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Abstract: Structures of tree topology are frequently encountered in nature and in a range of scientific 

domains. In this paper, a multi-step framework is presented to classify tree topologies introducing the 

idea of elastic matching of their sequence encodings. Initially, representative sequences of the 

branching topologies are obtained using node labeling and tree traversal schemes. The similarity 

between tree topologies is then quantified by applying elastic matching techniques. The resulting 

sequence alignment reveals corresponding node groups providing a better understanding of matching 

tree topologies. The new similarity approach is explored using various classification algorithms and is 

applied to a medical dataset outperforming state-of-the-art techniques by at least 6.6% and 3.5% in 

terms of absolute specificity and accuracy correspondingly. 
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1. Introduction 

 Branching or tree topology is a fundamental mechanism of nature which usually arises where 

there is a reason to maximize the area of contact between a structure and its environment under certain 

constrains [1]. For example, plant shoot systems maximize the area for photosynthesis and gas 

exchange under mechanical constraints such as gravity and wind damage [2]. Similarly, branching 

topology is fundamental to the development and function of many vertebrate organs including lung, 

kidney, mammary gland and brain [3]. In animal tissues, branching is developed to create a large 

surface area for exchange between the external environment and internal tissues into a small volume. 

For example, the branching structure of mammalian lungs enables gas exchange while minimizing the 



total distance from alveoli, the terminal ends of the respiratory tree, to the trachea. In the case of blood 

systems, vascular topographical geometry far from being a totally random network has a tendency to 

conform to physical principles such as minimization of shear stress and work across the vasculature 

[4]. In geology, the branching structure of river networks is an organized signature of soil erosional 

mechanics [5]. Furthermore, the concept of tree topology is widely used in sciences in order to 

represent hierarchical relationships among objects. Presenting data in the form of tree diagrams is an 

effective and valuable mechanism to organize existing data for a range of disciplines [6]. In biology for 

example, phylogenetic trees represent the evolutionary relationship between different species or 

organisms and RNA secondary structures are represented as ordered labeled trees to facilitate their 

comparison [7]. Additionally, trees are among the most common and well-studied combinatorial 

structures in computer science. Various kinds of data structures referred to as trees represent ordering 

relationships amongst a set of values through the use of pointers offering efficient solutions to the 

frequent operations of node insert, delete, and update. Moreover, ontologies which capture the structure 

of a domain are represented as trees with terms as tree nodes and the relations between the terms as 

branches. 

 Tree matching is important in many applications and refers to quantifying the degree of 

similarity between two trees and finding alignments among tree nodes. In computational domains, the 

most common measure for assessing the similarity of two labeled trees is the edit distance metric [8] 

which computes the cost of transforming one tree based on three edit operations on nodes; insertion, 

deletion, and relabeling. Based on the edit distance, many tree matching techniques have been proposed 

and require a model that defines the relabeling cost between nodes and the insertion/deletion cost for 

nodes which are not matched [9]. Given such a model, the tree-matching problem is to find a lowest-

cost mapping between trees. Another method to measure similarity between two trees is the largest 

common subtree; this approach is useful in chemistry and computational biology where substructures 

usually represent conserved structural motifs [10]. A similar methodology, the transferable ratio, has 

been proposed to measure the ability of transforming one tree to another and the method was applied to 

the analysis of secondary structures derived from RNA species [11]. 

 In the field of medical image analysis, tree matching methods have been proposed in 

classification studies of anatomical tree structures of the human body to reveal aspects of physiology 

http://en.wikipedia.org/wiki/Respiratory_tree
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about the corresponding organs. Regarding the type of descriptive characteristics of tree topology, 

existing methods can be divided into three categories; index-based, vector-based and matrix-based 

similarity approaches. The algorithms of the former category usually quantify geometric characteristics 

or compute dimensionless measures of tree topology. For example, in [12] retinal vessel width or 

equivalently vessel diameter was suggested as an important parameter in retinal blood flow 

measurement. Airway morphometry information including human airway diameters were considered 

for the clinical assessment of bronchoconstrictive diseases such as asthma and the associated evaluation 

of treatment effectiveness [13]. Tree asymmetry, a numerical index quantifying the asymmetry of a 

binary tree, was proposed as an effective way to detect early radiological findings in galactograms 

regarding breast cancer [14]. The approaches of the second category employ encoding techniques to 

obtain symbolic representations of tree topologies. In the field of neuroscience, Sholl analysis [15], a 

method for quantifying neuronal dendritic branches relative to distance from the neuronal body, 

achieved widespread application towards the analysis of dendritic geometry, ramification richness and 

dendritic branching patterns [16, 17]. Representation schemes using symbolic string representation of 

branching and text mining techniques were proposed to analyze tree structures appearing in medical 

images [14, 18]. Finally, regarding matrix-based approaches, the ramification matrix (R-matrix) 

representation of ductal networks were used in breast modeling for mammography simulation [19]. R-

matrices, whose elements represent the probability of branching at various levels of a ramified tree, 

were analyzed in order to correlate ductal tree anatomy with clinical findings. More recently, a family 

of graph kernels was introduced to analyze airway tree structure and geometry with respect to diagnosis 

of chronic obstructive pulmonary disease [20]. 

 In this paper, we describe a tree matching framework which introduces the concept of elastic 

matching of sequences of tree encodings in order to find nonlinear pairwise matching of nodes between 

tree topologies. We explore the proposed modular architecture by testing various algorithms for each 

methodology module; node labeling, tree traversal, elastic sequence matching and classification 

methods. The main contributions of the paper are: 

• a novel framework for computing similarity and performing classification of tree topologies 

• a new concept of node mapping  between trees, derived from the alignment of the sequence 

encodings 



• exploration of the modules of the proposed framework using three traversal modes, three 

labeling schemes, two sequence matching techniques and six classifiers 

• performance evaluation of the new framework by means of sensitivity, specificity and 

accuracy and outperforming state-of-the-art tree similarity techniques in the context of a 

medical application. 

 To apply the proposed methodological framework, a dataset of breast ductal trees was selected 

in order to test a clinical hypothesis regarding radiological findings of breast cancer. The analysis of 

galactograms, medical images which visualize the breast ductal tree, provides insight into the topology 

of breast ductal network which may be affected by the presence or increased risk of breast cancer [19]. 

Additionally, using the manual classification of ductal trees by physicians in order to discriminate 

patients with reported radiological findings regarding breast cancer and normal cases, the new 

framework is evaluated by means of sensitivity, specificity and accuracy. Considering previously 

proposed characterization methods which focused on comparing ductal tree encodings [14, 18], 

unequal length of tree representations has remained a major challenge in comparing tree structures. Our 

approach addresses this problem enabling the comparison of tree structures of different number of 

nodes and offers a better understanding of how tree-shape anatomical structures could be compared. 

The experimental results showed that the proposed methodology outperformed the state-of-the-art 

methods proposed for the classification of ductal trees. More specifically, the best-performing scheme 

of the proposed framework outperformed the best-performing state-of-the-art technique [18] by 6.6% 

and 3.5% in terms of absolute specificity and accuracy correspondingly. 

 The paper is organized as follows. The next section presents an overview of the proposed 

framework for classifying tree topologies. In Section 3, the experimental setup is presented in detail. 

Then, in Section 4 the application of the proposed methodology is demonstrated on the clinical dataset 

of galactograms and evaluation is provided using comparative results, explanatory figures and 

examples. Finally, conclusions and suggestions are discussed in Section 5. 

2.  Methodology 

2.1 Framework for Tree Structure Classification 

The proposed framework consists of a modular architecture for the classification of tree structures 

to a closed set of target classes 1 ≤ 𝑘𝑘 ≤ 𝐾𝐾. The block diagram of the proposed framework is illustrated 



in Fig.1. The input to the framework is outlines of tree topologies. The modules of the framework 

perform independently to each other, thus offering the ability to change or adapt any of them without 

breaking up the overall framework operation. As can be seen in Fig. 1 the architecture can briefly 

divided into two phases, namely the training and the test phase. 

FIGURE 1 

During the training phase a set of 𝐼𝐼 annotated (i.e. of known target class labels 𝑘𝑘) tree topologies, 

𝑇𝑇� = {𝑇𝑇𝑖𝑖}, where 1 ≤ 𝑖𝑖 ≤ 𝐼𝐼 is the 𝑖𝑖-th training tree topology, are used for building a classification model 

𝐶𝐶. In detail, each of the 𝑇𝑇𝑖𝑖  training trees is initially passed through the node labeling block, where every 

node of the tree is labeled with an identity number according to a node labeling function 𝑁𝑁𝑁𝑁, i.e. 𝐿𝐿𝑖𝑖 =

𝑁𝑁𝑁𝑁(𝑇𝑇𝑖𝑖). The corresponding trees with labeled nodes, 𝐿𝐿𝑖𝑖, are afterwards processed by the tree traversing 

module, where the tree structure is described by a sequence of labels, 𝑆𝑆𝑖𝑖, using a traverse function 𝑇𝑇𝑇𝑇, 

i.e. 𝑆𝑆𝑖𝑖 = 𝑇𝑇𝑇𝑇(𝐿𝐿𝑖𝑖). The sequence 𝑆𝑆𝑖𝑖  corresponds to the node-path after applying the traverse function 𝑇𝑇𝑇𝑇 

for passing through all labeled nodes of the 𝑖𝑖-th tree. Subsequently, the 𝐼𝐼 estimated sequences 𝑆𝑆𝑖𝑖, with 

1 ≤ 𝑖𝑖 ≤ 𝐼𝐼, are compared against a set of 𝐽𝐽 reference sequences, 𝑆𝑆𝑗𝑗
𝑟𝑟𝑟𝑟𝑟𝑟, with 1 ≤ 𝑗𝑗 ≤ 𝐽𝐽, using a sequence 

matching function 𝐷𝐷. The set of reference sequences Sref consists of equal number n = J/K of tree 

sequences for each target class k (the tree sequences have been extracted using the same processing 

steps as those followed for the training tree topologies). In case that n is smaller than the total number 

of tree sequences of a class k with cardinality ck, a set Sref,k consisted of n tree sequences is selected to 

represent sequences of the kth class according to the formula: 

Sref,k = {Sx: D�Sx, Sy� = maxx,yD�Sx, Sy�, 1 ≤ x, y ≤ ck, x ≠ y}. 

The selected n tree sequences have the maximum distance among the class trees and are considered to 

represent the kthclass. 

For the 𝑖𝑖-th training tree topology, the matching function 𝐷𝐷 estimates the matching distance 

between the sequence 𝑆𝑆𝑖𝑖 and each of the 𝐽𝐽 reference sequences constructing the feature vector 𝐹𝐹𝑖𝑖 ∈ ℝ𝐽𝐽, 

shown in Fig. 1. After processing the 𝐼𝐼 training tree topologies, the corresponding feature vectors are 

used to train a classification model 𝐶𝐶. The data-mining algorithm used for building the classification 

model 𝐶𝐶 will model the underlying information of the distance of a tree topology 𝑖𝑖 from each of the 

reference tree topologies 𝑗𝑗. Thus, reference tree topologies with high discriminative ability among the 



target classes will be weighted higher than reference tree topologies with low discriminative ability the 

corresponding dimension of which will slightly be utilized from the data-mining algorithm. 

During the test phase, a tree topology of unknown target class, 𝑌𝑌, is processed by the node 

labeling module and a labeled tree is constructed according to the 𝑁𝑁𝑁𝑁 function, i.e. 𝐿𝐿𝑌𝑌 = 𝑁𝑁𝑁𝑁(𝑌𝑌). From 

the labeled tree 𝐿𝐿𝑌𝑌 the corresponding traverse sequence is estimated using the 𝑇𝑇𝑇𝑇 function, i.e. 𝑆𝑆𝑌𝑌 =

𝑇𝑇𝑇𝑇(𝐿𝐿𝑌𝑌). At the sequence matching module the 𝑆𝑆𝑌𝑌 sequence is matched against the same reference 

sequences, 𝑆𝑆𝑗𝑗
𝑟𝑟𝑟𝑟𝑟𝑟, used in the training phase and the test feature vector 𝐹𝐹𝑌𝑌 𝜖𝜖 ℝ𝐽𝐽 is estimated. The 

decision 𝑑𝑑 of the target class in which the test tree topology belongs to is taken by the classification 

module using the model 𝐶𝐶, i.e. 𝑑𝑑 =  𝑓𝑓𝑐𝑐(𝐹𝐹𝑌𝑌), where 𝑑𝑑 ∈ {1 ≤ 𝑘𝑘 ≤ 𝐾𝐾}.  

The modular architecture of the proposed framework allows the use of different algorithms for the 

implementation of each of the modules (node labeling, tree traversing, sequence matching and 

classification), independently from the other ones. Furthermore, the framework can be applied to 

different sets of reference tree topologies, thus making the proposed architecture applicable to 

scenarios with different amount of available data annotated with their label class. 

 

2.2 Exploring algorithms of labeling, traversal, sequence matching and classification 

The framework for tree structure classification described above was applied and evaluated on a 

dataset of galactograms. The experiments presented in the following section were performed by 

evaluating three types of labeling, three types of traversal, two algorithms for elastic matching and six 

classification algorithms. 

Considering the node labeling three functions were used. These are (i) the NLOFF approach [14] 

and two new modifications of it, namely (ii) the NLLOG, and (iii) the NLINV approach, which are 

proposed here for the first time. According to the NLOFF approach, the label of the node (i, j) is the 

numerical value (2i + j) where i refers to the i-th level, assuming that the root's level is 0 and the level 

is increased moving downwards, and j refers to the position of the node inside each level, assuming that 

the leftmost node of every level has j = 0 and j is increased by one for each node (moving rightwards). 

Considering that using the NLOFF approach the labels increase exponentially across tree levels (for a 

tree of 𝐿𝐿 levels, 𝐿𝐿 ∈  ℕ, 𝐿𝐿 > 1 the labeling range is the interval [1, 2𝐿𝐿]), we propose NLLOG and NLINV 

to decrease the range of labels (the labeling range is [0, 𝐿𝐿] and [1 2𝐿𝐿⁄ , 1] correspondingly). The NLLOG 

labels are generated by applying logarithm function (base 𝑏𝑏 =  2) to NLOFF labels, while the NLINV 



labels are generated by the inverse number of NLOFF labels. Although in both modifications the 

labeling range is reduced, using NLLOG the labels increase across tree levels, whereas, using NLINV the 

labels decrease across tree levels. In all labeling approaches, the nipple of the traced ductal tree was 

considered as the tree root. 

Three types of tree traversing were tested. These are (i) the Level Order Traversal (TLO), (ii) the 

Pre-Order Traversal (TPO) and a modification of post order, namely (iii) the TRiple pre-order Traversal 

(TTR), which is proposed here for the first time. According to TLO traversal, every node on a level is 

visited before going to a lower level following a breadth-first manner. The TPO traversal is a type of 

depth-first traversal which starts by visiting the root, traverses the left sub-tree and afterwards the right 

sub-tree. This procedure is performed recursively. The TTR approach is derived from the Pre-Order 

Traversal with the difference that every parent node is visited three times (not only once initially but 

also after traversing its left and its right sub-tree). Let l(p) denote the label of an internal (non-leaf) 

node p of a tree. Using this type of traversal, the subsequence included between the two first 

occurrences of 𝑙𝑙(𝑝𝑝) corresponds to the left sub-tree emerging from the node 𝑝𝑝 whereas the subsequence 

included between the two last occurrences of 𝑙𝑙(𝑝𝑝) corresponds to the right sub-tree emerging from the 

node 𝑝𝑝. The sequence encoding generated by the TLO and TPO traversal of tree of 𝑁𝑁 nodes is of length 

𝑁𝑁 whereas in the case of TTR traversal the sequence encoding is of length 2𝑁𝑁 − 1. 

For the elastic matching between tree sequences two methods were evaluated, namely the 

Dynamic Time Warping (DTW) [21] and the Minimum Variance Matching (MVM) [22]. Let us 

consider two sequences 𝑋𝑋 = {𝑥𝑥1, 𝑥𝑥2, . . . , 𝑥𝑥𝑁𝑁} and 𝑌𝑌 = {𝑦𝑦1,𝑦𝑦2, . . . ,𝑦𝑦𝑀𝑀} of length 𝑁𝑁,𝑀𝑀 ∈ ℕ,𝑁𝑁 ≤ 𝑀𝑀. The 

DTW method finds the optimal alignment between the two series under three constrains: boundary, 

monotonicity and continuity conditions. According to the boundary conditions, the first and the last 

elements of 𝑋𝑋 and 𝑌𝑌 are required to be aligned to each other; that is the entire tree sequences are 

aligned. The monotonicity condition prevents the matching backwards, i.e. if an element in 𝑋𝑋 precedes 

a second one this should also hold for the corresponding elements in 𝑌𝑌, and vice versa. According to 

the continuity condition no element in 𝑋𝑋 and 𝑌𝑌 can be omitted. The similarity of these sequences is 

computed as the distance of the aligned elements of 𝑋𝑋 and 𝑌𝑌. The DTW technique suffers from lack of 

flexibility on end matching points as well as it is sensitive to outliers. In contrast to the DTW method 

which aligns all elements between the sequences, the MVM method allows skipping elements of the 

larger sequence when computing the alignment. MVM is used to find the best matching part of the 



larger sequence 𝑌𝑌 given sequence 𝑋𝑋 and it guarantees that the whole smaller sequence will be matched. 

The distance value between two sequences is estimated directly based on the distances of 

corresponding elements, as in the DTW method.  

Fig. 2 - Fig. 4 present examples of matching two trees using the proposed methodology. Let the 

two trees presented in Fig. 2d. In case of NLOFF labeling and TLO traversal, the corresponding tree 

sequences are 𝑇𝑇1 = {1,2,3,4,5,6,7,14,15,28,29,30,31,58,59,60,61,62,63,118,119} and 𝑇𝑇2 =

{1,2,3,6,7,12,13,14,15,24,25,26,27,30,31,48,49,50,51} which are plotted in Fig. 2a. The alignment of 

the two sequences using the DTW matching scheme is presented in Fig.2b and the corresponding 

alignment using the MVM scheme is presented in Fig.2c. The interpretation of the node mapping of the 

two sequences is shown in Fig.2d and Fig.2e for the two matching schemes correspondingly; the 

aligned nodes between the trees T1 and T2 are presented with the same color. Fig. 3 shows the 

alignment of two trees using the NLOFF labeling and the TPO traversal mode. In this case the tree 

sequences are 𝑇𝑇1 = {1,2,4,5,3,6,7,14,28,29,58,59,118,119,15,30,60,61,31,62,63} and 𝑇𝑇2 =

{1,2,3,6,12,24,48,49,25,50,51,13,26,27,7,14,15,30,31}. Fig. 3b-c and Fig. 2d-e present the alignment 

of the two sequences and the aligned tree topologies using DTW and MVM matching scheme 

correspondingly. By employing elastic matching techniques on tree encodings, a group of nodes (one 

or more nodes) of a tree is mapped to a group of nodes of the comparing tree allowing nonlinear 

mapping between the nodes of the compared trees. Using DTW all nodes of both sequence are aligned, 

however, using MVM nodes of the larger sequence remain unaligned. In the example of Fig.2e, the 

nodes {118,119} of 𝑇𝑇1 are not aligned using MVM; these nodes are colored in gray. In the case of 

NLOFF labeling and TTR traversal mode, the tree sequences are 𝑇𝑇1 =

{1,2,4,2,5,2,1,3,6,3,7,14,28,14,29,58,29,59,118,59,119,59,29,14,7,15,30,60,30,61,30,15,31,62,31,63,31,15,7,3,1} and 𝑇𝑇2 =

{1,2,1,3,6,12,24,48,24,49,24,12,25,50,25,51,25,12,6,13,26,13,27,13,6,3,7,14,7,15,30,15,31,15,7,3,1}. Fig. 4 shows the 

alignment of the trees 𝑇𝑇1 and 𝑇𝑇2 using the NLLOG labeling and the TPO traversal mode. The use of TTR 

traversal mode is proposed here as it results in matching subtrees between the compared trees and this 

effect is visualized in Fig. 5. The alignment between the subtrees of 𝑇𝑇1 and 𝑇𝑇2 using DTW and MVM 

matching schemes is presented in Fig. 5a and Fig 5b correspondingly. 

FIGURE 2 

FIGURE 3 

FIGURE 4 



FIGURE 5 

 

After applying the matching algorithms to tree encodings, for each instance (i.e. for each test 

ductal tree) a feature vector is computed consisting of the distance value between the test tree and each 

tree of the reference set. These feature vectors are used as input to a classification algorithm to decide 

the class of the test tree. For the classification stage we employed the following machine learning 

algorithms, namely the C4.5 decision tree (denoted as J48) [23], the support vector machines (SVM) 

implemented with the sequential minimal optimization method using polynomial kernel function [24, 

25], the IBk k-nearest neighbors algorithm [26], the 3-layer multilayer perception (MLP) neural 

network [27], the random tree (RTree) and the random forest (RForest) algorithms [28]. For the 

construction of classification models we relied on the WEKA machine learning software toolkit [28]. 

 

3. Experimental Dataset 

The experimental data consisted of 77 x-ray galactograms (Fig. 6a) acquired at the Thomas 

Jefferson University Hospital and the University Hospital of Pennsylvania, USA. Regarding the classes 

of the dataset, 55 images corresponded to women with No radiological Findings (denoted here as class 

NF) and 22 to women with Reported radiological Findings (denoted as class RF). Certain 

preprocessing steps were required to obtain the outlines of the ductal tree structures. At first, the 

boundaries of ductal trees needed to be traced out of the background of the image. The tree structures 

were reconstructed by identifying points of branching and resolving potential defects such as 

anastomoses. Node annotation of ductal trees and tree 2-dimensional reconstruction were performed 

manually by expert physicians and nipple was considered as the root for all trees of the dataset (Fig. 

6b). The average number of tree nodes in NF class was 158.18 whereas the average number of tree 

nodes in RF class was 179.27. 

 

4. Experimental Results 

The proposed framework for tree structure classification described in Section 2 was evaluated 

under the experimental setup described in Section 3. During evaluation the leave-one-out cross 

validation protocol was followed in order to ensure no overlap between training and test datasets. For 



each fold of the cross validation protocol the evaluation was performed for three traversal modes, three 

labeling schemes, two sequence matching techniques and six classifiers. For evaluation metrics we 

used the sensitivity (or true positive rate, i.e. the percentage of galactograms classified in RF class, 

which actually belong in RF class according to the experts/ physicians), the specificity (or true negative 

rate, i.e. the percentage of ductal trees classified in NF class, which actually belong in NF class 

according to the experts/physicians) and the accuracy (i.e. the percentage of correctly classified trees). 

The performance results of the tree structure classification framework in terms of sensitivity, 

specificity and accuracy are shown in Tables 1, 2 and 3 respectively. The best performing setups of the 

framework are indicated in bold. 

TABLE 1 

TABLE 2 

TABLE 3 

As can be seen in the Tables, among tested node labeling techniques, the LOG method 

outperformed the other two labeling schemes in almost all cases regardless of traversal mode, matching 

technique and classification model. Moreover, NLINV and NLOFF methods achieved similar high 

performance for the classifiers ΙBk, MLP, RTree and RForest. The use of logarithms of the labels 

rather than the original values of NLOFF labeling reduced the resulting values of sequence distance of 

the matching step which represented the inputs of classifiers. Both inversion and logarithmization of 

the NLOFF labels resulted in a shorter range of distances. However, the conversion of labels using a 

logarithmic scale (NLLOG) provided a good modification of the NLOFF scheme which assigns labels of 

exponential size given the number of tree levels. 

Regarding tree traversal modes, the TLO method achieved better results in most cases compared to 

TPO and TTR traversing (for IBk, SMO, MLP, RTree and RForest) especially when combined with IBk 

or SMO. Comparing the two basic types of traversal, the TLO encoding resulted in pairwise matching of 

nodes of similar tree levels (Fig. 2), whereas the TPO encoding included matching a node with a sub-

tree between the compared trees (Fig. 3). Note that by aligning nodes of similar tree levels, the 

corresponding pairwise distance had smaller values compared to aligning nodes to subtrees, which is 

typical when using the TPO method. The general superiority of the TLO method indicated that aligning 

similar tree levels resulted in a more effective alignment. 

http://en.wikipedia.org/wiki/Exponentiation


Regarding sequence matching, the MVM algorithm outperformed the DTW scheme for almost all 

cases apart from the cases of MLP and Random Tree. The omission of continuity condition which is 

the main difference between DTW and MVM schemes resulted in higher classification rates for almost 

all evaluation metrics indicating that focusing on a smaller subset of tree nodes provides more effective 

tree alignment. The fact that all elements, including outliers, participate in the correspondence 

optimized by DTW often leads to an incorrect correspondence of other sequence elements [22]. 

However, using MVM outliers are omitted and the correspondence computed is not corrupted.  

Comparing among the tested classifiers, J48 and IBk achieved the best results averaged over all 

methodology variants (J48: {Sens, Spec, Acc} = {66.7%, 71.5%, 70.9%}, IBk: {Sens, Spec, Acc} = 

{69.7%, 71.4%, 70.6%}). Moreover, the IBk classifier presented the minimum difference between the 

rates of Sensitivity and Specificity, indicating stability in detecting both true positive and true negative 

cases. Among the rest of the classification algorithms, PolyKernel presented high results when 

combined with BFE traversal and MVM technique regardless the labeling method. 

Although the best results of RForest and RTree were similar concerning sensitivity, specificity 

was favored in the case of RForest. Thus, the overall accuracy of RForest is higher than this of RTree. 

Moreover, MLP is well suited for NLLOG labeling regardless the traversal mode. 

The highest accuracy, which is the most valuable evaluation measure in the application of 

classification of ductal trees according to physicians [19] was achieved by the J48 decision tree ({Sens, 

Spec, Acc} = {86.4%, 90.9%, 88.6%}) when combined with NLLOG labeling, NLTRI encoding and 

MVM matching (let denote this methodology variant as LOG_TRI_MVM_J48). 

 For comparison, ductal tree classification techniques reported in literature such classification 

using text mining of Prüfer encodings and depth-first sting encoding [18], NLOFF labeling and text 

mining and classification and tree asymmetry index [14] and geometrical tree features in boosting 

frameworks [29] were used. For comparison the best results of these methodologies were considered. 

The proposed LOG_TRI_MVM_J48 approach outperformed state-of-the-art characterization 

techniques based on Prüfer encoding and text mining by 6.6% and 3.5% in terms of absolute 

Specificity and Accuracy correspondingly. Moreover, compared to Prüfer encoding scheme which 

aligns nodes using their parents' labels, the proposed approach of elastic matching enabled a more 

effective comparison of tree sequences of equal length. Compared to the NLOFF labeling and text 

mining technique [29], the Sensitivity of the proposed LOG_TRI_MVM_J48 scheme is reduced by 



0.7%, however, the Specificity is enhanced by 15.5%. Additionally, the proposed matching 

methodology provides a more interpretable framework for mapping tree topologies. 

Regarding the proposed labeling techniques and compared to the NLOFF approach whose 

labeling range is [1, 2𝐿𝐿], the NLLOG and NLINV techniques are used to decrease the labeling range which 

becomes [0, L] and [1 2L⁄ , 1] correspondingly for the two methods, where 𝐿𝐿 is the number of tree 

levels, 𝐿𝐿 > 1. Moreover, the labels generated by the NLOFF technique are natural numbers but the 

labels generated by the modifications of it are real numbers (positive real numbers except the root's 

label in NLLOG scheme which equals zero). Both inversion function and logarithmic function are 1-1 

functions and naming conflicts may occur only as a result of storage limitations regarding the variables 

that represent the labels' values. In the experiments, the labels of the NLLOG and NLINV techniques are 

saved in double-precision floating-point format which occupies 64 bits in the computer memory) and 

gives 15–17 significant decimal digits precision [31]. As the maximum number of levels, that the trees 

of the dataset used in the experiments had, was 21, using the NLLOG technique did not result in naming 

conflicts (for example, the floating-point numeric value of 𝑙𝑙𝑙𝑙𝑙𝑙2(221) was not equal to the floating-

point numeric value of 𝑙𝑙𝑙𝑙𝑙𝑙2(221 − 1)). Similarly, the NLINV technique did not result in naming 

conflicts. That is, although rounding of labels is performed due to saving a real number using a finite 

number of decimal digits, there were no naming conflicts for the dataset used.  

In general, the labeling schemes affect the inputs of the classification models since the feature 

vectors consist of distances between sequences. The distance between two sequences 𝑋𝑋 and 𝑌𝑌 (either 

using the DTW or the MVM matching technique) is the Euclidean distance of the aligned elements of 

X and Y. The distance range between any two elements x1 ∈ X and y1 ∈ Y when using the NLOFF 

approach is DOFF  ∈ [0, 2L − 1]. The distance ranges when using the NLLOG and NLINV labeling 

schemes are DLOG  ∈ [0, L] and DINV  ∈ [0,1 − 1/2L] correspondingly. In order to perform a rough 

comparative study of the three labeling schemes, the averaged results of Sensitivity, Specificity and 

Accuracy over all traversal modes, matching schemes and classifiers are presented correspondingly: 

NLOFF = {65.01, 72.70, 68.91}, NLLOG = {66.19, 73.01, 69.62}, NLINV = {63.13, 69.94, 66.54}. The 

NLINV presented the worst performance among labeling schemes regardless of the evaluation metric. 

This result might be attributed to the fact that the distance range DINV is the shortest among the distance 

ranges of all tested labeling schemes, meaning that the elements of the feature vectors are not 

effectively differentiated. Comparing NLLOG and NLOFF labeling schemes, the NLLOG method 



outperformed the NLOFF technique indicating that reducing the initial distance range from DOFF ∈

[0, 2L − 1] to the shorter range DLOG ∈ [0, L] is more effective. As many trees of the dataset are 

unbalanced, NLOFF labels which increase exponentially regarding the number of tree levels 𝐿𝐿 result in 

distances (i.e. feature ranges) of large variation. In the literature [32] it is known that the performance 

of classifiers is improved when using features of similar ranges. Therefore, we were motivated to apply 

binary logarithmization on the NLOFF labels that offers shorter feature ranges. 

Finally, the TTR approach offers larger tree sequence representations which in turn result in 

larger distance ranges compared to the other tested traversal methods. Larger distance ranges result in 

degradation of the classification performance [32]. Therefore, comparing the combination of the TTR 

method and the NLOFF labeling scheme to the combination of the other tested traversal methods and the 

NLOFF labeling scheme, we observed that the first approach presented inferior performance. However, 

when combining the TTR method with the NLLOG labeling scheme, we observed that in several cases 

(LOG_TRI_MVM_J48 variant and LOG_TRI_DTW_MLP variant) the resulting classifiers presented 

better performance than the alternative traversal methods. This could be attributed to the nature of the 

logarithmic function which reduces wide-ranging quantities to smaller scopes. 

 

5. Conclusion 

In this paper, a multistep framework for matching and classifying tree topologies is presented. The key 

contribution of this work is the idea of matching tree topologies based on tree encoding methods and 

elastic sequence matching techniques. Our approach enables comparing tree topologies of different 

number of nodes or tree depth and quantifies their similarity. Furthermore, the resulted node 

alignments between the compared trees introduce a new concept of matching tree topologies. For 

application and evaluation purposes, a medical dataset was employed and classification experiments of 

breast ductal trees were performed regarding reported galactographic findings of breast cancer. The 

application of the methodology resulted in outperforming state-of-the-art approaches of 

characterization of tree structures in medical images via the analysis of sequence representations. Our 

future research plans include exploring new sequence encoding methods to represent tree topologies 

and applying the proposed methodology to other types of tree structures. 
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Table 1. Comparison of several tree traversal methods, labeling schemes and classifiers in terms of sensitivity. 1 

Sensitivity (%) 

Traversal Labeling J48 Poly 
Kernel IBk MLP RTree RForest 

DTW MVM DTW MVM DTW MVM DTW MVM DTW MVM DTW MVM 

TLO 

NLOFF 68.12 81.82 61.00 86.36 63.64 77.27 71.00 72.73 63.64 81.82 54.55 81.82 
NLINV 77.27 68.18 81.82 68.18 77.27 77.27 72.73 68.18 59.09 68.18 77.27 68.18 
NLLOG 63.64 77.27 90.91 81.82 81.82 72.73 81.82 77.27 81.82 68.18 81.82 77.27 

TPO 

NLOFF 59.09 72.73 63.00 50.00 68.18 72.73 57.00 50.00 59.09 72.73 59.09 68.18 
NLINV 63.64 72.73 59.09 22.73 45.45 72.73 59.09 54.55 50.00 45.45 50.00 54.55 
NLLOG 86.36 77.27 68.18 27.27 77.27 63.64 77.27 54.55 72.73 59.09 77.27 63.64 

TTR 

NLOFF 36.36 59.09 63.00 45.45 63.64 63.64 71.00 63.64 72.73 68.18 59.09 59.09 
NLINV 63.64 63.64 63.64 27.27 63.64 68.18 77.27 54.55 81.82 63.64 68.18 63.64 
NLLOG 63.64 86.36 54.55 36.36 72.73 72.73 77.27 63.64 68.18 72.73 59.09 68.18 

 2 

Table 2. Comparison of several tree traversal methods, labeling schemes and classifiers in terms of specificity. 3 

Specificity (%) 

Traversal Labeling J48 Poly 
Kernel IBk MLP RTree RForest 

DTW MVM DTW MVM DTW MVM DTW MVM DTW MVM DTW MVM 

TLO 

NLOFF 78.32 86.36 71.00 72.73 50.00 86.36 79.00 77.27 54.55 77.27 77.27 86.36 
NLINV 59.09 72.73 63.64 90.91 81.82 86.36 81.82 77.27 68.18 72.73 72.73 86.36 
NLLOG 86.36 63.64 59.09 86.36 81.82 81.82 81.82 72.73 81.82 81.82 77.27 81.82 

TPO 

NLOFF 50.00 81.82 76.00 95.45 45.45 54.55 59.00 59.09 72.73 81.82 68.18 86.36 
NLINV 86.36 54.55 50.00 54.55 63.64 63.64 54.55 72.73 45.45 63.64 50.00 59.09 
NLLOG 86.36 63.64 63.64 72.73 72.73 72.73 81.82 72.73 77.27 54.55 86.36 63.64 

TTR 

NLOFF 81.82 68.18 76.00 95.45 59.09 68.18 69.00 81.82 72.73 68.18 77.27 72.73 
NLINV 68.18 59.09 86.36 63.64 77.27 77.27 72.73 68.18 77.27 63.64 90.91 81.82 
NLLOG 77.27 90.91 86.36 86.36 81.82 81.82 86.36 68.18 68.18 63.64 81.82 72.73 



Table 3. Comparison of several tree traversal methods, labeling schemes and classifiers in terms of accuracy. 1 

Accuracy (%) 

Traversal Labeling J48 Poly 
Kernel IBk MLP RTree RForest 

DTW MVM DTW MVM DTW MVM DTW MVM DTW MVM DTW MVM 

TLO 

NLOFF 73.22 84.09 66.00 79.55 56.82 81.82 75.00 75.00 59.09 79.55 65.91 84.09 
NLINV 68.18 70.45 72.73 79.55 79.55 81.82 77.72 72.73 63.64 70.45 75.00 77.27 
NLLOG 75.00 70.45 75.00 84.09 81.82 77.27 81.82 75.00 81.82 75.00 79.55 79.55 

TPO 

NLOFF 54.55 77.27 71.00 72.73 56.82 63.64 58.00 54.55 65.91 77.27 63.64 77.27 
NLINV 75.00 66.64 54.55 38.64 54.55 68.18 56.82 63.64 47.73 54.55 50.00 56.82 
NLLOG 86.36 70.45 65.91 50.00 75.00 68.18 79.55 63.64 75.00 56.82 81.82 63.64 

TTR 

NLOFF 59.09 63.64 70.00 70.45 61.36 65.91 70.00 72.73 72.73 68.18 68.18 65.91 
NLINV 65.91 61.36 75.00 45.45 70.45 72.73 75.00 61.36 79.55 63.64 79.55 72.73 
NLLOG 70.45 88.64 70.45 61.36 77.27 77.27 81.82 65.91 68.18 68.18 70.45 70.45 

 2 

  3 



Table 4. Performance of proposed and state-of-the-art frameworks for classification of tree structures. 1 

Methodology Sensitivity (%) Specificity (%) Accuracy (%) 
Proposed 

methodology LOG_TRI_MVM_J48 variant 86.36 90.91 88.64 

Classification using 
sequence encoding 

and text mining 
[18] 

(i) Prüfer encoding & text mining 86.11 84.33 85.16 

(ii) DF labeling & text mining 79.51 72.46 75.89 

Classification using 
asymmetry index 

[14] 

(i) OFF labeling & text mining 87.03 75.41 81.22 

(ii) Tree asymmetry 90.23 80.75 85.34 

Classification using 
geometrical 
features [30] 

(i) Real AdaBoost 87.36 69.67 76.34 

(ii) Gentle AdaBoost 82.73 67.36 74.45 

(iii) Modest AdaBoost 69.05 53.25 60.12 

 2 
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Fig. 1. Block diagram of the proposed framework for classification of tree structures. 1 
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Fig. 2. Sequence representation, alignment and node alignment of the tree sequences T1 and T2 (colored in blue and red correspondingly). The NLOFF labeling scheme and the 1 
TLO traversal method were employed for tree representation (a), elastic matching was performed applying DTW and MVM techniques (b, c correspondingly). The aligned 2 
nodes for the two matching techniques (DTW and MVM) are colored likewise in (d) and (e) correspondingly. 3 
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Fig. 3. Sequence representation, alignment and node alignment of the tree sequences T1 and T2 (colored in blue and red correspondingly). The NLOFF labeling scheme and the 1 
TPO traversal method were employed for tree representation (a), elastic matching was performed applying DTW and MVM techniques (b, c correspondingly). The aligned 2 
nodes for the two matching techniques (DTW and MVM) are colored likewise in (d) and (e) correspondingly. 3 
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Fig. 4. Sequence representation, alignment and node alignment of the tree sequences T1 and T2 (colored in blue and red correspondingly). The NLLOG labeling scheme and the 1 
TPO traversal method were employed for tree representation (a), elastic matching was performed applying DTW and MVM techniques (b, c correspondingly). The aligned 2 
nodes for the two matching techniques (DTW and MVM) are colored likewise in (d) and (e) correspondingly. 3 
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Fig. 5. Exploring the traversal mode TTR. Alignment of subtrees of the trees T1 and T2 using the TTR traversal mode, the NLOFF labeling and two different elastic 1 
matching methodologies; DTW (up) and MVM (down). 2 
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Fig. 6. (a) An original medical image of galactogram, (b) the magnified ductal tree segmented using manual tracing. 1 
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