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Abstract

Networks are data structures more and more frequently used for modeling

interactions in social and biological phenomena, as well as between various

types of devices, tools and machines. They can be either static or dynamic,

dependently on whether the modeled interactions are fixed or changeable

over time. Static networks have been extensively investigated in data min-

ing, while fewer studies have focused on dynamic networks and how to dis-

cover complex patterns in large, evolving networks. In this paper we focus

on the task of discovering changes in evolving networks and we overcome

some limits of existing methods i) by resorting to a relational approach for

representing networks characterized by heterogeneous nodes and/or hetero-

geneous relationships, and ii) by proposing a novel algorithm for discovering

changes in the structure of a dynamic network over time. Experimental re-

sults and comparisons with existing approaches on real-world datasets prove

the effectiveness and efficiency of the proposed solution and provide some
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insights on the effect of some parameters in discovering and modeling the

evolution of the whole network, or a subpart of it.

Keywords: Evolving networks. Discovery of evolution chains. Discovery of

change patterns. Change mining in networked data.

1. Introduction

Network structures typically consist of entities, also of different types,

which are associated to each other in the network via various explicit rela-

tions (or edges). Analyzing and mining networked data allows us to discover

the properties of nodes, as well as to capture topological, geometric and other

characteristics of the structure of the network in many contexts (such as so-

cial networks, biological networks, chemical compounds and hidden criminal

networks)[1].

Most objects and data in the real world are of multiple types and are

interconnected, forming complex and heterogeneous information networks

[2]. However, researchers mainly focus on analyzing and mining homoge-

neous networks, without distinguishing different types of objects and links in

them. Mining heterogeneous networks requires for attention not only on the

attributes which may describe nodes and links, but also on the possibly dif-

ferent types of nodes (with different attributes) and different types of edges

among them.

Moreover, most of the existing algorithms developed to learn or analyze

networked data assume that the network is static, i.e., the structure of the

network is unchangeable and known before the learning process starts. This

assumption also seems to be too restrictive in real-world scenarios, where
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networks can be dynamic and can exhibit changes especially when modeling

phenomena which evolve over time. In this case, the networks are observed

at consecutive snapshots, so that a stream of data can be generated. In this

stream, properties of both nodes and edges may change over time and both

nodes and edges of the networks may appear and disappear. For instance, in

social networks, nodes can denote users (or “users profiles”). Two users can

be connected, at a certain time-point, through the relationship “participa-

tion in the same event”, but at a different time-point they can be connected

through the relationship “friendship”. By analyzing network changes, we can

follow variations, adapt tools and services to new demands, as well as cap-

ture and delay undesirable alterations. Moreover, time associated to changes

represents a valuable source of information which should be modeled to bet-

ter understand both the whole dynamics and each change in the course of

the dynamics. For example, in social networks the time of appearance of

links among the users may convey important information on the formation

of social communities [3].

Heterogeneity and dynamicity of the networks require for a different class

of data mining methods and different representation formalisms which are

able to overcome limitations of current methods. In the literature, the task

of change mining has been mainly explored for time-series, transactional data

and tabular data, by focusing on the detection of significant deviations in the

values of the attributes describing the data. However, research on network

analysis has mainly investigated graph-theoretical approaches, which over-

simplify the representation of networks. Indeed, graph-theory mainly inves-

tigates structural aspects, such as distance and connectivity, in homogeneous
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networks, while it dedicates less attention to heterogeneous networks.

This heterogeneity of nodes and edges requires for different representation

formalisms and, consequently, a different class of data mining methods which

are able to handle this further complexity in the data. It has been argued

that the (multi-) relational setting [4] is the most suitable for data mining

problems on complex objects, since it can deal with the heterogeneity, it can

distinguish the different role of object types (target or non-target, that is,

primary units of analysis or secondary units of analysis), it can naturally rep-

resent a large variety of relationships among objects, it can characterize the

change in objects and it can accommodate temporal information associated

to the change. However, very few attempts have been made to investigate

this class of data mining methods in the case of dynamic and heterogeneous

networks, and so the current work is intended to be a contribution in this

direction.

We investigate the problem of change mining in dynamic and hetero-

geneous networks through an approach which exploits the representation

formalism and reasoning techniques of the most common multi-relational

framework, namely inductive logic programming (ILP)[5]. The formalism

of first order logic available in ILP allows us to straightforwardly model re-

lationships and properties of nodes and edges with logical predicates and,

therefore, it introduces an articulated and sophisticated representation of a

network. Indeed, since a network can always be represented in the first order

logic formalism but, on the contrary, first order logic data cannot always be

represented as a network, the proposed approach could also be applied to rep-
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resentations which are more complex than a (even heterogeneous) network1.

Moreover, the ILP framework allows us to exploit (when available) some

forms of background knowledge which facilitates the learning task. However,

resorting to ILP solutions, while providing the benefits described before, can

also lead to efficiency problems which we alleviate through an efficient search

procedure.

In the task we consider, changes denote the evolution of relationships

or properties which emerge in the network at consecutive time windows.

They are expressed in the form of change chains, which are sequences of fre-

quent patterns which accommodate temporal information associated to the

change. Frequent patterns are discoveredalong time windows. In particular,

each frequent pattern represents a portion of the network which is frequently

observed in the state of the network along the time window. Changes are

punctual differences exhibited by the frequent patterns over consecutive win-

dows. Mining changes from the frequent patterns leads to several advantages:

• Frequent patterns allow us to search for changes in an abstract and

summarized description of the network, with the final result of reducing

the computational cost with respect to directly analyzing data.

• Since frequency denotes statistical evidence, frequent patterns provide

arguments for the robustness of our method. Patterns are also justified

by the fact that a dynamic network actually exhibits changes only in

some aspects, while it keeps others unchanged, and, therefore, they

1For example, is-a relationships between objects cannot be represented in the network-

based formalism.
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turn out to be a suitable means to capture those regularities which are

present over time.

• Resorting to a relational data mining solution allows us to identify pat-

terns which, in addition to common features, represent both structural

and topological properties of the network and, thus, structural and

topological changes of the network over time. In particular, we can

represent different aspects of the network such as nodes (is a(X,user),

X is a node of the network which represents a user), nodes’ properties

(age of the user(X,20)) and edges (friendship(X,Y)). The first and the

third aspect allow us to represent the structure of the network and

thus, its topological properties.

It is noteworthy that high-frequency patterns correspond to situations

which are observed in several snapshots of the network. Therefore, the term

“frequent” does not refer to properties which are common to many objects

(nodes) of the network, but it refers to properties of the same network which

are observed at different timestamps. This allows us to catch changes that

are associated to a small set of objects in the network.

An example of a change chain which can be extracted in the context of

social network analysis is ⟨P1, P2, P3⟩, where:

P1: network(N), subscribed to(X,N), is a(X,user), subscribed to(Y,N), is a(Y, user),

subscribed to(W,N), is a(W, group),participation to the same event(X,Y),

membership(X,W ),membership(Y,W ) [October 2010]

P2: network(N), subscribed to(X,N), is a(X,user), subscribed to(Y,N), is a(Y, user),

subscribed to(W,N), is a(W, group),membership to the same group(X,Y),
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membership(X,W ),membership(Y,W ) [November 2010]

P3: network(N), subscribed to(Z,N), is a(Z, user), subscribed to(Y,N), is a(Y, user),

subscribed to(W,N), is a(W, group), friendship(Z,Y),

membership(X,W ),membership(Y,W ) [December 2010]

P1 states that two users (denoted with the variables X, Y ) are (fre-

quently) connected through the participation in the same event(X, Y ) re-

lationship during the time window [October 2010]. Pattern P1 also expresses

the membership of the two users X and Y in the group denoted as W . P2

and P3 refer to different time windows and are similar to P1, except that the

relationship between the same users differs. ⟨P1, P2, P3⟩ includes two changes

expressed by the pairs of patterns (P1,P2) and (P2,P3) respectively. The first

change is associated to the time window pair [October 2010],[November 2010]

and concerns the edge participation in the same event(X,Y) in the pattern

P1 which becomes membership to the same group(X,Y) in pattern P2. The

second change is associated to the time-window pair [November 2010], [De-

cember 2010] and concerns the edge membership to the same group(X,Y) in

pattern P2 which becomes friendship(Z,Y) in pattern P3.

The novelty of the proposal is clarified in the next section, where related

works are introduced and discussed. Then the problem faced in the paper

is formally stated in Section 3. In Section 4, the proposed computational

solution is reported. We structure it in two main steps and describe the

algorithmic details to implement them. Also, we discuss the importance of a

user-defined background knowledge for the presented approach and finally we

report a theoretical analysis of the time complexity. The experimental setting

is detailed in Section 5, where the results are also reported and evaluated.
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Finally, in Section 6, conclusions are drawn and future research directions

are identified.

2. Related Work and Motivations

Although numerous contributions can be listed under the umbrella of change

mining, the investigation of this problem in dynamic networks is rather re-

cent. In this context, two approaches can be identified:

i) Clustering-based solutions, which work on the identification of the

changes in the global properties of the network;

ii) Frequent pattern mining-based solutions, which focus on the charac-

terization of changes of local properties.

Clustering-based solutions are based on the intuition that clusters provide

a natural summary for understanding both the underlying network structure

and the inherent changes during the evolution process [6]. For example, in

the context of social networks, in [7] the authors propose a method to se-

lectively store a subset of graphs, in order to approximate the entire graph

stream and to find community changes in time-evolving graphs based on the

user specified time interval and on the number of the communities. Sun et

al. [8] propose a technique to discover communities (clusters) and detect

changes in clusters extracted at different time points. Clusters are repre-

sented according to some encoding schemes and the algorithm exploits the

MDL principle. A similar idea is used in [9] and [10] where the authors pro-

pose to incrementally and efficiently summarize tensors by exploiting tensor

analysis. In [11] the authors focus on the problem of publication analysis,
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in order to identify changes and evolution of research communities. The al-

gorithm is based on a specifically designed description language to compress

publication information in a bipartite graph with time stamps. The goal is

to operate on such a time-stamped graph and exploit the MDL principle,

in order to automatically spot communities, their evolution and cut-points

between epochs of stable community evolution.

A hierarchical clustering technique is used in [12] to identify periods of

evolution (eras) of a dynamic network. A period is associated to a cluster

and it is produced as a sequence of structurally similar temporal snapshots of

the network, so a new cluster represents a structural change with respect to

previously generated clusters and denotes the beginning of a new period. An

interesting feature of this solution is the possibility to analyze the evolution of

the network at different temporal granularity levels, thanks to the adoption

of hierarchically related clusters.

Another research stream focuses on the aspect of using visualization tech-

niques in order to present the evolution of the network. For example, in [3],

the authors propose to cluster together nodes in order to identify subgroups.

Once subgroups have been identified, it is possible to visualize both the evo-

lution of a subgroup and the evolution of connections among the subgroups.

A different perspective of the problem that does not resort to the cluster-

ing task is given in [13], where the authors study the temporally evolving web

graphs. The peculiarity of this work is that the mining problem is divided

into three levels of interest: single node, subgraphs and whole graph analy-

sis, each of which is faced with different techniques. The level of subgraphs,

which is more related to the task considered in this paper, is solved by means
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of frequent pattern mining solutions.

In [14] the authors present one of the most recent works which extracts

changes in the form of patterns. In this work the authors study the prob-

lem of analyzing the whole evolution of the network and propose a method

which creates a graph (i.e. a set of patterns) where conserved states of the

network are the vertices while the admissible transitions among those states

are the edges. The conserved states correspond to sequences of consecutive

time-stamped networks with structural similarity. They are represented as

induced sub-graphs whose configuration of the relations (labelled edges) and

nodes occurs frequently over the corresponding sequence. The transitions are

associated to modifications on the nodes of a state and can determine the

migration towards the next state. The paths of the graph of the states rep-

resent alternative courses which can characterize the whole evolution. Only

those which are considered maximal are retained. Although the discovery

of the conserved states is based on probabilistic evidence, the discovery of

transitions relies on the mere (dis)similarity between the nodes of two states.

In [15], we investigated the task of characterizing the evolution by in-

troducing a new notion of emerging patterns [16]. In that work, emerging

patterns model changes on the frequency and topology of the sub-graphs,

occurring over consecutive pre-defined time-periods. In [17] the authors pro-

pose a method to mine frequent subsequences from graph sequence data in

the form of patterns. They also define a formalism to represent changes of

subgraphs over time. However, as observed in [18], the patterns discard in-

formation on the time in which the changes take place. In [19] the authors

identify subgraphs changing over time by means of vertex-importance scores
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and vertex-closeness changes in subsequent snapshots of the graphs. The

basic intuition comes from the social network domain: if two (important)

nodes A and B are connected, then the distance (closeness) between nodes

which are connected to A and nodes which are connected to B decreases

(increases). Consequently, the notion of subgraph does not depend on the

frequencies, which we consider important for the robustness of the mining

task, but on the importance scores (which are computed using random walks).

In [20] and [18] the history of an edge (absence and presence) is represented

as a sequence. Then graph-mining techniques are applied to mine frequent

patterns. In [18] the authors propose several optimizations that lead to ex-

tracting “Graph Evolution Rules” from larger networks. These optimizations

are implemented in the system GERM.

Lahiri et. al. [21] introduce an approach to predict the future structure

in a dynamic network and mine periodic patterns using frequent subgraphs.

The approach proposed in [22] follows the same principle, but a compression-

based measure is used instead of the frequency-based approach, in order to

discover patterns in a dynamic graph.

Dynamic spatio-temporal networks are analyzed in [23], in order to track

the movements of objects recorded in video data. A sequence of graphs

models the video by associating a graph to a video-frame: the nodes denote

regions which contain examined objects and edges represent the adjacency

relationship between nodes. The goal is to mine frequent plane subgraphs

from a database of plane graphs. These subgraphs are then used to generate

spatiotemporal patterns, where a spatiotemporal pattern is a set of occur-

rences of a given pattern, such that occurrences are not too far apart, for
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close time points. In the considered application domain, a spatiotemporal

pattern is used to track an object in a video.

By comparing clustering-based approaches and pattern-based approaches,

we conclude that, while the former provide us an enumeration of the en-

tities which show similar changes, the latter provide us a more human-

understandable characterization of changes in a dynamic network. Since we

aim at both characterizing and describing changes, we focus on the problem

of extracting patterns from dynamic networks. Moreover, differently from

existing approaches that extract patterns in order to identify changes due to

insertion/deletions of nodes/edges in the network (GERM is an example of

approach that identifies single insertions), we consider the less investigated

(but still important) problem of identifying changes in the same (frequent)

subgraphs across different time windows. In other words, we concentrate on

structural updates of the network rather than either insertions or deletions.

3. Basics and Problem Definition

Before formally stating the data mining problem, we introduce some basic

definitions. We first provide basics and notations for data representation,

then we provide formal definitions of change chains. Eventually, we provide

a formal definition of the problem to be solved.

3.1. Data representation

Let O = ⟨O1, O2, . . . , On⟩ be a sequence of time-ordered observations of

the network, obtained at regular time-points. At each time-point ti, the

network is described by an observation Oi = ⟨Ni, Ei⟩, where Ni denotes the
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sets of nodes, Ei = {(u′j, u′′j , ej) | u′j, u′′j ∈ Ni, ej ∈ E} represents the edges

and E denotes the set of all possible labels of the edges.

A time-period (or time window or, simply, period) τ in {t1 . . . tn} is a

sequence of consecutive time-points {ti, . . . , tj} (t1 ≤ ti, tj ≤ tn). The width

w of τ is the number of time-points in τ , i.e. w = j−i+1. Two periods τ and

τ ′ are said to be consecutive if τ = {ti, . . . , ti+w} and τ ′ = {ti+w+1 . . . ti+2w}.

Since we assume that all the periods have the same width w, we enumerate

periods and use the notation τh and τh+1 to indicate two consecutive periods.

In the relational setting, when handling complex objects such as networks,

different roles can be played by different types of data. More precisely, ob-

jects can be distinguished as target objects of analysis (TOs) and non-target

objects of analysis (NTOs). In our context, TOs represent the whole network

at a single time-point, that is Oi, while NTOs refer to nodes (of different

types) of a network. This distinction, which comes from a usual practice in

statistics of distinguishing between units of analysis and units of observation,

allows us to generalize on the units of analysis, i.e. on the state of the net-

work. It is noteworthy that TOs play a crucial role since they are used in the

computation of the support of a pattern (this aspect will be discussed later).

We denote the unique set of TOs as S and the multiple sets of NTOs as Rk

(1 ≤ k ≤ M), where M denotes the number of sets of NTOs. For example,

in the description of the state of the network in Figure 1, ati is the TO which

represents the whole network at time ti, while u1 (user), u2 (user) and g1

(group) are NTOs. It is noteworthy that constants u1, u2 and g1 are local

to the snapshot of the network at time ti. Thus, they can represent different

objects in two distinct snapshots.
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Both target objects and non-target objects can be represented in Datalog

[24] as sets of ground atoms2 which populate the extensional part DE of a

deductive database D. Since we can populate DE with the ground atoms

of TOs and NTOs observed in a specific time-period τh, we can actually

associate a deductive database Dh to each time-period τh.

Some predicate symbols are introduced in order to express both properties

of TOs and NTOs and relationships between them. They can be categorized

into four classes:

1. key predicate: it identifies the TOs in DE
h (e.g., network(ati) in the

example in Figure 1);

2. property predicates: they are binary predicates which define the values

taken by an attribute of a TO or an NTO (e.g., age of the user(u1,20),

in Figure 1);

3. structural predicates: they are binary predicates which relate an NTO

or a TO with another NTO (e.g., friendship(u1,u2) in Figure 1);

4. is a predicate: it is a binary predicate which associates an NTO with

its type (in the example in Figure 1 there are two users and one group).

In our definition of the problem, an NTO can be represented at differ-

ent levels of granularity since it is possible to define hierarchies on each

single type. In this way, it is possible to represent relationships between

both individual objects and sets of objects, for instance we can repre-

2A ground atom is an n-ary logic predicate symbol applied to n constants. We assume

that the reader is familiar with some basic notions of computational logic, such as term,

atom, literal, clause and substitution. Readers unfamiliar with this terminology should

consult [25].
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a) b)

network(ati ),

subscribed to(u1,ati ),

subscribed to(u2,ati ),

subscribed to(g1,ati ),

is a(u1,user), age of the user(u1,20),

is a(u2,user), age of the user(u2,41),

is a(g2,group), friendship(u1,u2),

membership(u1,g1),

membership(u2,g1)

Figure 1: The state of the network at the time point ti: a) Datalog representation and b)

graphical representation.

(a) (b)

friendship(john, james);

friendship(graduatedstudent, teacher);

friendship(user, user);

Figure 2: Given the hierarchy on the type “users” (in (b)), we represent the same rela-

tionship at different granularity levels (in (a)).

sent the hierarchical relationship between an individual object (e.g.,

”James”) and a set (e.g., ”teacher”, see Figure 2).

A structural predicate which relates two NTOs (also belonging to dif-

ferent types) represents the label of the edge connecting the nodes, which

correspond to the two NTOs in the network.

The intensional part DI
h of the deductive database Dh allows the user

to define a graph which models the background knowledge on the labels of

the edges of the network3. More precisely, this graph allows us to express

3In order to avoid confusion, in the paper, the terms network and graph are not used

interchangeably.
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the pair-wise dissimilarity between the labels of the network in the form of

Datalog facts.

For instance

friendship 0.88 membership in the same group

states that the dissimilarity between the labels friendship(·, ·) and member-

ship in the same group(·, ·) is 0.88. More generally, it represents an undi-

rected weighted link between two vertices vi, vj (e.g., between friendship and

membership in the same group) with weight wij (e.g., 0.88) and it is denoted

as l(vi, vj, w). A finite sequence of undirected links l1, l2, . . . , lm which con-

nects two vertices vi, vj is called SPath and denoted as ρ(vi, vj). More specif-

ically, SPath is the shortest path which connects vi and vj. The complete list

of such undirected links represents a user-defined background information on

the dissimilarity between the labels of the network and, accordingly, allows

us to quantify the change between two patterns. All deductive databases Dh

share the same intensional part DI
h=DI .

While defining the background knowledge can be a problem in some ap-

plication domains, it can also be an opportunity since it can also be profitably

used by domain experts in order to adequately configure the system and ex-

tract useful and actionable knowledge. The effort in defining the background

knowledge would mostly lie in the identification of the values of dissimilarity

between pairs of the labels of the edges. Since in our approach the number

of different labels is rather limited, the definition of the background is not

a demanding task for the expert. When this background knowledge is not

provided, all dissimilarities between labels of edges will be considered equal.

16



3.2. Change Patterns and Change Chains

Relational patterns consist of Datalog non-ground atoms and are ex-

pressed by means of a set notation. A Datalog non-ground atom is an n-ary

predicate symbol applied to n terms (either constants or variables), at least

one of which is a variable. A formal definition of pattern is reported in the

following:

Definition 1. Relational pattern

Let P be a set of atoms, P is a relational pattern iff

P = p0(t
1
0), p1(t

1
1, t

2
1), p2(t

1
2, t

2
2), . . . , pk(t

1
k, t

2
k),

where p0 is the key predicate, while pi, i = 1, . . . , k is either a structural

predicate or a property predicate or an is a predicate. Moreover, all variables

are connected to the variable used in the key predicate (according to the

linkedness property). �

Terms tji are either constants, which correspond to values of property

predicates, or variables, which identify target objects or non-target objects.

Each pi is a predicate occurring in DE
h (extensionally defined predicate).

A relational pattern P is characterized by a statistical parameter, namely

the support (denoted as supp(P )), which denotes the relative frequency, com-

puted on TOs, of P in a time-period τh. When the support exceeds a mini-

mum user-defined threshold, P is said to be frequent.

The following definitions are crucial for this work:

Definition 2. Stable pattern

17



Let P be a relational pattern and τh, τh+1 be two consecutive time-periods.

If P is frequent both in τh and τh+1 then P is stable in [τh, τh+1]. �

Definition 3. Change pattern

Let:

• τh, τh+1 be two consecutive time-periods;

• P ′ = p0(t
′1
0), p1(t

′1
1, t
′2
1), . . . , pk−1(t

′1
k−1, t

′2
k−1), p

′
k(t
′1
k, t
′2
k), pk+1(t

′1
k+1, t

′2
k+1) . . .

be a frequent relational pattern in τh and a non-frequent relational pat-

tern in τh+1;

• P ′′ = p0(t
′′1
0), p1(t

′′1
1, t
′′2
1), . . . , pk−1(t

′′1
k−1, t

′′2
k−1), p

′′
k(t
′′1
k, t
′′2
k), pk+1(t

′′1
k+1, t

′′2
k+1) . . .

be a frequent relational pattern in τh+1 and a non-frequent relational

pattern in τh.

Then:

P (c) = p0(t
1
0), p1(t

1
1, t

2
1), . . . , pk−1(t

1
k−1, t

2
k−1), (p

′
k(t

1
k, t

2
k) → p′′k(t

1
k, t

2
k)), pk+1(t

1
k+1, t

2
k+1) . . .

[τh, τh+1]

is a change pattern in [τh, τh+1] iff

• p′k and p′′k are different structural predicates which correspond to labels

of edges in the network;

• P (c), P ′ and P ′′ are equal, except for the k-th atom and up to a re-

denomination of the variables. �
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Since p′k and p′′k express the change across two consecutive time-periods,

we use the following notation:

P (c) = p0(t
1
0), p1(t

1
1, t

2
1), . . . , (p

τh
k (t1k, t

2
k) → p

τh+1

k (t1k, t
2
k)), . . .

[τh, τh+1],

where the symbol “ → ” in (pτhk (·, ·) → p
τh+1

k (·, ·)) indicates that the predicate

pτhk (·, ·), observed in the period τh, becomes p
τh+1

k (·, ·) in the period τh+1. A

change pattern is characterized by a value γ which quantifies the modelled

change (further details on γ will be provided in the following).

An example of a change pattern between the time-periods October 2010

and November 2010 is:

P
(c)
4 : network(N),

subscribed to(X,N), is a(X,user),

subscribed to(Y,N), is a(Y, user),(
participation in the same eventOctober 2010(X,Y) →

membership in the same groupNovember 2010(X,Y)
)
. [October 2010, November 2010],

where the variable N denotes the target object, variables X, Y denote some

non-target objects, while the predicate network(·) identifies the key predicate

and participation in the same event(·, ·) andmembership in the same group(·, ·)

are structural predicates. All variables are implicitly existentially quantified.

Intuitively, change patterns are obtained by joining relational patterns ex-

tracted at consecutive time-periods. In this case, P
(c)
4 is derived from P5 and

P6:
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P5 : network(N),

subscribed to(X,N), is a(X,user),

subscribed to(Y,N), is a(Y, user),

participation in the same event(X,Y ). [October 2010]

P6 : network(N),

subscribed to(Z,N), is a(Z, user),

subscribed to(Y,N), is a(Y, user),

membership in the same group(Z, Y ). [November 2010]

Details on how joining is performed are provided in the next Section.

As stated before, this definition of change pattern allows us to identify

changes in the same subgraphs (of the same size) across different time win-

dows. However, if a pattern of length n is frequent and the same pattern

with an additional literal is frequent as well, they are both considered in

the change patterns. Since that point, they are processed independently,

although their frequencies still remain strictly related and variations on one

pattern will significantly influence variations on the other pattern.

Once we have defined the concepts of stable and change patterns, we can

define the concept of a change chain.

Definition 4. Change Chain

Let:

• P1, P2,. . . , Pn be a list of relational patterns which are frequent in the

time-periods τ1, τ2, . . . , τn, respectively;

• P
(c)
1,2 be a change pattern for [τ1, τ2] derived from P1 and P2,
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• P
(c)
n−1,n be a change pattern for [τn−1, τn] derived from Pn−1 and Pn,

• Pi,i+1, i = 2, . . . , n− 2 be either change patterns or stable patterns for

[τi, τi+1] derived from Pi and Pi+1.

Then:

C = ⟨P (c)
1,2 ;P2,3; . . . ;Pn−2,n−1;P

(c)
n−1,n⟩ is a change chain. �

Intuitively, a change chain collects the (most frequent) changes that the net-

work exhibits in pairs of consecutive time-periods, possibly alternating with

stable time-periods. The changes are modelled in the form of change pat-

terns. An example of a change chain with only change patterns is:

⟨

network(N), subscribed to(X,N), is a(X,user), subscribed to(Y,N), is a(Y, user),

(participation in the same eventOctober 2010(X,Y)

→ membership in the same groupNovember 2010(X,Y))

[October 2010, November 2010];

network(N), subscribed to(X,N), is a(X,user), subscribed to(Y,N), is a(Y, user),

(membership in the same groupNovember 2010(Z,Y)

→ friendshipDecember 2010(Z,Y))

[November 2010, December 2010] ⟩

An example of a change chain which includes both stable and change

patterns is:

⟨

network(N), subscribed to(X,N), is a(X,user), subscribed to(Y,N), is a(Y, user),
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(participation in the same eventOctober 2010(X,Y)

→ membership in the same groupNovember 2010(X,Y))

[October 2010, November 2010];

network(N), subscribed to(X,N), is a(X,user), subscribed to(Y,N), is a(Y, user),

membership in the same group(Z, Y ) [November 2010, December 2010];

network(N), subscribed to(X,N), is a(X,user), subscribed to(Y,N), is a(Y, user),

(membership in the same groupDecember 2010(Z,Y)

→ friendshipJanuary 2011(Z,Y))

[December 2010, January 2011]

⟩

3.3. Formal definition of the problem

We can now give a formal statement of the problem of discovering change

patterns and change chains:

Given:

• A sequence of n observations ⟨O1, . . . , On⟩;

• the width w of the time-periods;

• a threshold minSup ∈ [0; 1], which represents the minimum support

value for mining relational frequent patterns;

• a threshold minΓ ∈ [0; 1], which defines the minimum dissimilarity

value (between the labels of the edge) allowed to detect the change

between two different structural predicates;

• two thresholds minP , maxP , which determine the minimum and max-

imum number of change patterns in a change chain, respectively;
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• a threshold maxS, which determines the maximum number of stable

patterns in a change chain.4

Find:

• The set Υ of change patterns. They are built by using only patterns

whose support is greater thanminSup, and by considering only changes

where structural predicates differ at least by minΓ.

• The set Ψ of change chains generated by Υ. They are built by satisfying

the constraints set by minP , maxP , and maxS.

4. The Algorithm

The computational solution which we propose for the problem formalized

in the previous section operates in three steps: i) discovering a set of frequent

relational patterns Ph from each deductive database Dh built on the TOs

and NTOs of the time-period τh; ii) generating change patterns from the

frequent patterns; iii) generating change chains from both the discovered

change patterns and the stable patterns.

4.1. Discovering Frequent Relational Patterns

We define as units of analysis the target objects on which patterns are

determined and which contribute to compute the support of a pattern. The

non-target objects contribute to define the units of analysis and can be in-

volved in a pattern. The support supph(P ) of a pattern P is the percentage

4Implicitly, minP , maxP , and maxS define the minimum and the maximum length of

a change chain.
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of units of analysis in Dh covered by P . More precisely, the set of units of

analysis Dh[s] of a target object s ∈ S in the time-period τh is a subset of

ground atoms in DE
h defined as follows:

Dh[s] = is a(Rh(s)) ∪Dh[s|Rh(s)] ∪
∪

ri∈Rh(s)

Dh[ri|Rh(s)], (1)

where Rh(s) is the set of NTO directly or indirectly related to s in τh,

is a(Rh(s)) is the set of is a atoms which define the types of ri ∈ Rh(s),

Dh[s|Rh(s)] contains properties of s and relations between s and some ri ∈

Rh(s) in τh, Dh[ri|Rh(s)] contains properties of ri and relations between ri

and some rj ∈ Rh(s) in τh. By assigning a pattern P with an existentially

quantified conjunctive formula eqc(P ), obtained by transforming P into a

Datalog query, the units of analysis Dh[s] are covered by a pattern P if

Dh[s] |= eqc(P ), namely Dh[s] logically entails eqc(P ).

Frequent patterns are mined with SPADA[26, 27], which enables the dis-

covery of relational patterns (at different levels of granularity) whose support

exceeds minSup. SPADA performs a breadth-first search of the space of pat-

terns, from the most general to the more specific ones, and prunes portions

of the space which contain only non-frequent patterns. The pruning strategy

guarantees that all non-frequent patterns are removed and, to this aim, uses

a generality ordering based on the notion of θ-subsumption [28]:

Definition 5. P ′ is more general than P ′′ under θ-subsumption (P ′ ≽θ P
′′),

if and only if P ′ θ-subsumes P ′′, i.e. a substitution θ exists, such that P ′θ ⊆

P ′′.

For instance, given the following relational patterns:
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P7 ≡ network(N), subscribed to(X,N), is a(X,user)

P8 ≡ network(N), subscribed to(X,N), is a(X,user), subscribed to(Y,N)

P9 ≡ network(N), subscribed to(X,N), is a(X,user), subscribed to(Y,N), is a(Y, user)

we observe that P7 θ-subsumes P8 (P7 ≽θ P8) and P8 θ-subsumes P9 (P7 ≽θ

P9) with substitutions θ1 = θ2 = ⊘. The generality order is monotonic with

respect to the pattern support, so whenever P7 is non-frequent, its more

specific patterns (e.g., P8, P9) will be non-frequent too.

The search is based on the level-wise method and implements a two-

stepped procedure:

• i) generation of candidate patterns with k atoms (k -th level) by con-

sidering the frequent patterns with k − 1 atoms ( (k-1 )-th level);

• ii) evaluation of the frequency of the patterns with k atoms. So, the

patterns whose support does not exceed minSup will not be considered

for the next level.

Since in real-world applications a large number of frequent patterns can be

generated, SPADA also offers a declarative language to express some pattern

constraints which are then used to filter out uninteresting patterns [29].

SPADA has been recently extended in order to handle very large data sets

[30]. This extension resorts to data sampling and distributed computation in

Grid environments, and generates a set of frequent patterns which approxi-

mates of the set of exact solutions. In this work experiments could still be

performed by applying the original serial version of SPADA. Nevertheless,

for very large data sets, the parallel, distributed version of SPADA should
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be considered. Obviously, the use of SPADA for mining frequent relational

patterns does not exclude the possibility of using other methods in this initial

processing step.

4.2. Generating Change Patterns

This step is in charge of generating change patterns by combining the sets

of frequent patterns Ph, Ph+1 extracted from data of the two consecutive

time-periods τh and τh+1, respectively. Each change represents differences

between the atoms of a pattern in Ph and the atoms of a pattern in Ph+1.

The atoms considered are those whose predicates correspond to the la-

bels on the edges E of the network, while the difference between the atoms

is quantified by the dissimilarity value between the labels of the edges (ac-

cording to the background knowledge DI). A change pattern is the result of

the combination of two patterns which differ in only one atom.

Algorithm 1 describes how frequent patterns in Ph and Ph+1 are com-

bined. In particular, the algorithm first creates a bipartite graph GD, which

represents the candidate patterns to be combined (lines 1-6) and then uses

the graph to construct change patterns Υh,h+1 (lines 7-16).

Concerning the first part, GD is a bipartite graph where vertices are par-

titioned into those representing patterns in Ph and those representing pat-

terns in Ph+1. As in classical bipartite graphs, only inter-partition links are

allowed. For each pair of patterns which have the same length (namely, at

the same level of the level-wise search method) the system checks whether

they differ in only one atom and share the remaining atoms up to a re-

denomination of variables (line 2). Let α and β be the two atoms which

differentiate P ′ ∈ Ph from P ′′ ∈ Ph+1 (α in P ′, β in P ′′), then the shortest
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Data: Ph,Ph+1, D
I ,minΓ

Result: Υh,h+1

1 for (P ′, P ′′) ∈ Ph × Ph+1 do

2 if length(P ′) = length(P ′′) and check atoms(P ′, P ′′) then

3 (α, β) := atoms diff(P ′, P ′′); // α, β atoms differentiating P ′, P ′′

4 ω := compute distance(α, β,DI);

5 if ω ≥ minΓ then

6 addV ertex(P ′,GD); addV ertex(P ′′,GD); addLink(P ′, P ′′, ω,GD);

7 LD ← links of GD;

8 Υh,h+1 := ⊘;

9 for ⟨P ′, P ′′, ω⟩ ∈ LD // list of links ordered in descending mode w.r.t. ω

10 do

11 P ′′′ ← combine(P ′, P ′′);

12 set γ(P ′′′, ω);

13 Υh,h+1 := Υh,h+1 ∪ P ′′′;

14 removeV ertex(P ′,GD);

15 removeV ertex(P ′′,GD);

16 LD ← links of GD;

Algorithm 1: Mining Change Relational Patterns

path ρ which connects α and β (or viceversa) is searched among the weighted

links inDI . If the sum ω of the weights (dissimilarities) found in the path (see

Algorithm 2) is higher than the minimum change minΓ, the vertices P ′ and

P ′′ are inserted into GD and connected through a link with weight ω (lines 3-6,

Algorithm 1). Intuitively, at the end of the first sub-procedure, GD will con-

tain, as vertices, the patterns which meet the condition in line 2 (Algorithm

1), and it will contain, as links, the weights associated to the path linking

the atoms which differentiate the patterns. The minimum change thresh-

old minΓ is considered to prevent the generation of uninteresting change

patterns. This allows us to prune the search space.

Once GD is built, in the second part of the algorithm the vertices, which

are connected by means of a link, are transformed into change patterns. In
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particular, a list LD is populated with the vertices and links of GD: an element

of LD is a triple ⟨P ′, P ′′, ω⟩ composed of a pair of patterns (P ′, P ′′) with their

relative weight. Elements in LD are ranked in descending order with respect

to the values of ω (line 9). This guarantees that change patterns with less

similar atoms will be preferred to the others. For each element in LD, the

two patterns P ′ and P ′′ are combined, in order to generate a pattern P ′′′,

composed of the same atoms in common to P ′ and P ′′, as well as of the atom

formed by the composition of two different atoms (lines 11-12). The value γ

associated to P ′′′ is exactly ω, computed according to Algorithm 2.

Data: α, β,DI

Result: ω

1 vi = getLabel(α) vj = getLabel(β);

2 if ρ(vi, vj) ̸= ⊘ // Shortest path between vi and vj in DI

3 then

4 ω :=
∑

l(vk,vq,wkq) ∈ ρ(vi,vj)

wkq ;

5 else

6 ω := +∞;

Algorithm 2: Dissimilarity between patterns according to DI

This combination procedure allows us to build Υh,h+1. At each iteration,

the triple for the patterns P ′ and P ′′ is removed from LD (lines 14-15), as

already considered in Υh,h+1.

In Figure 3 we report a toy example for the generation of change pat-

terns. Two frequent patterns discovered in two consecutive time-periods

(April 1990 and May 1990) are combined to form a change pattern if they

differ in only one predicate. More precisely, they are combined if the predi-

cates in which the patterns differ correspond to two different labels of edges

which are dissimilar more than the threshold minΓ. By supposing minΓ =

28



Figure 3: Change patterns are created by combining frequent patterns which are discovered

in two consecutive time-periods and which differ in only one predicate. The graph at the

top of the picture represents the dissimilarity between labels.

0.3, we can combine only the patterns

• network(N), predicate1(N,X), predicate2(N, Y ), label1(X,Y)[April 2010]

• network(N), predicate1(N,X), predicate2(N, Y ), label3(X,Y)[May 2010]

since the dissimilarity between label1 and label3 is greater than 0.3.

A more complex real world example is illustrated in Figure 4. Consider

the background knowledge DI on the dissimilarity among four possible edge

labels in social networks (Figure 4a), minΓ=0.3 and the sets of frequent

patterns mined in the time-periods τh = April 1990 and τh+1 = May 1990,

respectively (Figure 4b). First, the bipartite graph GD is created, then two

change patterns are generated (squares 1 and 2 in Figure 4c), the first of

length 8 and the second of length 5. Note that the first pattern (square 1) is

generated from the combination of the atoms friendship(·, ·) and kinship(·, ·),
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a)

b)

c)

Figure 4: a) An example of the background knowledge DI in form of graph: a link

between two vertices expresses the dissimilarity between the labels associated to the edges.

b) The bipartite graph GD, in its initial form, created from the patterns discovered in

April 1990 and May 1990 respectively (minΓ=0.3). c) Two change patterns discovered in

[April 1990, May 1990]: they are originally generated by combining the frequent patterns

illustrated in the Figure b).
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which is preferred to other combinations, due to their higher value of dissim-

ilarity (0.5).

4.3. Discovering Change Chains

Once the sets of change patterns Υ1,2,Υ2,3, . . . ,Υm−1,m are identified, they

are used to determine possible change chains. The algorithm operates with

three sets: the set Ψ′′ which contains the candidate incomplete chains (that

is, chains that terminate with a stable pattern), the set Ψ′ which contains the

set of change chains and the set Ψ which contains the set of change chains

to be returned. The algorithm proceeds iteratively and, at the h-th iteration

(h = 1, . . . ,m− 1), it uses Υh,h+1 and Ph+1 to update the sets Ψ′′ and Ψ′.

Chains are processed in four different ways:

1. Let P ∈ Ph+1 and C ∈ Ψ′, such that i) the number of stable patterns

in C is less than maxS and ii) the pattern associated to τh of the last

change pattern in C is equal to P . Then a new chain which adds to C

the stable pattern P is created and stored in Ψ′′new. C is removed from

Ψ′.

2. Let P ∈ Ph+1 and C ∈ Ψ′′, such that i) the number of stable patterns

in C is less than maxS and ii) the pattern associated to τh of the last

stable pattern in C is equal to P . Then a new chain which adds to C

the stable pattern P is created and stored in Ψ′′new. C is removed from

Ψ′′.

3. Let P (c) ∈ Υh,h+1 and C ∈ Ψ′, such that i) the number of change

patterns in C is less than maxP and ii) the pattern associated to τh of

the last change pattern in C is equal to P (c). Then a new chain which
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adds to C the change pattern P (c) is created and stored in Ψ′new. C is

removed from Ψ′ and P (c) is removed from Υh,h+1.

4. Let P (c) ∈ Υh,h+1 and C ∈ Ψ′′, such that i) the number of change

patterns in C is less than maxP and ii) the pattern associated to τh of

the last stable pattern in C is equal to P (c). Then a new chain which

adds to C the change pattern P (c) is created and stored in Ψ′new. C is

removed from Ψ′′ and P (c) is removed from Υh,h+1.

These four cases are considered in this order. This means that we give

priority to stable patterns and not to change patterns (according to Definition

3). The removal of the used change patterns from the set Υh,h+1 guarantees

the discovery of maximal chains, namely the algorithm does not generate

chains which are contained in other chains. In cases 3 and 4, if more than

one change pattern is a candidate to be added to C, the one with the greatest

γ is preferred.

At the end of each iteration, all the chains remaining in Ψ′ are added

to Ψ if the number of change patterns is greater than minP . At the next

iteration, Ψ′ is initialized with Ψ′new and Ψ′′ is initialized with Ψ′′new. Finally,

after the last iteration, all the chains remaining in Ψ′new are added to Ψ, if

the number of change patterns in these chains is greater than minP .

The algorithmic description is reported in Algorithm 3. In order to

clarify how it works, we report an explanatory example in Figure 5 which

uses the change patterns and stable patterns mined in the time-periods

{τ1, τ2, τ3, τ4, τ5} (Table 1).

Let us consider minP=2, maxP=3 and maxS=2. The generation of the

change chains begins from the change patterns mined in the time-periods τ1
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Data: ({Υ1,2,Υ2,3, . . . ,Υm−1,m},minP,maxP,maxS)

Result: Ψ

1 h := 3; Ψ′ := Υ1,2 ;

2 while h ≤ m do

3 Ψ′
new := ⊘;Ψ′′

new := ⊘;

4 for P ∈ Ph do

5 for C ∈ Ψ′ do

// C.sCounter: no. of stable patterns in C; C.nCounter: no. of change patterns

in C

6 if C.sCounter ≤ maxS then

7 L← getLastPattern(C) // the last pattern in the last change pattern in C

8 if equal(P,L) then

9 remove(Ψ′, C); insert(Ψ′′
new, join(C,P )); C.sCounter ++;

10 for C ∈ Ψ′′ do

11 if C.sCounter ≤ maxS then

12 L← getLastPattern(C)// the pattern in the last stable pattern in C

13 if equal(P,L) then

14 remove(Ψ′′, C); insert(Ψ′′
new, join(C,P )); C.sCounter ++;

15 Ψ′
temp := ⊘; Ψ′′

temp := ⊘;

16 for P (c) ∈ Υh−1,h do

17 P ′ ← getF irstPattern(P (c)) // the first pattern in P (c)

18 for C ∈ Ψ′ do

19 if C.nCounter ≤ maxP then

20 L← getLastPattern(C) // the last pattern in the last change pattern in C

21 if equal(P ′, L) then

22 insert(C.candidates, P (c)); update(Ψ′
temp, C); remove(Υh−1,h, P

(c));

23 Ψ′
new := Ψ′

new ∪ select change patterns(Ψ′
temp); Ψ

′ ← removeExtendedChains(Ψ′,Ψ′
new);

24 for P (c) ∈ Υh−1,h do

25 P ′ ← getLastPattern(C) // the last pattern in the last change pattern in C

26 for C ∈ Ψ′′ do

27 if C.nCounter ≤ maxP then

28 L← getLastPattern(C) // the pattern in the last stable pattern in C

29 if equal(P ′, L) then

30 insert(C.candidates, P (c)); update(Ψ′′
temp, C); remove(Υh−1,h, P

(c));

31 Ψ′
new := Ψ′

new ∪ select change patterns(Ψ′′
temp); Ψ

′ ← removeExtendedChains(Ψ′,Ψ′
new) ;

32 Ψ← Ψ ∪ check for minP (Ψ′); Ψ′
new ← Ψ′

new ∪Υh−1,h ;

33 Ψ′ ← Ψ′
new; Ψ′′ := Ψ′′

new; h++;

34 Ψ← Ψ ∪ check for minP (Ψ′);

Algorithm 3: Discovering Change Relational Chains.
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Table 1: The stable patterns and change patterns used in the example of Figure 5.

P
(c),1
1,2 = network(N), predicate1(N,X), is a(X,user), predicate1(N,Y ), is a(Y, user), (label1τ1 (X,Y) →

label2τ2 (X,Y)) ([τ1, τ2])

P
(c),2
1,2 = network(N), predicate1(N,X), is a(X,user), predicate1(N,Y ), is a(Y, user), (label1τ1 (X,Y) →

label3τ2 (X,Y)) ([τ1, τ2])

P
(c),3
1,2 = network(N), predicate1(N,X), is a(X,user), predicate1(N,Y ), is a(Y, user), (label1τ1 (X,Y) →

label4τ2 (X,Y)) ([τ1, τ2])

P
(c),1
2,3 = network(N), predicate1(N,X), is a(X,user), predicate1(N,Y ), is a(Y, user), (label2τ2 (X,Y) →

label5τ3 (X,Y)) ([τ2, τ3], γ=0.8)

P
(c),2
2,3 = network(N), predicate1(N,X), is a(X,user), predicate1(N,Y ), is a(Y, user), (label2τ2 (X,Y) →

label6τ3 (X,Y)) ([τ2, τ3], γ=0.7)

P 3
2,3 = network(N), predicate1(N,X), is a(X,user), predicate1(N, Y ), is a(Y, user), label3(X,Y ) ([τ2, τ3])

P
(c),4
2,3 = network(N), predicate1(N,X), is a(X,user), predicate1(N,Y ), is a(Y, user), (label6τ2 (X,Y) →

label4τ3 (X,Y)) ([τ2, τ3])

P
(c),1
3,4 = network(N), predicate1(N,X), is a(X,user), predicate1(N,Y ), is a(Y, user), (label6τ3 (X,Y) →

label7τ4 (X,Y)) ([τ3, τ4])

P 2
3,4 = network(N), predicate1(N,X), is a(X,user), predicate1(N, Y ), is a(Y, user), label5(X,Y ) ([τ3, τ4])

P 3
3,4 = network(N), predicate1(N,X), is a(X,user), predicate1(N, Y ), is a(Y, user), label3(X,Y ) ([τ3, τ4])

P
(c),1
4,5 = network(N), predicate1(N,X), is a(X,user), predicate1(N,Y ), is a(Y, user), (label5τ4 (X,Y) →

label8τ5 (X,Y)) ([τ4, τ5])

P 2
4,5 = network(N), predicate1(N,X), is a(X,user), predicate1(N, Y ), is a(Y, user), label3(X,Y ) ([τ4, τ5])

and τ2 (Ψ′ : {P (c),1
1,2 , P

(c),2
1,2 , P

(c),3
1,2 }, Ψ′′=⊘). The algorithm proceeds (in the

next time-periods) by evaluating first the stable patterns (lines 3-14) and

then the change patterns (lines 15-30). The stable patterns which are not

used to extend existing chains will be discarded when considering next time-

periods, while the unused change patterns will be used for further analysis.

At the first iteration (h=3), the stable pattern P 3
2,3 is considered and is

used to extend the chain

C1 = ⟨P (c),2
1,2 ⟩ = ⟨network(N), predicate1(N,X), is a(X,user), predicate1(N,Y ), is a(Y, user),

(label1τ1 (X,Y)→ label3τ2 (X,Y)) [τ1, τ2]⟩,
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so that the following (incomplete) chain is generated:

C2 = ⟨network(N), predicate1(N,X), is a(X,user), predicate1(N, Y ), is a(Y, user),

(label1τ1 (X,Y)→ label3τ2 (X,Y)); [τ1, τ2]

network(N), predicate1(N,X), is a(X,user), predicate1(N,Y ), is a(Y, user), label3(X,Y )

[τ2, τ3] ⟩.

This is possible because the number of stable patterns already inserted into

C2 (i.e. C2.sCounter) is less than the threshold maxS (line 6).

The chain C1 is removed from Ψ′, while the chain C2 is inserted into

Ψ′′new (line 9). The analysis continues with the change patterns P
(c),1
2,3 , P

(c),2
2,3

and P
(c),4
2,3 . For each of these, we consider the patterns related to τ2 (P ′,

line 17) and check the equality with the pattens related to τ2 of the chains

remaining in Ψ′ (L, line 20). The candidate chains are those obtained by

combining P
(c),1
2,3 or P

(c),2
2,3 with the chain C3 = ⟨P (c),1

1,2 ⟩ (line 22). From these

two alternatives, the algorithm prefers the one with the highest γ (Algorithm

4).

Data: Ψtemp: set of change chains with candidate change patterns

Result: Ψfinal: set of change chains containing the extended chains

1 for Temp ∈ Ψtemp do

2 selected P (c) := argmax
candidate ∈ Temp.candidates

get γ(candidate);

3 insert(Ψend, join(Temp, selected P (c)));

4 C.nCounter := C.nCounter + 1;

Algorithm 4: select change patterns

For this reason, the following chain is mined:

35



C4 = ⟨network(N), predicate1(N,X), is a(X,user), predicate1(N,Y ), is a(Y, user),

(label1τ1 (X,Y)→ label2τ2 (X,Y)); [τ1, τ2]

network(N), predicate1(N,X), is a(X,user), predicate1(N,Y ), is a(Y, user),

(label2τ2 (X,Y)→ label5τ3 (X,Y)) [τ2, τ3] ⟩

At the end of the iteration (h=3) we have in Ψ′ the chain composed of

P
(c),3
1,2 only, which, since it has not been extended and does not fulfill the

minP constraint, is discarded. In the next iteration (h=4), the set Ψ′ is

composed of C4 and of chains built with the remaining change patterns of

Υ2,3, namely C5 = ⟨P (c),2
2,3 ⟩ and C6 = ⟨P (c),4

2,3 ⟩ (lines 32-33). Among the stable

patterns P 2
3,4 and P 3

3,4, we select the P
3
3,4 for the extension of the chain C2 in

Ψ′′ (lines 12-14), so that the following (incomplete) chain is built:

C7 = ⟨network(N), predicate1(N,X), is a(X,user), predicate1(N, Y ), is a(Y, user),

(label1τ1 (X,Y)→ label3τ2 (X,Y)); [τ1, τ2]

network(N), predicate1(N,X), is a(X,user), predicate1(N,Y ), is a(Y, user), label3(X,Y );

[τ2, τ3]

network(N), predicate1(N,X), is a(X,user), predicate1(N,Y ), is a(Y, user), label3(X,Y )

[τ3, τ4] ⟩.

The stable pattern P 2
3,4 is used instead to extend the chain C4 into C8

(lines 12-14):

C8 = ⟨network(N), predicate1(N,X), is a(X,user), predicate1(N, Y ), is a(Y, user),

(label1τ1 (X,Y)→ label2τ2 (X,Y)); [τ1, τ2]

network(N), predicate1(N,X), is a(X,user), predicate1(N,Y ), is a(Y, user),

(label2τ2 (X,Y)→ label5τ3 (X,Y)); [τ2, τ3]

network(N), predicate1(N,X), is a(X,user), predicate1(N,Y ), is a(Y, user), label5(X,Y )

[τ3, τ4] ⟩.

Both C7 and C8 are stored in Ψ′′new (line 14). When considering the change
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patterns, it is possible to extend C5 = ⟨P (c),2
2,3 ⟩ with P

(c),1
3,4 (lines 20-22), so

that the following chain is obtained:

C9= ⟨ network(N), predicate1(N,X), is a(X,user), predicate1(N,Y ), is a(Y, user),

(label2τ2 (X,Y)→ label6τ3 (X,Y)); [τ2, τ3]

network(N), predicate1(N,X), is a(X,user), predicate1(N,Y ), is a(Y, user),

(label6τ3 (X,Y)→ label7τ4 (X,Y)) ⟩ [τ3, τ4].

Now, we have C9 in Ψ′ (C6 remains unused and therefore discarded),

while C7 and C8 are in Ψ′′ (lines 32-33). At the last iteration (h=5), C7

cannot be extended with P 2
4,5, since the number of stable patterns in C7

(C7.sCounter=2) reaches the maximum threshold maxS (line 11). The only

operation we can complete is the extension of the chain C8 with P
(c),1
4,5 , which

generates the chain C10 (lines 19-22):

C10 = ⟨network(N), predicate1(N,X), is a(X,user), predicate1(N,Y ), is a(Y, user),

(label1τ1 (X,Y)→ label2τ2 (X,Y)); [τ1, τ2]

network(N), predicate1(N,X), is a(X,user), predicate1(N,Y ), is a(Y, user),

(label2τ2 (X,Y)→ label5τ3 (X,Y)); [τ2, τ3]

network(N), predicate1(N,X), is a(X,user), predicate1(N,Y ), is a(Y, user), label5(X,Y );

[τ3, τ4]

network(N), predicate1(N,X), is a(X,user), predicate1(N,Y ), is a(Y, user),

(label5τ4 (X,Y)→ label8τ5 (X,Y)) [τ4, τ5] ⟩.

Finally, the set Ψ is composed of the chains {C7, C9, C10}: the chain C7

is removed in the light of Definition 4, while C9 and C10 are returned, since

they meet both Definition 4 and the threshold constraints (line 34).
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Figure 5: The algorithm joins the stable and change patterns to the chains created in the

previous time-periods.

4.4. Time complexity

The time complexity of the whole algorithm depends on the computa-

tional complexity of SPADA. The complexity of SPADA leads to the noto-

rious trade-off between expressiveness and efficiency in first order represen-

tations. Indeed, it is well known that a simple matching of two expressions

with commutative and associative operators (such as the logical OR of atoms

in a clause) is NP-complete. Therefore, any known algorithm that checks the

coverage of an atom set or that equivalently evaluates a query with respect

to a relational database has an exponential complexity. Nevertheless, queries

with up to k atoms, where each atom contains at most j terms, can be eval-

uated in polynomial time [31]. This is the case of our algorithm, where j is

limited by k.

Denoting as l1 the time complexity of SPADA (necessary to generate

each set of patterns for each time-period Ph), we can define the complexity

of the whole algorithm. For simplicity, we assume that l2 = Ph = Ph+1 (with

h = 1, . . . , n−1). In this case, the worst case complexity is O(n× l1+n× l22)
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where O(n× l22) is the time complexity of the generation of the chains, which

is quadratic in the number of the average number of patters extracted for

each time-period.

5. Experiments

In order to prove the viability of the proposed approach, we performed

experiments on four real-world datasets with different characteristics in terms

of size of the network and number of observations. Experiments aim at qual-

itatively and quantitatively evaluating chains and change patterns extracted

by the proposed approach. In particular, we report some interesting chains

and study the influence of parameters on the obtained results. We also re-

port a scalability analysis and compare our approach with GERM [18], which,

as stated before, extracts “Graph Evolution Rules”, which can be directly

compared with the chains we extract.

In the following subsections, we first present the datasets and the evalu-

ation measures considered and then present the obtained results.

5.1. Dataset Description

The first dataset (KEDS ) concerns the geographic-social-political net-

work derived from the news reports5 and collects data on the social and

political relationships among nations and world-wide organizations. As in

[32], we consider this dataset as a network where nations and world-wide

organizations represent the nodes and social and political relationships cor-

respond to the edges between nodes (structural predicates). Nations and

5http://web.ku.edu/˜keds/data.html
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world-wide organizations are the non-target objects and the networks at sin-

gle time-points represent target objects. In KEDS, the set N contains 228

nodes and there are 20 different labels of the edges (in DI), which are listed

in the following:

make public statement, disapprove, appeal, express intent to cooperate,

consult, engage diplomatic cooperation, engage material cooperation,

provide aid, yield, investigate, demand, reject, threaten, protest,

exhibit military posture, reduce relations, coerce, assault, fight,

attack with weapons of mass destruction.

The dissimilarity in DI between the labels of the edges is set as their pair-

wise semantic distance computed by means of the linguistic tool presented

in [33]. The networks are collected day by day from April 1979 to July 2009,

therefore the time-points are in the format year/month/day (one time-point

represents one day). We have on average 12.82 edges per time-point. For

this dataset, we defined on the individual objects the hierarchy represented

in Figure 6.

The second dataset (DAYS ) collects all stories released by the news

agency Reuters concerning the September 11 attack on the U.S.6. As in [34],

we consider this dataset as a network. In our case, the nodes of the network

denote the relevant terms in the news, while the edges denote the discretized

frequency with which the two connected terms co-occur in the same sentence

of the text. In DAYS, the set N contains 13332 nodes. The edges used in

6http://vlado.fmf.uni-lj.si/pub/networks/data/CRA/terror.htm

40



Figure 6: The hierarchy defined on the examples represented in the nodes of the dataset

KEDS.

the DI are 4 and result from the application of an equal-frequency discretiza-

tion technique to the values of frequency of the co-occurrence of two nodes:

each label represents one of the four quartiles (low range, middle low range,

middle high range, high range). The dissimilarity values are defined as fol-

lows: labels of consecutive quartiles (e.g., middle high range-high range)

have a dissimilarity of 0.25, labels of quartiles at distance 2 have a dissimi-

larity of 0.5 (e.g., middle low range−high range), finally, labels of quartiles

at distance 3 have a dissimilarity of 0.75. In this way, it is possible to study

the evolution of the co-occurrence of terms. The networks are collected day-

by-day from September 11th 2001 for 66 days, therefore the time-points are

in the format month/day (one time-point represents one day). We have 28.59

edges per time-point, on average.

The third dataset (INFECTIOUS ) contains the dynamic contact net-

works collected during the Infectious SocioPatterns event that took place at
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the Science Gallery in Dublin, Ireland, during an art-science exhibition7. As

in [35] the nodes represent visitors to the Science Gallery while the edges rep-

resent the close-range of face-to-face contact between visitors. In particular,

in our case, edges represent discretized duration (in seconds) of contacts. In

INFECTIOUS, the set N contains 28 nodes. The edges used in the DI are 10

and result from the application of an equal-frequency discretization technique

to the duration of the contact (in seconds) associated to two nodes: each label

represents one of ten ranges of seconds returned by the discretization. The

dissimilarity values are defined as follows: labels of consecutive ranges have

a dissimilarity of 0.1, labels of ranges at distance 2 have a dissimilarity of

0.2 and so on. The networks are collected day-by-day from April 28th 2009

to July 16th 2009, therefore the time-points are in the format month/day

(one time-point represents one day). We have 9.5 edges per time-point, on

average.

The last dataset (DBLP) refers to the collaboration network based on

the co-authorship of scientific papers in computer science stored in the DBLP

bibliographic database. Originally, it contains co-authorship entries collected

with yearly time granularity from January 1988 to September 2013 (one time-

point represents one year). From this original dataset, we discarded papers

with only one author. Moreover, we concentrated only on the one hundred

more productive (in the number of published papers) authors which are sup-

posed to be the “influencers” of the network. As in [36], nodes represent

authors and edges represent co-authorships. There are two edge types which

7http://www.sociopatterns.org/datasets/
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represent the co-authorship: co-authorship in conference papers and co-

authorship in journal papers. Edges are labeled on the basis of the number of

co-authored papers (i.e. 1=low,2=medium or 3 or more= high). In practice,

given two authors a1 and a2, one of the following predicates for conference

paper co-authorship can be used to connect them: conference low(a1, a2),

conference medium(a1, a2), conference high(a1, a2) and one of the follow-

ing predicates for journal paper co-authorship can be used to connect them:

journal low(a1, a2), journal medium(a1, a2), journal high(a1, a2).

The dissimilarity values are defined as follows:
journal low 0.2 journal medium; journal medium 0.2 journal high; journal low 0.4 journal high;

conference low 0.2 conference medium; conference medium 0.2 conference high; conference low 0.4

conference high; journal low 0.6 conference low; journal low 0.8 conference medium; journal low 1.0

conference high; journal medium 0.6 conference medium; journal medium 0.8 conference high; journal high 0.2

conference low; journal high 0.4 conference medium; journal high 0.6 conference high.

In this way, it is possible to study the evolution of the collaborations in the

publishing activity. In the final dataset, we have 93.2 edges per time-point,

on average.

5.2. Evaluation measures

As previously mentioned, the first experiment is performed to test the

influence of the input parameters on the final change chains and to study the

characteristics of the extracted chains. In this case, we manually tune the

minimum threshold of support minSup and the minimum dissimilarity value

between the labels minΓ and we collect the results in terms of the statistics

listed in Table 2. In addition, we associate to each chain two quantitative

parameters: the value of the average change of the chains (avg chains γ),

which corresponds to the average of the dissimilarity values used to mine
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change patterns of the final chains, and the value of the average support of

the chains (avg supp), defined as follows:

Table 2: Collected statistics

Value Description

times Running times

#chains Number of discovered chains

#joins Total number of change and stable patterns in the

final chains

avg length Average number of change patterns involved in the

final chains

avg cp Average number of mined change patterns, includ-

ing those not used in the chains

avg periods γ Average dissimilarity values between labels ob-

served in the change patterns. It is computed

as the mean of the dissimilarity values of the

change/stable patterns mined in all the time-

periods

Consider the change chain C = ⟨P (c)
h,h+1;Ph+1,h+2; . . . ;Ph+q−2,h+q−1;P

(c)
h+q−1,h+q⟩

and let supp(C, h+ i), i = 0, .., q be the support defined as follows:

supp(C, h+ i) =

 supph+i(getLastPattern(⟨Ph+i−1,h+i⟩)) if i = 1, . . . , q

supph(getF irstPattern(⟨Ph,h+1⟩)) if i = 0

(2)

then:
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avgsupp =

q∑
i=0

supp(C, h+ i)

q∑
i=0

|τh+i|
(3)

which, intuitively, is the microaverage relative support of the frequent pat-

terns used in C, computed on the respective time-periods.

5.3. Results: Influence of the parameters

The results reported in this section clarify the effect ofminSup andminΓ,

which we consider to be the parameters which significantly influence the ob-

tained results. In order not to introduce a bias on the temporal discretization

and to report results which are not affected by w, we report the average values

computed on three different values of w for each dataset. More precisely, the

time-periods span 3, 6 and 12 months (w = {90, 180, 360}) for KEDS; 7, 10

and 15 days (w = {7, 10, 15}) for DAYS; 10, 15 and 20 days (w = {10, 15, 20})

for INFECTIOUS; 4, 5 and 6 years (w = {4, 5, 6}) for DBLP.

The results reported in Figures 7, 8, 9 and 10 show that when the thresh-

old minSup increases, the values of times, #chains and #joins decrease.

Indeed, as expected, high values of support lead to the generation of a small

set of frequent patterns and the reduction of the running times (times). Con-

sequently, we have a small set of stable and change patterns (generated from

the frequent ones, see avg cp in Figures 7b, 8b, 9b) and 10b) and, therefore,

a smaller number of change and stable patterns that can be added to the

chains (#joins), thus reducing the number of final chains (#chains) (see

Figures 7a, 8a, 9a) and 10a). The overall decrease of the change patterns

also implies the reduction of the length of the chains (avg length).
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Another observation is inspired by the influence of minSup on the values

of avg periods γ and avg chains γ, which allow us to quantify the change

of the network. As we can see, when increasing minSup the changes cap-

tured from the change patterns (avg periods γ) and from the final chains

(avg chains γ) tend to be milder, meaning that the strongest changes are not

particularly frequent. Moreover, we notice that the values of avg periods γ

are lower than those of avg chains γ (especially in Figures 7b and 9b), al-

though they exhibit the same behaviour. This can be explained by the obser-

vation that avg periods γ considers the changes in all the time-periods, while

avg chains γ represents the changes only in the time-periods considered in

the chains. The use of the change patterns with relatively high values of γ in

the process of change pattern discovery allows us to highlight the capability

of the chains to represent significant changes.

Also, it is noteworthy that the different characteristics of the datasets

determine different responses of the algorithms: the results obtained on

DAYS seem to be less influenced by the variation of minSup than the results

obtained with KEDS, INFECTIOUS and DBLP. Indeed, although DAYS

present a higher number of data per time-period (28.59 edges per time-point),

the number of labels is lower than that of other datasets. This results in a

restricted variability of the edges, which gives a limited dynamicity over

time. Another observation can be done on the number of change patterns

and change chains. In particular, the results obtained from DBLP present

smaller sets of change patterns and change chains than those obtained with

KEDS, DAYS and INFECTIOUS. This can be motivated by the relatively

small number of networks (at most 6) collected in each time-period which
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(a)(b)

Figure 7: Results produced from KEDS when tuning minSup (minΓ=0.2, minP=2,

maxP=8, maxS=5).

(a)(b)

Figure 8: Results produced from DAYS when tuning minSup (minΓ=0.5, minP=2,

maxP=7, maxS=4).

makes it difficult the identification of changes and, consequently, the discov-

ery of frequent evolutions. Finally, the tendency of avg supp to increase as

the threshold increases is obvious.

Figures 11, 12, 13 and 14 show the effect of minΓ on the obtained results.

High values of minΓ lead to change patterns with high values of γ, that is,

they concentrate the search only on the frequent patterns with very high

dissimilarity. As a consequence, we have less and shorter chains (see #chains

and avg length, respectively). This explains also the reduction of the values

of #joins, #avg cp and times. Finally, as expected, the higher the minΓ,

the higher the avg chains γ and avg periods γ (we underline that the charts

reported in the figures use the logarithmic scale). However, for very high

(a)(b)

Figure 9: Results produced from INFECTIOUS when tuning minSup (minΓ=0.1,

minP=2, maxP=5, maxS=4).
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(a)(b)

Figure 10: Results produced from DBLP when tuning minSup (minΓ=0.2, minP=2,

maxP=4, maxS=1).

(a)(b)

Figure 11: Results produced from KEDS when tuning minΓ (minSup=0.07, minP=2,

maxP=8, maxS=5).

(a)(b)

Figure 12: Results produced from DAYS when tuning minΓ (minSup=0.8, minP=2,

maxP=7, maxS=4).

(a)(b)

Figure 13: Results produced from INFECTIOUS when tuning minΓ (minSup=0.05,

minP=2, maxP=5, maxS=4).

(a)(b)

Figure 14: Results produced from DBLP when tuning minΓ (minSup=0.7, minP=2,

maxP=4, maxS=1).
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values of minΓ, the algorithm is not able to extract change patterns (this is

the case of DAYS).

5.4. Results: Scalability

Specific experiments are performed in order to test the computational

properties of the approach. In particular, the scalability is empirically eval-

uated by increasing the width (namely, the number of included time-points)

of the time-periods and by increasing the number of the time-periods along

which the chains are discovered.

In Figure 15, we show the scalability on the whole dataset KEDS. Obvi-

ously, the higher the width w, the lower the total number of time-periods.

The first observation is that, as expected, the running time exponentially in-

creases when decreasing w. This is due to the linear increase of the number

of edges per time-period, which produces an exponential increase of #joins.

However, setting w ≤ 10 leads to a huge amount of frequent patterns (and

therefore a huge amount of chains) which do not have a significant statistical

motivation. On the contrary, a small number of change patterns leads to the

reduction of the join operations (#joins), to the reduction of change pat-

terns used in the chains (avg length) and therefore to the reduction of the

number of chains (#chains). It is noteworthy that for w ≥ 25 there are no

significant variations in the changes detected in the network (avg period γ,

avg chains γ).

Figure 16, which reports results obtained from a subset of KEDS (1995-

2009), shows that the computational cost linearly grows with the number of

periods, while the overall number of chains (#chains) is quite constant (ex-

cept in [10,15]). This is not unexpected since, although new change patterns
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are created (avg cp remains quite identical), they seem to be unsuitable for

the extension of chains (#joins is quite constant when the number of periods

increases). This reduces the possibility to discover new chains or extend those

already generated, and consequently motivates the behaviour of avg length

and of the values of avg chains γ and avg periods γ.

5.5. Qualitative evaluation

In this subsection we report some examples of change chains extracted by

our approach. We report also the change γ captured by each change pattern

included in the chains.

For instance, the following change chain8 has been extracted from the

DAYS dataset (with minSup=0.7, minΓ=0.2, w=7 days):

⟨P (c),1 = network(N), is(X, afghanistan), is(Y, attack),

(high rangeSep.11−Sep.17,2001(X,Y)→ low rangeSep.18−Sep.24,2001(X,Y))

([Sep.11− Sep.17, 2001, Sep.18− Sep.24, 2001], γ = 0.5)

P 2 = network(N), is(X, afghanistan), is(Y, attack), low range(X,Y ))

([Sep.18− Sep.24, 2001, Sep.25−Oct.01, 2001])

P (c),3 = network(N), is(X, afghanistan), is(Y, attack),

(low rangeSep.25−Oct.01,2001(X,Y)→middle low rangeOct.02−Oct.08,2001(X,Y))

([Sep.25−Oct.01, 2001, Oct.02−Oct.08, 2001], γ = 0.25) ⟩

This chain shows the evolution of the frequency of the co-occurrence of

8For the sake of simplicity, in the description of the pattern we omit some pred-

icates which help to link the variables, namely term occurring in/2, nation in/2,

author present in/2, where the first argument denotes the network (e.g., N), while the

second argument denotes a term (e.g. X).
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the terms “attack” and “afghanistan” in the Reuters news in the period

[September 11th, 2001 - October 8th, 2001]. As it is possible to see while

in the first week the co-occurence of the terms is very high, in the following

two weeks the number of news with both terms significantly decreases. In

the fourth week, the frequency increases again.

The following change chain has been extracted from the DBLP dataset

(with minSup=0.75, minΓ=0.4, w=4 years):
⟨P (c),1 = network(N), author(X, lastnameA firstnameA), author(Y, lastnameB firstnameB),

(conference high2001−2005(X,Y)→ conference low2005−2008(X,Y))

([2001− 2005, 2005− 2008], γ = 0.4)

P (c),2 = network(N), author(X, lastnameA firstnameA), author(Y, lastnameB firstnameB),

(conference low2005−2008(X,Y)→ journal medium2008−2012(X,Y))

([2005− 2008, 2008− 2012], γ = 0.8) ⟩

This chain describes the evolution of the collaboration between the au-

thors lastnameA firstnameA and lastnameB firstnameB (authors have

been anonymized for privacy reasons). This collaboration moves from a large

number of co-authored conference papers to a small number of co-authored

conference papers and, subsequently, to a medium number of co-authored

journal papers.

The arrangement of the nodes in a hierarchy (as in Figure 6) allows us to

discover change chains with nodes collocated at different levels of granularity

and which, therefore, express information at different levels of specializa-

tion. For instance, the following change chains have been extracted from

the dataset KEDS with the hierarchy drawn in Figure 6 (minSup=0.05,

minΓ=0.2, w=180 days):
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⟨P (c),1 = network(N), is(X, africa), is(Y, america),

(consultJune 2008(X,Y)→ express intent to cooperateDecember 2008(X,Y))

([June 2008, December 2008], γ = 0.287)

P (c),2 = network(N), is(X, africa), is(Y, america),

(express intent to cooperateDecember 2008(X,Y)→make public statementJune 2009(X,Y))

([December 2008, June 2009], γ = 0.287)

(supp = 0.0519) ⟩

while at the second level of the hierarchy, we have
⟨P (c),1 = network(N), is(X, angola), is(Y, usa),

(consultJune 2008(X,Y)→ express intent to cooperateDecember 2008(X,Y))

([June 2008, December 2008], γ = 0.287)

P (c),2 = network(N), is(X, angola), is(Y, usa),

(express intent to cooperateDecember 2008(X,Y)→make public statementJune 2009(X,Y))

([December 2008, June 2009], γ = 0.287)

(supp = 0.0519) ⟩

These chains describe the same evolution expressed by the sequence of

relationships consult, express intent to cooperate, and then

make public statement. In particular, in the first chain, the evolution holds

on two objects identified as africa and america, while the second chain

provides a more specific information and holds on two objects identified as

angola and usa, which are descendants of africa and america respectively.

Also, it is noteworthy that in this particular case both chains have the same

frequency (supp), which means that the evolution modeled by the two chains

is not replicated by other nodes different from angola and usa, but it is

the result of the particular behavior of the nodes angola and usa in the

time-periods [June 2008, December 2008] and [December 2008, June 2009].
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5.6. Comparative evaluation

A comparative evaluation was performed between the proposed approach

and the system GERM [18]. As introduced in Section 2, GERM discovers

patterns (evolution rules) able to characterize the more frequent evolutions of

the network over time. In particular, a pattern reflects the same evolution in

its multiple occurrences. The first difference, with respect to our approach,

is the representation of the data which, in GERM, tends to over-simplify the

network. Indeed, the network is modeled as a cumulative graph, where the

nodes and the edges can be only added and never deleted. The consequence

of this is a partial analysis of the evolution, which considers as topological

changes only insertions and disregards deletions. Moreover, in GERM two

nodes can be connected by only one edge labelled with the time-point in

which the edge first appears. This allows the system to neither model the

variety of the relationships which can exist in the real-world networks nor

consider the cases in which two nodes can be connected by more than one

edge at the same time.

In Figure 17, we report the results of the comparison. In the case of

our approach, the reported values are averages of the results obtained with

two different widths, w = 90 and w = 180 (3 and 6 months). In the case of

GERM, the data associated to each time-point are obtained by collecting the

edges observed in the periods of 3 and 6 months. In this way, it is possible to

guarantee a fair comparison between the two approaches. Experiments were

performed by tuning the threshold minSup, which is the input parameter

common to both algorithms. In Figure 17, we can see that our approach

outperforms GERM in terms of running times for all values of minSup. In
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particular, for our approach, the time consumption significantly decreases

when minSup increases from 0.05 to 0.13, while for GERM it remains un-

changed since we set to 24 hours of uninterrupted execution the maximum

running time for the experiments. This behaviour can be explained with an

algorithmic difference of the two approaches. GERM operates directly on

the cumulative graph from which it mines frequent sub-graphs that express

the evolutions. On the contrary, our approach does not extract changes di-

rectly from the network data, but it works on the set of discovered frequent

patterns.

In Figure 17, we can also notice the difference in the number of discovered

patterns: the set of #evolution rules is several orders of magnitude larger

than the set of #chains. This is due to the different modeling of the network.

Indeed, GERM uses a cumulative graph in which only insertions are counted,

since edge removals are not allowed. This means that the algorithm has to

take into account the existence of a higher number of nodes and edges, thus

resulting in a larger set of frequent sub-graphs. Therefore, it is more difficult

for sub-graphs to model changes due to removal operations. Instead, we work

on networks observed by time-periods, where nodes and edges existing in one

period could disappear in the other, hence the change chains can model both

insertions and deletions equally well.

In Figure 17(a), we compare the two algorithms on the length of the chains

(our approach) and evolution rules (GERM), and on the average support as-

sociated to them. The length corresponds to the number of time-periods

covered by the chains (our approach) and to the number of time-points cov-

ered by the evolution rules (GERM). We have to consider that the evaluation
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on GERM is relative to the evolution rules discovered in the 24 hours of exe-

cution. The different behaviour can be motivated, basically, by the different

way of representing the change. In our approach the change from one time-

period to the next is determined by the edges, while in GERM the change

is due to some insertion in the network which, in a cumulative graph, facil-

itates the generation of longer evolutions. Moreover, while in our approach

a change in a chain is associated to two consecutive time-periods, in GERM

the same change (modeled by an evolution rule) can be associated to differ-

ent consecutive pairs of time-points, which increases the absolute frequency

of the rule, thus resulting in longer evolutions. Finally, as expected, by in-

creasing the threshold minSup we observe a higher average support of both

chains and evolution rules.

GERM has anyway the advantage of not necessarily relying on a back-

ground knowledge which is manually defined by the users. Indeed, in our

case, the evolutions modelled in the change chains are generated thanks to

the availability of domain information which quantifies the pairwise dissimi-

larity of the labels of the edges. Without such background knowledge changes

could not be captured, even if the network evolves. Obviously, background

knowledge can also be profitably used by domain experts in order to ade-

quately configure the system and extract useful and actionable knowledge.

6. Conclusions

In this paper we have investigated the task of discovering changes in

evolving networks and we have proposed a novel method for the discovery
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(a)(b)

Figure 15: Scalability on KEDS when tuning w (minΓ=0.1, minP=2, maxP=8, maxS=5,

minSup=0.2).

(a)(b)

Figure 16: Scalability on KEDS when the number of time-periods increases (minΓ=0.1,

minP=2, maxP=8, maxS=5, minSup=0.2, w=6).

of relational patterns which characterize such changes. The method is mo-

tivated by real-world scenarios, such as social networks, where the evolution

of a network mainly involves the type of interaction between the nodes. It

traces the evolution of the network as a succession of states (time-periods)

of the network and discovers statistically evident changes which occur in the

form of variations at the level of edges. It operates in three steps. Initially,

frequent patterns are discovered at consecutive time-periods. Then, change

patterns are generated from the frequent patterns. Finally, change chains are

generated by combining incrementally change patterns. This computational

solution permits to separate the identification of the states of the network

from the discovery of statistically evident changes. Hence, tuning parameters

used to filter either change patterns or change chains requires only re-running

(a)(b)

Figure 17: Comparison with the system GERM
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the second and third steps, which are the less computationally demanding.

We evaluated our method on an set of real-world networks, character-

ized by different heterogeneities and different sizes, coming from the areas of

social, political, multi-media and collaboration networks. Empirical results

allowed us to draw some conclusions on the computational features of the

proposed method.

As to the influence of the input parameters, the results show the influ-

ence of the minimum support threshold on the number of frequent patterns,

on the number of change patterns and on the computational performances.

On the contrary, the minimum dissimilarity threshold seems to affect only

the number of change patterns with no consequence on the computational

performances.

Scalability has been evaluated with respect to the number of time-periods

and to the width of the time-periods. The results empirically show that

the running times grow linearly in the number of time-periods and grow

exponentially in the width of the time-periods. This suggests careful tuning

of the width of the time-periods. Indeed, a small width may lead to a higher

number of time-periods and thus may help discovering evolutions (chains) at

a small temporal granularity, without incurring in high computational costs.

Comparative experiments have highlighted the efficiency of the proposed

method with respect to another state-of-the-art method without loss in sta-

tistical evidence of the patterns. Also, they provide an empirical proof of

two basic choices of our proposal: the use of the relational setting to handle

heterogeneity and complexity, and the analysis of the evolving data with an

approach based on an abstract and summarized description (patterns) of the
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data.

For future work, we plan to extend our proposal in five directions: i) au-

tomatic determination of the optimal widths of the time-periods on the basis

of the underlying distribution of the data, ii) use of solutions of big data

analytics to discover approximate frequent pattern sets [30], iii) extraction

of change chains from biomedical literature in order to identify terminologi-

cal/topic evolutions in research papers [37], iv) application to biological data

in order to understand the evolution of relations between biological entities,

and v) discovery of time series of patterns in order to model regularities in

ongoing processes.
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