periocular regions, the availability of
videos rather than a single handpicked frame and propose a two stage inverse
Error Weighted Fusion scheme to achieve the state of the art results.

Previous works on periocular biometrics are mostly based on single image
matching [11, 12, 13, 14, 15, 16] where a single best frame per subject is hand-
picked to form the gallery. Each image in the query sequence is matched with the
gallery to find the best match. Such techniques inherently suffer from the lack of
information since only one image cannot contain all possible variations in the pe-
riocular region of an individual (Fig. 2). For example, if the gallery image is taken
from a frontal view with centered eyeballs and the query images have pose varia-
tions with eyeballs at the extreme ends, recognition performance will significantly
degrade.

In contrast, we formulate periocular region based identification as an image-set
classification problem. Each set contains multiple periocular images of the same
person and represents a wide range of variations including different eyelid posi-
tions, illuminations, eyeball movements and poses. We observe that the left and
the right periocular regions of the same subject possess more similarities to each
other than to other subjects. Therefore, the reflection of one region is combined
with the other to form a single large set per identity. We believe that this strategy
better suits linear modeling techniques. We construct a gallery from image-sets
of different identities. The query set also contains multiple periocular images of
the same person and is assigned the label of the nearest gallery set. Compared to
single image matching, set-to-set matching offers significantly more information

3



because multiple images in the same set model the appearance variations [17].
We extract four types of features from each periocular region and combine

six state-of-the-art image-set classification techniques including the Affine Hull
based image-set Distance (AHISD) [18], Convex Hull based image-set Distance
(CHISD) [18], Discriminative Canonical Correlation (DCC) [19], Manifold-Manifold
Distance (MMD) [20], Manifold Discriminant Analysis (MDA) [21], and Sparse
Approximated Nearest Point (SANP) distance [22]. A brief overview of these
techniques is given in Section 2. Note that our objective is to show the feasibil-
ity of image-set based classification for periocular biometrics as opposed to an
unbiased comparison of the image-set classification algorithms.

Our preliminary results were published in [23]. Here, we extend our work in
a number of directions. We present a detailed literature survey of the periocular
recognition techniques. We test different imaging modalities beyond the visible
spectrum, such as infra-red and hyperspectral image cubes. We develop a fully
automatic video based periocular region detection system for all three modalities
and investigate the use of different classifier fusion techniques. Rigorous experi-
ments are performed on more datasets and higher recognition rates are observed
compared to our previous work [23] and existing state-of-the-art methods. Brief
results on the four databases are shown in Table 1.

2. Survey of Periocular Biometrics Research

Periocular region includes the iris [10], eyes, eyelids, eye lashes, and part
of the eyebrows [13]. Recognition using periocular biometrics is an emerging
research area. Initial feasibility studies were done by Park et al. [9, 10] who
detected the iris in the visible spectrum images and extracted features at fixed grid
positions around the center of the limbus circle. Experiments on a subset of the
FRGC v2.0 [1] dataset showed that their algorithm’s performance depends on the
accurate iris detection and is sensitive to the eyeball movements.

Table 1: Average and standard deviation of the identification and verification rates at 0.001 FAR
(%) of the proposed approach on four public databases. Detailed results are in Section 7.1.

Database Subjects Identification Verification
UBIPr [3] 342 99.5±0.5 99.9±0.1
MGBC v2 VS video [1] 91 98.5±1.0 97.8±0.5
MGBC v2 NIR video [1] 114 99.9±0.1 99.8±0.2
CMU HS [2] 48 97.2±1.0 96.8±1.0
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The use of Local Binary Patterns (LBP) [24] to represent the texture of the pe-
riocular region has been investigated by several researchers. Miller et al. [25] used
city block distance to classify LBP features. Their work was extended by Adams
et al. [15] using genetic algorithms to select the optimal subset of LBP features.
They experimented with manually generated periocular data from a subset of high
resolution frontal images of FRGC [1] with neutral expression, less appearance
variations and controlled illumination. Woodard et al. [13] used the LBP features
and color histograms to represent the local appearance of the periocular region.
They achieved better performance by using city block distance for matching LBP
features and Bhattacharya coefficient for matching color histograms. They per-
formed experiments on periocular data generated from two databases, FRGC v2
face [1] and MBGC v1 NIR video [26]. In the case of MBGC NIR dataset, the
complete videos were not used. Manually extracted periocular regions from the
first two frames of the video were used as gallery and periocular region from a
random frame was chosen as a probe. The periocular regions had the same scale
and no appearance variations.

Bharadwaj et al. [27] performed score level fusion of global GIST features
and local circular LBP features of the periocular regions. They used the visible
spectrum eye images of UBIIRIS v2 [28] dataset which contained slight appear-
ance variations. Xu et al. [16] proposed Walsh Transform based local binary
patterns (WLBP). Periocular region containing both eyes were cropped using the
detected iris centers. They performed experiments on the FRGC v2 [1] database
and achieved a verification rate of 17.0% at 0.1% FAR. Woodard et al. [14] si-
multaneously utilized the iris and periocular biometrics by performing score-level
fusion. LBP features were extracted from the periocular region while the iris
texture was encoded using the Gabor filters. Their experiments showed that the
periocular recognition performed better than iris recognition for the MBGC v1
NIR portal videos.

Hollingsworth et al. [12] investigated human performance on the periocular
recognition task. By presenting unlabeled pairs of NIR periocular images to dif-
ferent humans, they found that humans can recognize the periocular region with
92% accuracy. They also calculated the performance of three computer algorithms
on the periocular recognition task and found that the performance of humans and
computer was similar. Boddeti et al. [29] used probabilistic matching based on
Optimal Trade-off Synthetic Discriminant Function correlation filter to classify
periocular regions. They performed experiments on the Face and FOCS database
[30] which contains periocular region appearance variations in the form of illumi-
nation, blur and off-angle iris. They reported better recognition rates of the ocular
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Table 2: Recognition Rates (RR) of the existing state of the art periocular biometric recognition
techniques.

Author Year Database #Subj RR
Park et al.[10] 2009 Proprietary 30 80.80
Miller et al.[25] 2010 FRGC, FERET 464 89.70
Adams et al.[15] 2010 FRGC, FERET 464 92.16
Woodard et al.[14] 2010 MBGC v1 NIR 85 96.50
Woodard et al.[13] 2010 MBGCv1NIR,

FRGCv2
85,
410

87.00,
91.20

Xu et al. [16] 2010 FRCG 466 53.20
Bhar. et al. [27] 2010 UBIRIS v2 [28] 261 73.60
Park et al.[9] 2011 FRGCv2 568 87.32
Boddeti et al.[29] 2011 FOCS[30] 136 94.20
Pauca et al.[32] 2011 COIR[32] 285 95.00
Padole and Proenca[3] 2012 UBIPr[3] 342 38.00†
Xu et al. [31] 2012 Compass[31] 342 60.00†
Fernandez and Bigün [33] 2012 CASIAv3[34],

BioSec[35]
249,
200

5.66,
13.08‡

Oh et al. [11] 2014 UBIRIS v1 131 6.89‡

† Verification rate at 0.01 False Accept Rate ‡ Equal Error Rate

regions than the iris on the FOCS database.
Xu and Savvides [31] employed different schemes to correct the illumination

and pose variations of the periocular regions. Class dependent Feature Analysis
was used to classify the WLBP features [16]. Pauca et al. [32] used SIFT features
for classification of the periocular regions and also introduced the COIR database.
Padole et al. [3] introduced the UBIPr database which contains scale and pose
variations as well as non-uniform illumination variations. They observed that the
eye corners offer a better reference for grid construction compared to the iris cen-
ter. Fernandez and Bigün [33] used retinoscopic sampling to generate grids of
various geometry centering the pupil. Gabor features calculated from the grids
were used for periocular region classification. Oh et al. [11] combined periocu-
lar and sclera biometrics using score level fusion. They used structured random
projections for feature extraction from periocular regions and a modified LBP op-
erator for feature extraction from sclera region. The obtained improved equal error
rates on UBIRIS v1 dataset.

Table 2 summarizes the major works in the area of periocular biometrics. Ex-
isting research has investigated the use of texture or point features calculated from
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a single handpicked periocular image. Therefore, these methods do not model the
periocular region variations including partial occlusion, eyeball and eyelid move-
ments, pose and illumination conditions. In order to mitigate some of these chal-
lenges, we propose an image-set based approach for periocular biometric recogni-
tion. For each subject, the gallery may contain one or more image-sets per subject.
An image-set will contain multiple periocular region images of the same subject
thereby modeling a wide range of variations.

3. Review of Image-set Classification Algorithms

Although image-set classification has been well studied for face recognition,
to the best of our knowledge, periocular region recognition has not been formu-
lated before as an image-set classification problem. We argue that a set-based ap-
proach is more suitable for periocular biometrics because it can model a number
of variations such as pose, position of eyeball and partially open eyelids that are
unavoidable in real scenarios. We use six state-of-the-art image-set classification
algorithms broadly divided into sample and structure based.

3.1. Sample Based Image-set Classification
Sample based techniques measure the distance between nearest neighbor sam-

ples of two image-sets. Let X = {xi}ni=1 ∈ Rm×n be an image-set, where
xi ∈ Rm is a feature vector and n be the number of feature vectors in a set which
may vary across the image-sets. The feature vectors can simply be the image pixel
values or some features calculated from the pixels such as the PCA coefficients
or LBP features [24]. Each image-set may be considered as a point cloud in Rm.
All points in a probe image-set Xp are compared with all points in each gallery
set Xg to find the nearest pair of points (xi, xj) such that xi ∈ Xp and xj ∈ Xg. If
xi and xj have zero mean and unit magnitude, the nearest neighbor pair (xi, xj) is
the one that maximizes the cosine of the angular distance:

max
g

(
max
xi,xj

X t
gXp

)
. (1)

The probe image-set label is predicted as the label of xj .
Cevikalp and Triggs [18] considered each image-set as a convex geometric

region in Rm. Set dissimilarity was measured by the distance of closest ap-
proach between the regions represented by the affine (AHISD) or convex hulls
(CHISD). The region contained all the affine combinations xp =

∑n
i=1Xpiαpi and

xg =
∑n

j=1Xgjαgj , where αp, αg ∈ Rm. For the case of affine hull
∑n

i=1 αpi =
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∑n
j=1 αgj = 1 and for the convex hull 0 ≤ (αpi, αgj) ≤ 1. The minimum distance

was computed as
min
g

(
min
αp,αg

||Xgαg −Xpαp||2
)
. (2)

For the case of affine hull, the minimum distance was computed using least squares
while for the case of convex hull, an SVM was used.

Instead of searching the nearest points with dense combinations of samples in
the corresponding image-set, Hu et al. [22] proposed that each of the two points
should be approximated by a sparse combination from the samples of the respec-
tive set. They argued that the sparse approximated nearest points (SANP) will lie
close to some facet of the affine hull, and hence, implicitly incorporate structural
information of the sets as well. By restricting the SANPs to be close to the facets,
this approach can reject outliers resulting in higher accuracy.

3.2. Structure Based Image-set Classification
Structure based techniques represent the underlying structure of an image-set

with one or more linear subspaces. Structural similarity of the sets is usually
measured using subspace to subspace distance. Kim et al. [19] proposed Discrim-
inative Canonical Correlation (DCC) which performs discriminative learning on
canonical correlations between the structures of image-sets. More specifically, a
discriminant function is learned that maximized the within-class and minimized
the between-class canonical correlations. Image-sets are compared after trans-
forming them optimally by the learned discriminant function.

Wang et al. [20] proposed Manifold-Manifold Distance (MMD) which clus-
tered each image-set into multiple linear local models and represented each model
by a linear subspace. The similarity between two sets was defined as the canon-
ical correlation between the nearest local models. In addition, the nearest point
distance was also combined with the structural similarity to calculate the final
similarity between two sets.

Wang and Chen [21] proposed Manifold Discriminant Analysis (MDA) that
uses a hierarchical divisive clustering approach to represent each image-set by
multiple local linear models. The local models are transformed by a linear dis-
criminant function where different classes are better separable. The similarity be-
tween two sets is calculated as the pair-wise local model distances in the learned
embedding space.

8



P1 P1 P’2 

P1 P2’’ 

P2 

(a) (b) 

(c) 

(d) 

(e) 

280 
170 

100 

Figure 3: Periocular region normalization in MBGC NIR and visible spectrum videos. (a) De-
tected pupil centers (b) Rotation normalization (c) Scale normalization (d) Nose bridge removal
(e) Normalized periocular regions

4. Automatic Periocular Region Extraction

Distance variations between the subject and the camera induces significant
scale changes and head pose variations induces rotational effects in the video.
These scale and rotation variations do not provide any discriminative informa-
tion. We propose two algorithms for automatic periocular region extraction and
normalization in videos and hyperspectral cubes.

4.1. Automatic Periocular Region Detection in Videos
In contrast to the previous approaches [13, 14] which selected only the best

frames with the same scale and rotation for matching, we perform rotation and
scale normalization. In each video frame (NIR or visible), we automatically de-
tect the eye pair by using a Haar feature based ensemble of weak classifiers as
proposed by Viola and Jones [36]. Then we crop a relatively large area containing
both eyes and the nose bridge. For each eye, we automatically detect the pupil
center using an improved version of Masek’s algorithm [37, 38]. We first apply
adaptive thresholds on the eye image to obtain a binary image. Following this,
the largest local number of contour points is searched by contour processing the
binary image. A circle is fitted to the detected largest contour points and its center
is then selected as the pupil’s center. The pupil centers in each eye are denoted by
P1 and P2 in Fig. 3.

For in-plane rotation normalization, the cropped images are rotated such that
the line through P1 and P2 becomes horizontal. For scale normalization, the dis-
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tance between P1 and P2 is fixed and the full periocular region is equally scaled
in both dimensions. By using fixed distance constraints, the normalized periocu-
lar region is divided into left and right periocular regions and the nose bridge is
removed to simulate the situations when only one eye is visible. Thus we only uti-
lize the eye region for recognition because in many practical situations, the other
regions may not be available.

To enable single eye based recognition, we flip all the periocular regions to
one side. Linear combinations of the original and flipped periocular regions can
generate novel appearances and hence account for more intra-person variations.
Note that the effect of flipping from left to right or right to left is the same.

4.2. Periocular Region Detection in Hyperspectral Images
We extend our analysis beyond the visible spectrum towards hyperspectral

periocular biometric recognition. A hyperspectral image cube consists of images
captured at multiple wavelengths of the electromagnetic spectrum. The signal
to noise ratio of the bands near the blue wavelength region is very low and in
general, no periocular region detector may ensure 100% detection rate in these
images. However we assume that the location of the pupil centers in all bands are
aligned. Thus we solve the problem of miss detections by estimating collective
pupil center positions over all bands in a hyperspectral cube.

In each image of a hyperspectral cube, we automatically detect the eye pair
using Viola and Jones detector [36] and for each eye, we automatically detect the
pupil centers as follows. First, we apply thresholding on the eye image to obtain
a segmented binary image. Next, we apply the morphological opening operation
on the binary image. The opening operation enhances the dense region of the
binary image corresponding to the pupil center and smooths the sparsely occupied
regions (Fig. 4). We apply the opening operation n times and a value of n = 3
gave good results in our experiments. The location of the global minimum in the
resultant opened image is considered as the pupil center. Here, we do not require
circle fitting because of the availability of multiple bands to assist accurate pupil
center localization. Figure 4 shows the proposed pupil center detection process.

Input Image Thresholding Opening Global Minimum Pupil Centre 

Figure 4: Pupil center detection in hyperspectral databases. Detection errors are corrected by using
the proposed algorithm.
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Figure 5: Detected pupil center (left) and corrected pupil centers (right) in some of the bands of
CMU hyperspectral database.

We independently detect the pupil center in each band (Fig. 5). Then, each
detection votes in a circle of radius r around the detected position, using Gaussian
weights, in an accumulation array. The votes are accumulated over all bands of the
same cube. The average of the coordinates in a small vicinity getting maximum
votes over all bands is selected as the pupil center for the whole hyperspectral
cube and used for rotation and scale normalization. The same rotation and scale
normalization is applied to all bands of a cube. Cropping and flipping of the
periocular regions is similar to the video databases.

5. Feature Extraction

We extract the following four types of features from the periocular regions.

5.1. Raw Pixel Values
To mimic typical surveillance videos, all normalized periocular images are

scaled down to 20×30 pixels and the intensity values are used as features.

5.2. PCA Coefficients of Pixels
The dimensionality of the normalized images is reduced by projecting them

on 400 most significant PCA basis. The resulting 400 coefficients are used as
feature vectors. Because the size of the normalized images is relatively large,
they are resized to a smaller size for performing PCA. Note that for learning the
PCA basis, only the gallery sets are used as training data. Using PCA coefficients
as features has two main advantages. By dropping the least significant principal
components, PCA suppresses the effect of noise such as partial and unaligned
periocular regions present in the image-sets. By reducing the dimensionality of
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Figure 6: LBP filtering process to generate feature type 2.

the normalized images to 400, the image-set classification algorithms achieved
significant speedup.

5.3. LBP Features
From the 20×30 images, LBP features are extracted using circular (8,1) neigh-

borhoods [24]. The LBP operator labels a pixel with a binary number computed
by thresholding the gray-scale differences between the pixel and its neighborhood.
The LBP of the pixel z in an image I can be represented as follows:

LBP P,R(z) = {LBP (p)
P,R(z)}p=1,...,P ,

LBP
(p)
P,R(z) = s(Ig(vp)− Ig(z)),

s(z) =

{
1 if z ≥ 0,
0 if z < 0,

(3)

where Ig(z) is the gray-scale value of the pixel z in the image I and {vp}p=1,...,P

as a set of P equally spaced pixels located on a circle of radiusR and center z. We
choose LBP features for their robustness to monotonic gray-scale changes result-
ing from global or local illumination variations [39]. Fig (6) shows the process of
LBP filtering. The resulting LBP coded images are used as feature vectors.

5.4. PCA Coefficients of LBP Features
LBP features are computed over the normalized images and the dimensionality

of the LBP codes is reduced to 400 using PCA.

6. Features and Classifiers Score Level Fusion

Considering periocular biometric as a set based classification problem, the
label of the probe image-set p is to be predicted by computing its similarity with
g gallery image-sets. There are c different classifiers, each generating a different
similarity vector {Sk}ck=1 where Sk = {sk,j}gj=1. These similarity vectors are
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Figure 7: Block diagram of the two stage fusion: Feature Score Fusion (FSF) and Classifier Score
Fusion (CSF). Different fusion strategies are used at both stages (Table 4).

fused into one vector S = {sj}gj=1. For this purpose, we investigate the use of
different classifier fusions techniques [40, 41] including the sum, product , min,
max, and median rules, and majority voting.

We also propose a novel two stage fusion scheme using classifier error weighted
summation technique (see Fig. 7). Let LRulep be the predicted label by a specific
rule, where Rule∈ { sum, prod, max, min, med, vote, SMF}.

Sum rule: Lsump , max
j

(
c∑

k=1

sk,j).

Product rule: Lprodp , max
j

(
c∏

k=1

sk,j).

Max rule: Lmaxp , max
j

(max
k

(sk,j)).

Min rule: Lminp , max
j

(min
k

(sk,j)).

Median rule: Lmedp , max
j

(Medk(sk,j)).

Majority voting rule: Lvotep , Modek({lk}ck=1), (4)

where lk , maxj(sk,j) is the label predicted by the kth classifier. In these
schemes, all classifiers are given equal weight. In contrast, we propose to weight
each classifier inversely proportional to the error of that classifier on the validation
dataset. We refer to this technique as Error Weighted Fusion (EWF). Specifically,
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Figure 8: Plot of the proposed weight function wk for different combinations of ξk and γ.

the following weight function is learned during the training phase:

wk = exp
(
− ξ

2
k

γ2
)
, (5)

where ξk is the error rate of the kth classifier on the training data. The parameter γ
controls the decay of the weight function with the increasing error rate: 1 ≥ wk ≥
0. Figure 8 shows the variation of wk for different combinations of ξk and γ. An
appropriate value of γ is selected that minimizes the error on training data after
fusion of classifiers. The fused similarity vector is computed as:

S =
c∑

k=1

exp

{
ln
(Sk − δk

λk

)
−
( ξ2k
γ2
)}
, (6)

where δk is used to shift the values in the Sk to start from zero and λk is the
range of values in Sk. After fusion, the label Lp of the probe is assigned by the
index containing maximum value over all gallery image-sets: LSMF

p = maxj(Sj).
Note that if similarity is changed by distance, max function will be changed by
min function. We perform score level fusion at two stages namely Feature Score
Fusion (FSF) and Classifier Score Fusion (CSF) as shown in Fig. 7. We then
experimentally study the performance of the fusion schemes defined above.
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Table 3: Database details

Database Subjects Image-sets/subject Images/set
UBIPr [3] 342 6 5
MGBC v2 Visible [1] 91 1-6 23-352
MGBC v2 NIR [1] 114 1-12 6-48
CMU Hyperspectral [2] 48 1-5 130

7. Experiments and Results

For periocular region based person identification, we use one periocular region
image database, namely, the UBIPr database [3] and three public face databases.
The face databases include the MBGC Visible spectrum and NIR video databases
[1] and the CMU hyperspectral database [2]. These databases are summarized in
Table 3 and their details are given below.

The UBIPr Visible Spectrum Database[3] consists of visible spectrum peri-
ocular images with variations in scale, illumination, eyeball movements, partial
occlusion and head pose changes. The images were acquired at five different
camera distances (4m to 8m), three poses (0 ◦, 30 ◦, −30 ◦), three gazes (0 ◦, 30 ◦,
−30 ◦) and three levels of pigmentation (light, medium, heavy). The images in
this database are converted to gray scale and normalized to reduce the effects of
scale and pose variations.

The MBGC v2 Visible Specturm (VS) videos have significant scale and illumi-
nation variations (Fig. 9-a). Many frames have low signal to noise ratio and mo-
tion blur resulting in significant intra-person variations. The NIR illuminator used
during MBGC v2 NIR video acquisition flashed for only a brief moment result-
ing in significant illumination variations, defocusing, motion blur, sensor noise,
specular reflections, partially occluded faces and off-angle eyes making biometric
recognition very challenging (Fig.9-b). Moreover, only part of the face is visible
in most videos.

In each video frame, the periocular regions are extracted as detailed in Section
4.1. The distance between pupil centers is fixed to 280 pixels and a normalized
image of size 430× 100 containing both periocular regions is cropped. This nor-
malized image is divided into left and right periocular regions by removing the
central nose bridge portion of 90× 100 pixels. The final image size of the left and
right periocular regions is 170 × 100 (Fig. 3). The right side periocular regions
are mirrored and combined with the left side regions to form a single set (Fig. 10).
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(a)

(b)

Figure 9: Sample video frames from the MBGC v2 (a) Visibe and (b) NIR databases.

Note that left to right mirroring gives the same results as right to left mirroring.
The CMU Hyperspectral Database [2] contains face images in 65 bands cov-

ering the spectral range of 450nm to 1100nm at 10nm step. The spatial resolution
of the images is 640x480. In each image (band), we automatically detect the
periocular region and normalize for rotation and scale variations. The distance
between the eye centers is fixed to 90 pixels. A normalized image of size 160×40
is then cropped. The periocular region is divided into left and right regions by re-
moving the nose bridge. The final image size of the periocular regions is 40× 28
pixels (Fig. 10-c). The right periocular images are mirrored and combined with
the left ones for form a set.

7.1. Experimental Setup
For each database, the gallery is constructed by randomly selecting one image-

set per subject. The remaining image-sets are used as probes. Experiments are
repeated 10-fold by randomly selecting different gallery and probe combinations
each time. For image set classification, six algorithms are used including AHISD,
CHISD [18], SANP [22], DCC [19], MMD [20] and MDA[21]. For every al-
gorithm, we performed 10-fold experiments for each of the four feature vector
types.
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Figure 10: Sample images from one image-set of MBGC visible spectrum video (left) and CMU
Hyperspectral database (right). See Fig. 2 for sample images from MBGC NIR and UBIPr
databases.

For the sample based algorithms, the default input parameter values are used.
For the structure based algorithms, the parameters are carefully tuned so that the
best performance can be obtained on training data. For DCC, the subspace di-
mensions are set to 10 which preserves 90% energy and the corresponding 10
maximum canonical correlations are used to define set similarity. The embed-
ding space is set to 100. For MMD and MDA, the ratio between Euclidean and
Geodesic distance is varied from 2.0 to 0.01 with a step of 0.5. Maximum recog-
nition rates were observed at 0.10 for MMD and 2.0 for MDA. The number of
connected nearest neighbors for computing geodesic distance was tested at 14, 12
and 10. The best results were observed at the value of 10. The maximum canonical
correlation was used in defining MMD. For MDA, the number of between-class
NN local models was set to 5 and the dimension of MDA embedding space was
set to 10 as recommended by Wang et al. [20, 21].

The error rate ξk in the weighted sum based fusion scheme is learned during
training using a held-out validation set which is disjoint from the test set. For each
database the validation set is generated by randomly choosing one image-set for
each subject. The parameter ξk is found using the validation set. We observe that
the accuracy of different algorithms on the validation set is almost the same as the
test sets. After experimenting various values of γ, a fixed value γ = 40 is used for
all the datasets.

7.2. Results and Discussion
The proposed image-set based periocular biometric recognition has exhibited

recognition rates much higher than the existing state-of-the-art techniques. In
the following subsections, results of the six classification algorithms and different
fusion schemes are discussed for each of the four databases. Results of existing
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DCC 81.8±2.8 76.3±1.6
MMD 81.6±1.9 81.6±2.5
MDA 89.5±2.4 91.6±2.1
AHISD 96.4±1.9 98.0±1.9
CHISD 96.7±1.8 98.7±1.1
SANP 97.4±1.2 97.4±1.1
EWF 99.5±0.5 99.7±0.1
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Figure 11: Results of 10-fold experiments on the UBIPr database. (a) Average recognition rates
of individual algorithms on individual features. (b) CMC and (c) ROC curves of individual algo-
rithms after feature score fusion. (d) Summarized results.

algorithms in the literature along with brief experimental settings are summarized
in Table 2.

UBIPr database: Results on this database are reported in Fig. 11. The per-
formance of each algorithm on individual feature types is shown in Fig. 11-a,
where CHISD, AHISD and SANP achieve better performance than DCC, MMD
and MDA. Thus sample based algorithms have outperformed structure based ones
because only five images per set were not sufficient to estimate the structure. LBP
features consistently achieve the highest performance among the sample based
techniques. The last group of bars in Fig. 11-a show the performance of Error
Weighted Fusion (EWF) of all algorithms on different features. Here, again LBP
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features have achieved the highest recognition rate.
The performance of each algorithm is also studied after the feature score fu-

sion (FSF) of all features using EWF. Figure 11-b and Fig. 11-c show the CMC
and ROC curves respectively for each algorithm after EWF feature score fusion.
The curves of the sample based algorithms are again above the structure based al-
gorithms. The best performance in Fig. 11-b and Fig. 11-c correspond to the pro-
posed two stage fusion algorithm (FSF + CSF as shown in Fig. 7). The proposed
two stage fusion approach acheived the highest recognition rate of 99.5±0.5%
and the highest verification rate of 99.9±0.1% at 0.001 FAR. The latter is signifi-
cantly higher than the 38% verification rate at 0.001 FAR reported by Padole and
Proenca in [3] using fusion of LBP+HOG+SIFT features. The consistent best per-
formance of EWF demonstrates the effectiveness of the proposed image-set based
classification as well as feature (FSF) and classifier score fusion (CSF) techniques.

MBGC visible range video database: Figure 12 shows the results on this
database. The average recognition rates of each algorithm for each feature type
are given in Fig. 12-a. Here, the structure based algorithms have outperformed the
sample based ones because the number of images per set is significantly higher
than the UBIPr dataset leading to improved structure estimation. The last group of
bars are for feature score fusion of all algorithms. Feature type 4 (LBP+PCA) has
shown better performance than the other features for structure based techniques
and the feature score fusion. The large number of samples per set not only helps
in better structure estimation but also facilitates better PCA subspace estimation
after LBP filtering. Since the images in this database have more noise and blur,
PCA and LBP together perform better noise filtering than either one alone.

The performance of each algorithm after feature score fusion (FSF) of all fea-
tures using EWF is given in Fig. 12-b and 12-c and summarized in Table 12-d.
Here, the plots of structure based techniques are above the sample based tech-
niques. The proposed two stage fusion (FSF+CSF) using EWF has outperformed
all other algorithms by achieving a rank-1 recognition rate of 98.5±1.0% and ver-
ification rate of 97.8±0.5% at 0.001 FAR.

MBGC NIR database: Results for this database are given in Fig. 13. The per-
formance of individual algorithms on each feature type is shown in Fig. 13-a. Due
to fewer images per set, sample based algorithms have again performed better than
structure based ones with the exception of MDA. Note that in MDA, a discrim-
inative function is learned such that the geometric distance between different set
centers is maximized. The average of the NIR imagery of the periocular region,
which also includes the iris, is more discriminative than the visual spectrum im-
ages. This fact is also reflected by the higher mean and lower standard deviation of
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DCC 93.9±1.0 93.4±1.9
MMD 88.5±1.9 83.4±1.5
MDA 94.4±1.2 92.3±1.1
AHISD 69.4±2.9 66.5±3.3
CHISD 80.7±2.1 76.8±2.0
SANP 90.5±2.1 84.0±2.2
EWF 98.5±1.0 97.8±0.5
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Figure 12: Results of 10-fold experiments on the visible range MBGC video database. (a) Average
recognition rates of individual algorithms on individual features. (b) CMC and (c) ROC curves of
individual algorithms after feature score fusion. (d) Summarized results.

the NIR recognition rate of 99.9±0.1%, compared to visual spectrum recognition
98.5±1.0%. One may argue that the higher performance of NIR images is due to
better image quality but this is balanced by the higher number of images per set
in the visible spectrum image sets. The NIR illuminator gives better illumination,
but at the same time induces non-linear specularities. LBP filtering has remained
more successful in removing the uneven illumination variations therefore, LBP
features have shown better performance than raw pixels and raw pixels + PCA.
The reason why LBP+PCA resulted in lower performance is because an accurate
PCA subspace could not be estimated from fewer images.

The performance of each algorithm after feature score fusion using EWF fu-
sion is shown in Fig. 13-b and Fig. 13-c. The CMC and ROC curves of the
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DCC 72.8±1.6 55.1±2.0
MMD 76.4±2.1 65.8±2.4
MDA 97.1±0.7 96.2±1.6
AHISD 94.5±2.1 93.2±1.8
CHISD 95.1±1.0 94.3±1.0
SANP 91.1±1.5 90.5±1.2
EWF 99.8±0.1 99.8±0.2

(d)

Figure 13: Results of 10-fold experiments on MBGC NIR video database: (a) Average recognition
rates of individual algorithms on individual features. (b) CMC and (c) ROC curves of individual
algorithms after feature score fusion. (d) Summarized results.

sample based techniques are above the structure based techniques. The proposed
two stage fusion (FSF+CSF) using EWF achieved a rank-1 identification rate of
99.9±0.1% and a verification rate of 99.8±0.2% at 0.001 FAR (Table 13-d). The
previous best identification rate on this database was reported by Woodard et al.
[14] which is 96.5% using only 85 subjects of the database (Table 2). We achieved
higher identification rate while using 114 subjects from the database which is a
more challenging scenario. We excluded 35 subjects because only four periocular
regions per subject could be automatically detected. Moreover, Woodard et al.
[14] manually extracted the periocular regions whereas we performed this task
automatically.
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DCC 91.9±2.5 78.8±3.3
MMD 91.6±2.1 74.7±2.3
MDA 81.8±1.6 66.7±1.7
AHISD 71.3±2.9 58.5±3.8
CHISD 72.7±3.6 60.6±4.1
SANP 82.8±2.1 63.6±1.8
EWF 97.2±1.0 96.8±1.0
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Figure 14: Results of 10-fold experiments on CMU Hyperspectral database: (a) Average recog-
nition rates of individual algorithms on individual features. (b) CMC and (c) ROC curves of
individual algorithms after feature score fusion. (d) Summarized results.

CMU Hyperspectral Face database: For thoroughness, we also performed
experiments on the hyperspectral face cubes. To the best of our knowledge, this is
the first work on hyperspectral periocular biometrics that includes as many as 65
bands covering the visible and infra-red range (from 450nm to 1100nm at 10nm
step). The results on this database are compiled in Fig. 14. On individual features
(Fig. 14-a), structure based algorithms have performed better than sample based
ones (Fig. 14-a) because the number of images per set are 130 leading to a good
structure estimation. Pixels+PCA gives the best performance for structure based
techniques and when feature score fusion is performed (the last set of bars in
14-a). Figure 14-b and Fig. 14-c show the CMC and ROC curves of individual
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Table 4: Average identification Rates and std (%) of 10-fold experiments using different
combinations of Feature Score Fusion (FSF) and Classifier Score Fusion (CSF).

MBGC Visible range video database
HH

HHHHFSF
CSF

Prod Max Median Voting Sum SWV WMV EWF

Prod 33.6±1.2 94.7±1.1 97.5±0.6 78.5±1.8 95.6±1.0 96.3±1.1 97.5±0.6 97.1±1.1
Max 63.7±1.1 77.7±2.2 94.8±0.9 93.0±0.7 95.4±1.5 95.1±1.2 96.3±1.1 97.1±0.7
Median 73.7±3.7 91.7±2.5 97.5±0.8 96.5±0.7 97.1±1.1 97.0±1.8 97.2±1.4 97.2±1.4
Voting - - - 97.8±0.4 - - -
Sum 69.9±3.5 91.5±1.6 97.5±0.8 97.0±0.7 97.3±1.2 97.4±1.2 97.3±1.5 97.3±1.5
SWV 68.7±3.6 90.3±1.9 97.0±0.8 96.7±1.5 96.7±1.5 94.3±1.8 96.7±1.5 97.2±1.4
EWF 74.1±3.6 91.5±2.5 96.9±1.6 97.7±0.1 97.4±1.4 97.4±1.4 97.7±1.5 98.5±1.0

MBGC NIR video database
Prod 18.4±2.5 91.8±1.3 97.5±0.9 73.6±2.0 97.4±1.0 97.4±1.0 99.1±0.5 99.0±0.7
Ma 65.2±1.7 83.3±2.5 96.9±1.3 97.2±1.0 97.9±0.8 97.7±0.8 98.7±0.8 99.0±0.5
Median 75.5±2.2 93.3±1.7 98.0±0.7 98.2±0.9 98.2±0.5 98.7±0.8 99.1±0.5 99.1±0.5
Voting - - - 97.6±0.9 - - -
Sum 73.0±2.0 91.5±2.0 98.1±0.7 98.2±0.9 98.1±0.5 97.7±0.8 99.6±0.4 99.6±0.4
SWV 71.8±1.7 90.7±1.3 97.9±0.8 97.7±0.8 98.4±0.4 96.8±0.9 98.4±0.4 97.7±0.8
WMV 73.2±2.1 93.1±1.7 98.4±0.6 97.7±0.8 98.1±0.5 98.7±0.8 98.4±0.4 99.6±0.4
EWF 73.9±2.9 93.7±2.0 98.4±0.6 98.8±0.8 98.3±0.4 98.7±0.8 99.6±0.4 99.9±0.1

algorithms after feature score fusion (FSF) of all features. The proposed two stage
fusion (FSF+CSF) using feature and classifier score fusion with EWF achieves the
highest rank-1 recognition rate of 97.2±1.0% and verification rate of 96.8±1.0%
at 0.001 FAR. Figure 14-d summarizes the results.

7.3. Recognition Rate Comparison of Different Fusion Schemes
We observe that score fusion at two stages produces better results than a sin-

gle stage fusion. We have explored all combinations of different score fusion
schemes discussed in Section 6 at both stages (feature score and classifier score).
We also compare the proposed EWF fusion algorithm to the closely related clas-
sifier fusion methods, Simple Weighted Vote (SWV) and the Weighted Majority
Vote (WMV), presented by Seco et al. in [42]. Table 4 summarizes the accuracies
for different combinations of Feature Score Fusion (FSF) and Classifier Score Fu-
sion (CSF). The proposed inverse Error Weighted Fusion (EWF) outperforms the
other fusion methods when used at both stages. The accuracy of the product rule
and min rule when used at both levels is the minimum because these rules are af-
fected by the lowest performers. The weights of different features and classifiers
are learned in the training stage according to the performance on the training data.
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Figure 15: Sample images from an image set of the visible range MBGC video dataset. The image
set contains noise in the form of misdetected periocular regions.

Therefore, the poor performers get lower weights in the test stage and the overall
accuracy significantly improves over the sum rule.

7.4. Effect of Periocular Region Misdetection on Accuracy
The accuracy of periocular region detection may affect the performance of

periocular recognition. The accuracy of the proposed algorithm will depend on
the total images in a set and the ratio of misdetections to the correct detection.
Figure 15 shows samples from an image set of the visible range MBGC video
database. Alongside correct detections, the set also contains around 14% noisy
samples in the form of misdetected periocular regions. In our experiments, this
set was misclassified by the AHISD algorithm because the affine hull of the set
was not able to accommodate for the outlier samples. On the other hand, the
same image set was classified correctly by the DCC algorithm as DCC models
the image set structure using the most dominant subspace basis. However, if most
of the set samples contain large detection errors and there are not enough correct
samples available for accurate set structure estimation, then the accuracy of the set
based periocular recognition may slightly degrade, We observe that the proposed
framework is robust to approximately 17% outlier samples in image sets without
significant change in accuracy.

7.5. Execution Time
We compare the execution times of the six image set classification algorithms

on the five databases. Table 5 shows the average execution time for matching one
probe set with 114 gallery sets, on a 3.4GHz CPU with 8GB RAM for the MBGC
NIR database. The relative execution times for the other databases are similar.
We observe that the sample based techniques are computationally more expensive
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Table 5: Execution time in seconds for matching a single probe image-set with 114 gallery image
sets in the MBGC NIR database using 600-d LBP features.

Algorithm DCC MMD MDA AHISD CHISD SANP FSF+CSF
Train 13.11 6.16 21.95 N/A N/A N/A 164.91
Test 0.14 0.11 0.09 0.15 2.31 5.23 32.12

than the structure based techniques. The overall execution time of the proposed
two stage fusion approach is the sum of execution time for all algorithms. Note
that the execution time for SANP is lower than reported by the original authors
[22] and in our preliminary work [23]. This was achieved by normalizing all fea-
tures to unit norm. This significantly improves the convergence speed of the Ac-
celerated Proximal Gradient method used to find the sparse approximated nearest
points in the SANP algorithm without affecting the accuracy.

8. Conclusion and Future Work

This paper presented a fully automatic algorithm for periocular biometric based
person identification. An extensive study of the periocular biometric in the visi-
ble, NIR and the hyperspectral images was carried out to find the feasibility of this
emerging biometric. Periocular biometric recognition was formulated as an image
set classification problem. Such a formulation provides robustness to intra person
variations such as pose, eyelid and eyeball movements. Periocular image sets
were automatically extracted and represented by four feature types and six image
set classification algorithms were used for classification. Fusion was performed at
two stages namely feature scores and classifier scores. Different fusion schemes
were studied and the inverse Error Weighted Fusion (EWF) was found to yield
the best performance. Experiments were performed on four public databases, in-
cluding MBGC Visible and NIR, CMU Hyperspectral and UBIPr. Recognition
rates significantly higher than the current state of the art were achieved. Our re-
sults demonstrate the feasibility of image-set based periocular biometrics for real
world person identification in scenarios where the full face is not visible or may
have changed. Currently we report the computational time on 600 dimensional
LBP features. The computational time can be significantly reduced by reducing
the dimensionality of the features. In future we plan to carry out a thorough com-
parison of periocular biometrics with the full face biometrics.

25



Acknowledgements

This research was supported by ARC grants DP1096801 and DP110102399.

References

[1] P. Phillips, P. Flynn, T. Scruggs, K. Bowyer, J. Chang, K. Hoffman, J. Mar-
ques, J. Min, W. Worek, Overview of the face recognition grand challenge,
in: IEEE International Conference on Computer Vision and Pattern Recog-
nition, 2005, volume 1, pp. 947–954.

[2] L. Denes, P. Metes, Y. Liu, Hyperspectral Face Database, Technical Report
CMU-RI-TR-02-25, Robotics Inst., Pittsburgh, PA, 2002.

[3] C. Padole, H. Proenca, Periocular recognition: Analysis of performance
degradation factors, in: International Conference on Biometrics, 2012, pp.
439–445.

[4] F. Juefei-Xu, K. Luu, M. Savvides, T. Bui, C. Suen, Investigating age invari-
ant face recognition based on periocular biometrics, in: International Joint
Conference on Biometrics, 2011, pp. 1–7.

[5] J.-X. Du, C.-M. Zhai, Y.-Q. Ye, Face aging simulation and recognition based
on NMF algorithm with sparseness constraints, Neurocomputing 116 (2013)
250 – 259.

[6] K. W. Bowyer, K. Hollingsworth, P. J. Flynn, Image understanding for
iris biometrics: A survey, Computer Vision and Image Understanding 110
(2008) 281–307.

[7] Y. Song, W. Cao, Z. He, Robust iris recognition using sparse error correction
model and discriminative dictionary learning, Neurocomputing 137 (2014)
198 – 204.

[8] J. Huang, X. You, Y. Yuan, F. Yang, L. Lin, Rotation invariant iris feature
extraction using gaussian markov random fields with non-separable wavelet,
Neurocomputing 73 (2010) 883–894.

[9] U. Park, R. Jillela, A. Ross, A. Jain, Periocular biometrics in the visible
spectrum, IEEE Trans. on Info. Forensics and Sec. 6 (2011) 96–106.

26



[10] U. Park, A. Ross, A. Jain, Periocular biometrics in the visible spectrum: A
feasibility study, in: IEEE International Conference on Biometrics: Theory,
Applications, and Systems, 2009, pp. 1–6.

[11] K. Oh, B.-S. Oh, K.-A. Toh, W.-Y. Yau, H.-L. Eng, Combining sclera and
periocular features for multi-modal identity verification, Neurocomputing
128 (2014) 185–198.

[12] K. Hollingsworth, S. Darnell, P. Miller, D. Woodard, K. Bowyer, P. Flynn,
Human and machine performance on periocular biometrics under near-
infrared light and visible light, IEEE Trans. on Info. Forensics and Sec.
7 (2012) 588–601.

[13] D. Woodard, S. Pundlik, J. Lyle, P. Miller, Periocular region appearance cues
for biometric identification, in: IEEE International Conference on Computer
Vision and Pattern Recognition Workshops, 2010, pp. 162–169.

[14] D. Woodard, S. Pundlik, P. Miller, R. Jillela, A. Ross, On the fusion of peri-
ocular and iris biometrics in non-ideal imagery, in: International Conference
on Pattern Recognition, 2010, pp. 201–204.

[15] J. Adams, D. Woodard, G. Dozier, P. Miller, K. Bryant, G. Glenn, Genetic-
based type ii feature extraction for periocular biometric recognition: Less is
more, in: International Conference on Pattern Recognition, 2010, pp. 205–
208.

[16] J. Xu, M. Cha, J. Heyman, S. Venugopalan, R. Abiantun, M. Savvides, Ro-
bust local binary pattern feature sets for periocular biometric identification,
in: IEEE International Conference on Biometrics: Theory, Applications, and
Systems, 2010, pp. 1–8.

[17] Z. Cui, H. Chang, S. Shan, B. Ma, X. Chen, Joint sparse representation for
video-based face recognition, Neurocomputing 135 (2014) 306–312.

[18] H. Cevikalp, B. Triggs, Face recognition based on image sets, in: IEEE In-
ternational Conference on Computer Vision and Pattern Recognition, 2010,
pp. 2567–2573.

[19] T.-K. Kim, J. Kittler, R. Cipolla, Discriminative learning and recognition of
image set classes using canonical correlations, IEEE Trans. Pattern Anal.
Mach. Intell. 29 (2007) 1005–1018.

27



[20] R. Wang, S. Shan, X. Chen, W. Gao, Manifold-manifold distance with ap-
plication to face recognition based on image set, in: IEEE International
Conference on Computer Vsion and Pattern Recognition, 2008, pp. 1–8.

[21] R. Wang, X. Chen, Manifold discriminant analysis, in: IEEE International
Conference on Computer Vision and Pattern Recognition, 2009, pp. 429–
436.

[22] Y. Hu, A. Mian, R. Owens, Face recognition using sparse approximated
nearest points between image sets, IEEE Trans. Pattern Anal. Mach. Intell.
34 (2012) 1992–2004.

[23] M. Uzair, A. Mahmood, A. Mian, C. McDonald, Periocular biometric recog-
nition using image sets, in: IEEE Workshop on the Applications of Com-
puter Vision, 2013, pp. 246–251.

[24] A. H. T. Ahonen, M. Pietikainen, Face Description with Local Binary Pat-
terns: Application to Face Recognition, IEEE Trans. Pattern Anal. Mach.
Intell. 28 (2006) 2037–2041.

[25] P. E. Miller, A. W. Rawls, S. J. Pundlik, D. L. Woodard, Personal identifica-
tion using periocular skin texture, in: Proceedings of the ACM Symposium
on Applied Computing, 2010, pp. 1496–1500.

[26] NIST, Multiple Biometric Grand Challenge (MBGC) dataset
http://face.nist.gov/mbgc/, 2008.

[27] S. Bharadwaj, H. Bhatt, M. Vatsa, R. Singh, Periocular biometrics: When
iris recognition fails, in: IEEE International Conference on Biometrics: The-
ory, Applications, and Systems, 2010, pp. 1–6.

[28] H. Proenca, S. Filipe, R. Santos, J. Oliveira, L. Alexandre, The ubiris.v2: A
database of visible wavelength iris images captured on-the-move and at-a-
distance, IEEE Trans. Pattern Anal. Mach. Intell. 32 (2010) 1529–1535.

[29] V. Boddeti, J. Smereka, B. Kumar, A comparative evaluation of iris and
ocular recognition methods on challenging ocular images, in: International
Joint Conference on Biometrics, 2011, pp. 1–8.

[30] NIST, Face and Ocular Challenge Series (FOCS) dataset
http://www.nist.gov/itl/iad/ig/focs.cfm, 2010.

28



[31] F. Juefei-Xu, M. Savvides, Unconstrained periocular biometric acquisition
and recognition using cots ptz camera for uncooperative and non-cooperative
subjects, in: IEEE Workshop on the Applications of Computer Vision, 2012,
pp. 201–208.

[32] V. P. Pauca, M. Forkin, X. Xu, R. Plemmons, A. A. Ross, Challenging ocular
image recognition, BTHI, SPIE 8029 (2011) 80291V–80291V–13.

[33] F. Alonso-Fernandez, J. Bigün, Periocular recognition using retinotopic
sampling and gabor decomposition, in: European Conference on Computer
Vision, Workshops (2), 2012, pp. 309–318.

[34] BIT, CASIA Iris Image Database http://biometrics.idealtest.org, 2013.

[35] J. Fierrez-aguilar, J. Ortega-garcia, D. Torre-toledano, J. Gonzalez-
rodriguez, Biosec baseline corpus: A multimodal biometric database, Pat-
tern Recognition (2007) 1389–1392.

[36] P. Viola, M. Jones, Robust real-time face detection, International Journal of
Computer Vision 57 (2004) 137–154.

[37] L. Masek, Recognition of Human Iris Patterns for Biometric Identification,
Technical Report, The University of Western Australia, 2003.

[38] Y. Lee, R. Micheals, P. Phillips, Improvements in video-based automated
system for iris recognition, in: IEEE Workshop on Motion and Video Com-
puting (WMVC), 2009, pp. 1–8.

[39] B. Yang, S. Chen, A comparative study on local binary pattern LBP based
face recognition: LBP histogram versus LBP image, Neurocomputing 120
(2013) 365 – 379.

[40] J. Kittler, M. Hatef, R. P. W. Duin, J. Matas, On combining classifiers, IEEE
Trans. Pattern Anal. Mach. Intell. 20 (1998) 226–239.

[41] A. Sinha, H. Chen, D. Danu, T. Kirubarajan, M. Farooq, Estimation and
decision fusion: A survey, Neurocomputing 71 (2008) 2650–2656.

[42] F. Moreno Seco, J. Inesta, P. Ponce de Leon, L. Mico, Comparison of clas-
sifier fusion methods for classification in pattern recognition tasks, in: Inter-
national Workshops on Structural and Syntactic Pattern Recognition 2006,
pp. 705–713.

29


