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Abstract

The classification of patterns into naturally ordered labels is referred to as ordinal regression, which is a very common setting for

real world applications. One of the most widely used ordinal regression algorithms is the Proportional Odds Model (POM), despite

the linearity of the resultant decision boundaries. Through different proposals, this paper explores the notions of kernel trick and

empirical feature space to reformulate the POM method and obtain nonlinear decision boundaries. Moreover, a new technique for

aligning the kernel matrix taking into account the ordinal problem information is proposed, as well as a regularised gradient ascent

methodology which is used to select the optimal dimensionality for the empirical feature space. The capability of the different

developed methodologies is evaluated by the use of a nonlinearly separable toy dataset and an extensive set of experiments over 28

ordinal datasets. The results indicate that the tested methodologies are competitive with respect to other state-of-the-art algorithms,

and they significantly improve the original POM algorithm.
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1. Introduction

In this paper, we consider the specific problem of ordinal

regression, which shares properties of classification and regres-

sion settings. Formally, Y (the target space) is a finite set, but

there exists an ordering among its elements. In contrast to re-

gression, Y is a non-metric space, thus distances among cate-

gories are unknown. Besides, the zero-one loss function usually

considered for standard classification does not reflect the order-

ing of Y. Ordinal regression (or classification) problems arise

in fields as information retrieval, preference learning, economy,

and statistics, forming an emerging field in the areas of machine

learning and pattern recognition.

A great number of statistical methods for categorical data

treat all response variables as nominal, in such a way that the re-

sults are invariant to category permutations on those variables.

However, there are many advantages in treating an ordered cat-

egorical variable as ordinal rather than nominal [1, 2]. In this

vein, several approaches to tackle ordinal regression have been

proposed in the domain of machine learning over the years, the

Proportional Odds Model (POM) being one of the first ones,

dating back to 1980 [3]. Indeed, the POM can be contextu-

alised in the most popular framework for ordinal regression,

i.e., the threshold models [4, 5, 3], which are based on the as-

sumption that an underlying real-valued outcome exists (also

known as latent variable), although it is unobservable. These

methods try to determine the nature of the underlying outcome

∗This paper has been invited to be included in the “Special Issue

Neurocomputing-IWANN2013”.

by using a function f (·) and a set of thresholds to represent in-

tervals in the range of f (·). Although very sophisticated and

successful learning techniques have been recently developed

for ordinal regression [6, 4, 5, 7], the use of the POM method

is widespread. However, the resulting decision boundaries are

linear, which is an unrealistic assumption for many real world

problems. To deal with this issue, the proposals presented in

this paper make use of the notion of the so-called kernel trick,

which implicitly maps input patterns into a high-dimensional

feature space via a function Φ(·) in order to compute nonlinear

decision boundaries. The standard process for applying the ker-

nel trick requires reformulating the learning algorithm based on

dot products between the different training points, which im-

plies some difficulties in the case of the POM, as we will see.

Alternatively, we consider the Empirical Feature Space (EFS)

[8, 9], which preserves the geometrical structure of the original

feature space (the dot products of the corresponding images are

equal to the original kernel values, and the distances and an-

gles in the feature space are uniquely determined by dot prod-

ucts). The EFS is Euclidean, this allowing the kernelisation of

all kinds of linear machines [10, 11], with the advantage that

the algorithm does not need to be formulated to deal with dot

products.

The dimensionality of the EFS is the rank of the kernel ma-

trix, which can be very high (e.g., in the case of a Gaussian ker-

nel it usually corresponds to the number of training patterns).

This is a key factor in the reformulation of the POM algorithm,

whose computational cost is closely related to the dimension-

ality of the dataset. Therefore, we propose different techniques

to control this dimensionality while approximating the original
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information contained in the kernel matrix and therefore includ-

ing some form of regularisation.

On the other hand, the performance of the POM model con-

structed in the EFS directly depends on how well the kernel

function is adapted to the problem considered. Because of this,

kernel-target alignment, a well-known kernel learning technique,

[12, 13] is considered in this paper to better adapt the EFS to

each dataset. This technique is extended by including ordinal

weights in order to take the ordinal nature of the target vari-

able into account. As will be analysed, such a kernel learning

technique is very useful for creating a method to automatically

compute the dimensionality of the EFS.

Summarising, the contributions of the paper can be said to

be threefold: 1) the application of the EFS to compute nonlin-

ear decision boundaries for the POM at a limited computational

cost, leading naturally to probabilistic outputs; 2) an ordinal

kernel learning technique to better match the different datasets;

3) an extension of this kernel learning technique in order to au-

tomatically decide the dimensionality of the EFS.

The kernelisation of the POM has also been considered in

[14], where the POM method is extended for non-crisp ordi-

nal regression task. Maximisation of the regularised loss func-

tion is accomplished by considering the representer theorem

[15]. However, the paper makes reference to a different set-

ting, where partial class memberships are given for the patterns,

while we are provided with crisp ordinal targets. Moreover, our

method approaches the optimisation of the model in a more di-

rect way by redefining the model in the EFS. Other works have

considered before a nonlinear version of the POM method (or

more generally, a nonlinear version of logistic regression) by

the use of artificial neural networks [16] or by including polyno-

mial combinations of the input features. However, these strate-

gies imply difficult optimisation processes. As will be shown

in the experimental section, the use of the EFS with a Gaussian

kernel allows the POM method to obtain much better results

and to handle nonlinear decision boundaries. The experiments

also show that the selection of the optimal dimensions is a cru-

cial step which can significantly improve the algorithm perfor-

mance, as well as the inclusion of the ordinal information in the

kernel optimisation process.

The rest of the paper is organised as follows: Section 2

presents some useful previous notions; Section 3 shows a de-

scription of the different proposals; Section 4 describes the ex-

perimental study and analyses the results; and finally, Section 5

outlines some conclusions and future work.

2. Previous notions

The goal in classification is to assign an input vector x to

one of Q discrete classes Cq, q ∈ {1, . . . ,Q}. A formal frame-

work for the ordinal regression problem can be introduced con-

sidering an input space X ∈ R
m×d, where m is the number of

training patterns and d is the data dimensionality. Moreover,

an outcome space Y = {C1,C2, . . . ,CQ} can be defined, where

the labels are ordered in such a way that C1 ≺ C2 ≺ · · · ≺ CQ,

where ≺ denotes the order relation. The objective for this learn-

ing setting is to find a prediction rule f : X → Y by using an

i.i.d. training sample D = {xi, yi}
m
i=1
∈ X × Y. The following

subsections describe some of the concepts needed to understand

the methodology proposed in this paper.

2.1. Proportional Odds Model

This is one of the first models specifically designed for or-

dinal regression, and it arises from a statistical background [3].

Let h denote an arbitrary monotonic link function and P(y �

Cq|x) the probability that a pattern x belongs to a class lower to

Cq (in the ordinal scale). The model:

h
�

P(y � Cq|x)
�

= bq − β
⊤x, q = 1, . . . ,Q − 1, (1)

links the cumulative probabilities to a linear predictor and im-

poses an stochastic ordering of the space X, where bq is the

threshold separating classes Cq and Cq+1 and β is a linear pro-

jection. This model is naturally derived from the latent variable

motivation; then instead of fitting a decision rule f : X → Y

directly, this model defines a probability density function over

the class labels for a given feature vector x. Let us assume

that the ordinal response comes from a coarsely measured la-

tent continuous variable f (x). Thus, label Cq in the training set

is observed if and only if f (x) ∈ [bq−1, bq], where the function f

(latent utility) and b = {b0, b1, ..., bQ−1, bQ} are determined from

data. By definition, b0 = −∞ and bQ = +∞ and the real line

f (x) is divided into Q consecutive intervals, where each interval

corresponds to a category Cq.

Now, let define a model of the latent variable, f (x) = β⊤x+

ǫ, where ǫ is the random variable with zero expectation, E[ǫ] =

0, and distributed according to the distribution function Fǫ . Then,

it follows that:

P(y � Cq|x) =
Pq

k=1
P(y = Ck |x) =

Pq

k=1
P( f (x) ∈ [bk−1, bk]) =

= P( f (x) ∈ [−∞, bq]) = P(β⊤x + ǫ ≤ bq) = P(ǫ ≤ bq − β
⊤x) =

= Fǫ(bq − β
⊤x).

If a distribution assumption Fǫ is made for ǫ, the cumulative

model is obtained by choosing, as the inverse link function h−1,

the inverse distribution F−1
ǫ (quantile function). Note that F−1

ǫ :

[0, 1]→ (−∞,+∞) is a monotonic function. The most common

choice for Fǫ is the logistic function [3].

2.2. Ideal kernel

Let H denote a high-dimensional or infinite-dimensional

Hilbert space. Then, for any mapping of patterns Φ : X → H ,

the inner product k(xi, x j) =
D

Φ(xi),Φ(x j)
E

H
of the mapped

inputs is known as a kernel function, giving rise to a positive

semidefinite (PSD) matrix K for a given input set X.

Although properties of a kernel function k are important,

often the kernel matrix (Ki j = k(xi, x j)) plays a more impor-

tant role than the kernel function, given that most kernel algo-

rithms work with this matrix. Kernel matrices contain informa-

tion about the similarity among the patterns in a dataset. There-

fore, the empirical ideal kernel [13], K∗, (i.e., the matrix that
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would represent perfect similarity information) will submit the

following structure:

k∗(xi, x j) =

(

+1 if yi = y j,

−1 otherwise
(2)

where K∗
i j
= k∗(xi, x j). Roughly speaking, K∗ provides infor-

mation about which patterns in the dataset should be considered

as similar when performing some learning task. As we are deal-

ing with a classification problem, patterns from the same class

should be considered totally similar, while patterns from other

classes should be considered as different as possible.

2.3. Centered kernel-target alignment

Suppose an ideal kernel matrix K∗ and a given real ker-

nel matrix K. The underlying idea for kernel-target alignment

(KTA) [13] is to choose the kernel matrix K (among a set of

different matrices) closest to the ideal matrix K∗. This can be

evaluated by the Frobenius inner product between these ma-

trices (i.e., hK,K∗iF =
Pm

i, j=1 k(xi, x j) · k
∗(xi, x j)), which give

us information of how well the patterns are classified in his

own category. Indeed, if we consider Eq. (2), the Frobenius

inner product could be rewritten as hK,K∗iF =
P

yi=y j
k(xi, x j)−

P

yi�y j
k(xi, x j), where the term

P

yi=y j
k(xi, x j) is related to the

within-class distance, and the term
P

yi�y j
k(xi, x j) is related to

the between-class distance.

The KTA between two kernel matrices K and K∗ is defined

as:

A(K,K∗) =
hK,K∗iF

p

hK∗,K∗iF hK,KiF
. (3)

This quantity is totally maximised when the kernel function is

capable to reflect the properties of the training dataset used to

define the ideal kernel matrix.

However, some problems are found when considering KTA

for datasets with skewed class distributions [13, 17]. These

problems can be solved by the use of centred kernel matrices

[12], leading a methodology (centred kernel-target alignment,

CKTA) that have demonstrated to correlate better with perfor-

mance than with the original definition of KTA. CKTA basi-

cally extends KTA by centring the patterns in the feature space.

The centred kernel version of a matrix K can be written as:

Kc = K −K1 1
m
− 1 1

m
K + 1 1

m
K1 1

m
,

where 1 1
m

corresponds to a matrix with all the elements equal to
1
m

. Kc will also be a PSD matrix, fulfilling k(x, x) ≥ 0 ∀ x ∈ X

and symmetry.

2.4. Empirical Kernel Mapping

In this section, the Empirical Feature Space (EFS) [8] spanned

by the training data is defined. By definition, a kernel matrix K

can be diagonalised as follows:

K(m×m) = P(m×r) · Λ(r×r) · P
⊤
(r×m)
, (4)

where r is the rank of K, Λ is a diagonal matrix containing the r

non-zero eigenvalues of K in decreasing order (i.e., λ1, . . . , λr),

and P is a matrix consisting of the eigenvectors associated to

those r eigenvalues (i.e., u1, . . . ,ur) in such a way that K =
Pr

i=1 λiuiu
T
i

. Note that this mapping corresponds to the princi-

pal component analysis whitening step [18], but applied to the

kernel matrix, instead of the covariance one. Then, the EFS can

be defined as an Euclidean space preserving the dot product

information about H contained in K (i.e., this space is isomor-

phic to the embedded feature space H , but being Euclidean).

Since distances and angles of the vectors in the feature space

are uniquely determined by dot products, the training data have

the same geometrical structure in both the EFS and the feature

space. The map from the input space to this r-dimensional EFS

is defined as Φe
r : X→ R

r. More specifically:

Φe
r : xi → Λ

−1/2 · P⊤ · (k(xi, x1), . . . , k(xi, xm))⊤. (5)

It can be checked that the kernel matrix of training images ob-

tained by this transformation corresponds to K, when consider-

ing the standard dot product [8, 9].

Furthermore, the EFS provides us with the opportunity to

limit the dimensionality of the space by choosing the j ≤ r

dominant eigenvalues (and their associated eigenvectors) to pro-

ject the data, while maintaining the most important part of the

structure of H . Nevertheless, how to correctly choose j is still

a difficult issue to be solved.

Figure 1 has been included in order to graphically clarify

the concept of EFS. It can be seen that, despite the fact that

the three most representative dimensions are not enough to lin-

early separate the data, they actually provide useful information

about the order of the classes and the separation between them.

3. Proposed methodology: Tackling the ordinal informa-

tion via the kernel trick

Although Eq. (1) could be directly kernelised in the same

vein that it is done with support vector machines (SVMs) (see,

for example, [19]), this would imply substituting the standard

hinge loss by the negative log likelihood loss (in our case, both

adapted to ordinal regression). Because of the nature of this

log likelihood loss function, this would reduce the sparsity of

the obtained kernel machine. The reason then to consider the

EFS is precisely to be able to reduce the dimensionality of the

obtained kernel machine by the method presented in Section

3.2.1, which, in general, should improve the generalisation per-

formance.

Three differentiated proposals can be found in this section

of the paper. Firstly, we propose how to extend the POM method

to deal with a nonlinear transformation of the input variables

making use of the kernel trick (i.e., the above mentioned EFS).

Secondly, we reformulate the notion of CKTA (a common strat-

egy for kernel learning) to deal with classification problems that

present an ordinal structure by imposing different weights for

the different similarity errors. Finally, a new method is pro-

posed for reducing the dimensionality of the subspace to which

the data are projected. As said before, this is very useful for the

reformulated POM, because it can decrease a lot the computa-

tional complexity (as opposed to considering the EFS with the

full-rank decomposition).

3
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Figure 1: 3-dimensional approximation of the EFS induced by a Gaussian kernel for the nonlinearly separable synthetic toy dataset.

3.1. Proportional Odds Model in the Empirical Feature Space

Far beyond the definition of the EFS, it is well-known that

the kernel trick turns a linear decision boundary in H into a

nonlinear decision boundary in X. This allows the formulation

of nonlinear variants of many algorithms (those which can be

cast in terms of the inner products between patterns). When us-

ing the EFS, this last restriction is avoided and any standard lin-

ear decision algorithm can be used, without any loss of general-

ity. Figure 2 shows the case of a synthetic dataset representing

a nonlinearly separable classification task and its transforma-

tion to the two-dimensional EFS (using the two most dominant

eigenvectors), which is linearly separable.

��������������� ����� ��� �������

������������� ����������

��������������� ���������� �� ��� ��� ����
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Figure 2: Synthetic two-dimensional dataset representing a nonlinearly sepa-

rable classification problem and its transformation to the 2 dominant dimen-

sions of the EFS induced by the Gaussian kernel function (linearly separable

problem). Note that the H space can not be represented itself. However, the

transformation performed when applying the kernel trick can be observed by

analysing the two-dimensional EFS representation.

Now, consider the use of the EFS transformation Φe
r(x) (Eq.

(5)) for redefining the POM. Eq. (1) is reformulated as:

h
�

P(y � Cq|x)
�

= bq − β
⊤Φe

r(x) = (6)

= bq − β
⊤
Λ
−1/2 · P⊤ · (k(x, x1), . . . , k(x, xm))⊤. (7)

In this case, the model of the latent variable will submit the

formulation f (Φe
r(x)) = β⊤ ·Φe

r(x) + ǫ, where β will be a linear

projection. However, this projection will perform as a nonlinear

decision function in X, since a nonlinear transformation of the

input variables is being used.

3.2. Kernel-Target Alignment for ordinal classification

Standard multinomial classification problems have been stud-

ied by using KTA based on a geometrical interpretation [20],

resulting in a simple modification of the original KTA (which

was initially designed for binary problems). Instead of consid-

ering the kernel equal to −1 when the patterns do not belong

to the same class, it is assigned to −1/(Q − 1), being Q the

number of classes in the problem. This is done because each

description x is associated to one of the Q vertices of a (Q− 1)-

dimensional centred simplex. However, such approach is not

consistent when considering a dataset with an ordinal structure,

because all the errors committed are equally weighted and all

the classes are said to be equally similar to the rest of classes.

For the sake of understanding, consider a dataset D com-

posed of five patterns belonging to four different classes, i.e.,

D = {(x1,C1), (x2,C2), (x3,C3), (x4,C3), (x5,C4)}. The ideal

kernel matrix for D can be seen in Table 1. Bold face is used

in this Table to outline some of the entries of these matrices.

Note that the kernel matrix can be seen from a pattern similar-

ity/dissimilarity perspective. Now, examine the two arbitrary

kernel matrices K1 and K2. In the Gram matrix K1, the pattern

x1 ∈ C1 is said to be similar to x2 ∈ C2, while, in the Gram

matrix K2, it is said to be similar to x5 ∈ C4. In the case of ordi-

nal regression, those misclassification errors involving a higher

number of categories between the real label and the predicted

one (in the ordinal scale) should be more penalised [2, 21, 22].

Similarly, matrix K2 (which is confusing a pattern from the first

class with one of the fourth one) should result in a lower KTA

than K1 (which is confusing this pattern with one of the neigh-

bouring classes).

Table 2 shows three different error weighting cost matri-

ces used in previous works. The first one is associated with the

nominal classification setting, where all the misclassification er-

rors are considered to be equal. The second one, is known as the

absolute cost matrix, and it takes into account the difference of

the assigned values for the categories, that is |r(y j)−r(yi)|, (r(yi)

being the ranking for a given target yi, i.e., the position of yi in

4



Table 1: Example of different kernel matrices for the hypothetical dataset D.

Ideal kernel matrix K∗ Kernel matrix K1 Kernel matrix K2




































+1 −1 −1 −1 −1

−1 +1 −1 −1 −1

−1 −1 +1 +1 −1

−1 −1 +1 +1 −1

−1 −1 −1 −1 +1









































































+1 +1 −1 −1 −1

+1 +1 −1 −1 −1

−1 −1 +1 +1 −1

−1 −1 +1 +1 −1

−1 −1 −1 −1 +1









































































+1 −1 −1 −1 +1

−1 +1 −1 −1 −1

−1 −1 +1 +1 −1

−1 −1 +1 +1 −1

+1 −1 −1 −1 +1





































the ordinal scale). Finally, the third one is the quadratic version

of the absolute cost matrix. Absolute cost and quadratic abso-

lute cost are commonly considered for ordinal regression prob-

lems, as a way of obtaining classifiers which minimise those

misclassification errors involving several categories in the ordi-

nal scale.

Table 2: Different cost matrices which can be found in the literature.

Nominal cost Absolute cost Quadratic abs. cost

C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4

C1 0 1 1 1 0 1 2 3 0 1 4 9

C2 1 0 1 1 1 0 1 2 1 0 1 4

C3 1 1 0 1 2 1 0 1 4 1 0 1

C4 1 1 1 0 3 2 1 0 9 4 1 0

In the same vein, we propose to consider these matrices

when obtaining the KTA of a matrix, in order to penalise dif-

ferently the misalignment errors of an evaluated matrix. That

is, a weighting matrix W is defined in such a way that K∗ ◦W

imposes a weighting for the different similarity or dissimilar-

ity errors committed, where A ◦ B represents the hadamard or

entrywise product between matrices A and B. A first idea for

weighting errors would be the use of the absolute errors com-

monly used for ordinal classification, i.e.:

w(xi, x j) =

(

1, if yi = y j,

|r(yi) − r(y j)|, otherwise.
(8)

As discussed previously, the centred version of the matrices

will be considered, avoiding problems with skewed class distri-

butions. Therefore, the proposed ordinal version Ãc of CKTA

is defined as follows:

Ãc(K,K∗) = Ac(K,K∗ ◦W). (9)

This reformulation of CKTA for ordinal problems can be

used for optimising the parameters of the kernel matrix (subsec-

tion 3.2.1), as well as for choosing the optimal dimensions for

projecting the data onto a lower dimensional space (subsection

3.3). Both approaches will be considered for the experiments in

order to improve the quality of the EFS in conjunction with the

POM method.

3.2.1. Optimisation of the ordinal Centred Kernel-Target Align-

ment via Multiple Kernel Learning

For the optimisation of the proposed ordinal CKTA, one

could use any of the optimisation strategies proposed for the

original CKTA. In this paper, we will use two different strate-

gies. This subsection presents one of them, and subsection 3.3

proposes the other. In this subsection, we use a Quadratic Pro-

gramming problem (QP) (by means of multiple kernel learning

techniques), which has a single global maximum and it is easier

to optimise. The solution of this QP problem will result in a ker-

nel matrix defining the optimal EFS for the considered problem.

We optimise a convex combination of kernel matrices, where

each matrix is associated to a different parameter for the kernel

width. Therefore, we fix a set of p possible parameter values

for the kernel width α, i.e., {α1, . . . ,αp} and compute the kernel

matrices obtained for these values {Kα1
, . . . ,Kαp

}. To optimise

CKTA (or the proposed ordinal version), we can derive a kernel

matrix Kδ =
Pp

i=1
δiKαi

with δi ≥ 0 and
Pp

i=1
δi = 1. The op-

timisation problem for the ordinal version of CKTA will be the

following:

max
δ∈M




Kδc
,K∗ ◦W

�

F

||Kδc
||F

,

where ||A||F =
p

hA,AiF and M = {δ : ||δ||2 = 1}. The QP

optimization problem associated can be solved as in [12].

To show how the different weights in Table 1 may influ-

ence the choice of the parameters we include the optimisation

surfaces obtained for δwhen α = {0.01, 1, 100}. We use a three-

dimensional simplex (to fulfil δi ≥ 0 and
P3

i=1 δi = 1), as can be

seen in Figure 3, where the coloured points show how to select

the values of the parameters δ in order to fulfil their constraints.

Figure 4 shows these optimisation surfaces for two datasets of

the experiments considered in this paper (LEV and toy) and the

three weight matrices in Table 1. As can be appreciated, the

surfaces are very different and the optimum value can be found

in a different region of the simplex.

�

�

�

���

���

���

���

���

������

���

���

���

���

���

Figure 3: Simplex example where it can be seen how to compute δ1, δ2 and δ3
in order to fulfill the constraints δi ≥ 0 and

P3
i=1 δi = 1.

3.3. Selection of bases for projecting: A regularised gradient-

based technique using CKTA

The above mentioned methodology is not suitable for choos-

ing the optimal set of bases for projecting the data. Therefore,

once the kernel matrix has been optimized by the process pre-

sented in the previous subsection, we now present a regularised

gradient ascent methodology to improve the alignment of the

kernel matrix by selecting some of its bases.
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Figure 4: Kernel-target alignment optimisation surfaces for {δ1, δ2, δ3} for the LEV and toy datasets and three different weighting matrices (see Table 2).

Usually, the j dominant eigenvectors (the ones associated

to the highest eigenvalues) are used as a projection onto a sub-

space to remove noise (as done in principal components anal-

ysis) or for visualisation purposes. Therefore, the eigenvalues

ranking from j + 1 to r (and the corresponding eigenvectors)

are discarded so that K j =
P j

i=1
λiuiu

T
i
. By using this idea, the

distance to the original kernel r-rank matrix K (i.e., ||K−K j||
2
F
)

is minimised over all rank- j matrices. However, in this case,

we aim to find the projection that minimises ||K∗ −K j||
2
F

for K∗

being the ideal kernel. Note that, since K does not include any

information about the target variable, the bases associated to

the highest eigenvalues of K do not have to be so informative.

Alternatively, we can form a matrix:

Kw =

r
X

i=1

f (wi)λiuiu
T
i , (10)

where f (wi) ∈ [0, 1] so as to maintain Kw to be PSD and for

simplicity. In this way, the weight of the eigenvectors is now

determined by f (wi) and λi. The objective of this definition is

to generalise the combination of the eigenvectors in order to

obtain information about which of them are more important for

improving the CKTA. We aim to find a lower subspace for our

data that maintains the labelling information in a proper way.

We propose to define the optimisation problem as follows:

w∗ = arg max
w















Ac(Kw,K
∗) −
µ

r

r
X

i=1

f (wi)















, (11)

where f (wi) ∈ [0, 1] and µ is a regularisation parameter. L1 or

L2 norms could be considered for the weights (i.e., f (wi) = |wi|

or f (wi) = w2
i
, respectively). For simplicity, we choose:

f (wi) =
1

1 + e−wi
, (12)

i.e., the sigmoid function. We experimentally found that this

formulation promotes more sparsity than L2 norm, while being

still derivable. As we apply gradient descent optimisation for

optimisation, considering L1-norm would imply a constrained

problem (with a higher computational cost) or applying iterative

techniques similar to those in [23].

Because of the differentiability of the function to maximise

in Eq. (11) (which will be named g from now on) with respect

to the vector w, a gradient ascent algorithm can be used to max-

imise it. The gradient vector will be composed of the following

partial derivatives ▽g =
h

∂g

∂w1
, . . . ,

∂g

∂wr

i

T. The iRprop+ algo-

rithm is considered for optimising the aforementioned function,

because of its proven robustness for optimising KTA [24]. Each

parameter wi will be updated considering the sign of
∂g

∂wi
but not

the magnitude. Although the second partial derivatives can also

be computed and used for optimisation, they actually make the

process more computationally costly due to the complexity of

their formulae.

The first derivative of g with respect to wi is:

∂g

∂wi

=
∂Ac(Kw,K

∗)

∂wi

−
µ

r
·
∂ f

∂wi

, (13)

where the alignment derivative with respect to wi is:

∂Ac(Kw,K
∗)

∂wi

= (14)

=
1

||K∗c ||F



















D

∂Kw

∂wi
,K∗c

E

F

||Kwc
||F
−




Kw,K
∗
c

�

F ·
D

Kwc
,
∂Kw

∂wi

E

F

||Kwc
||3

F



















, (15)

and, for matrices K1 and K2, it is satisfied that



K1c
,K2c

�

F =



K1,K2c

�

F =



K1c
,K2

�

F [12], which simplifies the computa-

tion. The computation of the KTA takes O(m2) operations per
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Figure 5: Two-dimensional representation of the structure of an ordinal nonlin-

early separable toy dataset.

parameter wi to optimise [25]. Because this optimisation does

not involve any additional optimisation problem, it is very fast

in practice. The derivative of the kernel (see Eq. (10)) is in this

case:
∂Kw

∂wi

=
∂ f

∂wi

λiuiu
T
i =

e−wi

(1 + e−wi )2
λiuiu

T
i . (16)

The regularisation term in Eq. (11) (i.e., the term µ
Pr

i=1 f (wi))

results in the less representative bases presenting a wi value

close to zero, and the most representative ones close to one. The

bases with wi close to one are the ones chosen for projecting the

data. The parameter µ is set by cross-validation. After applying

the gradient ascent method, those bases which f (wi) < 10−6 are

eliminated from the kernel matrix, and the original eigenvalues

of the remaining bases are taken into account to reconstruct the

matrix.

Although we have considered original CKTA for all these

definitions, ordinal CKTA can be similarly considered by ap-

plying the weight matrix to the ideal kernel matrix. If we in-

clude the ordinal version of CKTA in Eq. (11), the projections

that better maintain the ordinal similarity information will be

preferred.

The convergence of the proposal to a proper solution is now

discussed. Consider the case when there is a basis that perfectly

projects the patterns according to the labelling (for example, the

eigenvalue λ1 and the associated eigenvector u1). Let denote the

projected kernel matrix using this basis as Kλ1
= f (w1)λ1u1uT

1
.

Furthermore, consider other basis (λ2, u2 and Kλ2
) which pro-

jection results in no useful information about the labelling. That

is, Ac(Kλ1
,K∗) = 1 (or, in other words Kλ1

= cK∗, where c is

a scalar) and Ac(Kλ2
,K∗) = 0. Let suppose r = 2, so that

Kw = Kλ1
+ Kλ2

. Under these assumptions, what we would

like to show is how f (w2) influences Ac(Kw,K
∗). First, the

alignment can also be defined as:

Ac(Kw,K
∗) =

Tr(KwK∗c)
p

Tr((K∗c)2)Tr(K2
wc)
=

Tr(Kλ1
K∗c) + Tr(Kλ2

K∗c)
p

Tr((K∗c)2)Tr(K2
wc)

.

(17)

Note that the fact thatAc(Kλ2
,K∗) = 0 comes from Tr(Kλ2

K∗c) =

0. Besides, Tr(K2
wc) = ( f (w1)λ1)2 + ( f (w2)λ2)2. Note that

the only case in which Ac(Kw,K
∗) = Ac(Kλ1

,K∗) (i.e., the

Table 3: Characteristics of the 28 benchmark datasets used for the experiments.

Dataset #Pat. #Attr. #Classes Class distribution

contact-lenses 24 6 3 (15,5,4)

pasture 36 25 3 (12,12,12)

squash-stored 52 51 3 (23,21,8)

squash-unstored 52 52 3 (24,24,4)

tae 151 54 3 (49, 50, 52)

SWD 1000 10 4 (32,352,399,217)

car 1728 21 4 (1210,384,69,65)

diabetes5 43 2 5 (5,6,22,8,2)

pyrim5 74 27 5 (7,28,17,12,10)

triazines5 186 60 5 (7,10,26,86,57)

wisconsin5 194 32 5 (67,41,43,24,19)

machine5 209 6 5 (152,27,13,7,10)

toy 300 2 5 (35,87,79,68,31)

auto5 392 7 5 (91,131,101,59,10)

housing5 506 13 5 (77,239,123,36,31)

eucalyptus 736 91 5 (180, 107, 130, 214, 105)

stock5 950 9 5 (158,227,272,207,86)

LEV 1000 4 5 (93,280,403,197,27)

automobile 205 71 6 (3,22,67,54,32,27)

heating 768 8 8 (20,265,112,51,119,85,82,34)

cooling 768 8 8 (150,198,52,114,126,89,26,13)

diabetes10 43 2 10 (2,3,3,3,10,12,4,2,2,2)

pyrim10 74 27 10 (2,2,14,14,13,5,10,4,3,7)

triazines10 186 60 10 (4,3,2,8,11,15,36,50,45,12)

wisconsin10 194 32 10 (46,21,28,13,25,18,14,10,9,10)

machine10 209 6 10 (115,37,21,6,8,5,3,4,4,6)

auto10 392 7 10 (13,78,73,58,53,48,37,22,4,6)

housing10 506 13 10 (22,55,85,154,84,39,29,7,10,21)

stock10 950 9 10 (48,110,108,119,168,104,104,103,64,22)

All nominal variables are transformed into binary ones.

For discretised datasets, the number included in their names (5 or 10) represents the number

of bins considered during discretisation.

maximum value) is for f (w2) = 0, which makes Tr(KwK∗c) =

Tr(K2
wc).

Moreover, given the definition of Kλ1
and Kλ2

and the fact

that u1 and u2 are orthonormal, i.e., Tr(Kλ1cKλ2c) = 0, the

alignment between these two matrices is zero (they are uncor-

related). In this way, the alignment provided by one basis does

not affect the alignment provided by the others.

Finally, note that this projection technique can also be used

for visualisation purposes in supervised learning contexts (as an

analogue technique for Kernel Principal Component Analysis

for non-supervised problems), by optimising the bases and then

representing the projection onto the two or three most dominant

bases.

4. Experimental results

This section presents the experimental part of the paper: the

datasets and methods tested, the evaluation measures and, fi-

nally, the results obtained.

4.1. Datasets

Several benchmark datasets have been considered in order

to validate the methodologies proposed; some publicly avail-

able real ordinal classification datasets were extracted from the

UCI and mldata.org repositories [26, 27] and some of the

ordinal regression benchmark datasets provided by Chu et. al

[28] were considered due to their widespread use in ordinal re-

gression [5, 29]. The latter do not originally represent ordinal
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classification tasks but regression ones, where the target vari-

able is discretised into Q different bins (representing classes)

with equal bining, to turn regression into ordinal classification.

Table 3 presents the main characteristics of 28 the datasets used

for the experiments. A synthetic two-dimensional toy dataset

has been included in the experiments. The representation of

this dataset can be seen in Figure 5.

Regarding the experimental setup, a 30-holdout stratified

technique has been applied to divide the datasets, using 75% of

the patterns for training the model, and the remaining 25% for

testing it. One model is obtained and evaluated for each split.

Finally, the results are taken as the mean and standard deviation

over each one of the test sets.

4.2. Metrics considered

Concerning evaluation measures, several metrics can be con-

sidered for ordinal classifiers, but the most common ones in

machine learning are the Mean Absolute Error (MAE) and the

Accuracy (Acc) [2, 5, 29], where the MAE is the average devi-

ation in absolute value of the predicted class from the true class

[21], MAE = (1/N)
PN

i=1 e(xi), where e(xi) = |r(yi) − r(y∗
i
)| is

the distance between the true and the predicted ranks. MAE

values range from 0 to Q−1 (maximum deviation in number of

ranks between two labels). Instead, Acc penalises all mistakes

equally.

4.3. Methods tested

To test the different proposals in Section 3, we consider the

comparison of the following methods:

• The POM algorithm in the original input space X, which

is a linear method (POM).

• A kernelisation of the POM algorithm, cross-validating

the number of dimensions for the projected subspace and

the width of the Gaussian kernel (K-POM). The dimen-

sions selected are always those with the highest eigenval-

ues. For this and the following three methods, the EFS

was considered to perform this kernelisation, as intro-

duced in Section 3.1.

• The POM algorithm kernelised using a regularised gradient-

based technique for selecting the dominant dimensions

(KRGB-POM). The width of the Gaussian kernel is also

selected through cross-validation, so the difference be-

tween KRGB-POM and K-POM lies only on the selec-

tion of the dominant dimensions through the regularised

gradient-based technique presented in Section 3.3.

• Kernelised version of the POM algorithm solving a QP

optimisation problem for learning the kernel presented in

Section 3.2.1 (instead of cross-validation), and the regu-

larised gradient-based technique for selecting the domi-

nant dimensions of Section 3.3 (KLRGB-POM). The orig-

inal version of CKTA was considered.

• Finally, we also tested the KLRGB-POM methodology

described above, but considering the notion of ordinal

CKTA (introduced in Section 3.2) for both kernel opti-

misations (OKLRGB-POM).

The source code in Matlab for the proposed methods can be

downloaded from the web associated to this paper1.

Furthermore, two well-known kernel methods for ordinal

regression have been chosen for comparison purposes (Kernel

Discriminant Learning for Ordinal Regression [5], KDLOR,

and Support Vector for Ordinal Regression with Implicit Con-

straints [29], SVORIM).

For model selection, a stratified nested 3-fold cross-valida-

tion has been applied to the training sets, with kernel width

within the values {10−2, 100, 102}. The same values are consid-

ered for the cost parameter of SVORIM. The cross-validation

criterion is the MAE, since it can be considered the most com-

mon one in ordinal regression. The kernel selected for all the

algorithms is the Gaussian one, K(x, x′) = exp

�

−
kx−x′k2

σ2

�

where

σ is the width of the kernel. The logit function has been used for

all the POM-based algorithms. The number of dimensions for

the empirical feature space ( j) has been cross-validated within

the values {10, 20, 30}. For KLRGB-POM and OKLRGB-POM,

the number of kernels and widths considered (p) are the same

than those used for cross-validation ({10−2, 100, 102}).

Concerning the gradient-based technique, the initial points

for all the methods tested were randomly chosen from a uni-

form distribution U[0, 1]. The gradient norm stopping criterion

was set at 10−5 and the maximum number of conjugate gradient

steps at 50. Furthermore, the µ parameter associated to the regu-

larisation was cross-validated within the values {10−4, 10−2, 100}.

4.4. Results

The results of the battery of experiments can be seen in Ta-

ble 4 (for Acc) and Table 5 (for MAE), where all the methods

described in the previous subsection have been tested. To better

summarise these results, these tables also show the test mean

rankings in terms of Acc and MAE for all the methods consid-

ered in this experiment, along all of the 28 datasets. For each

dataset, a ranking of 1 is given to the best method in average,

and a 7 is given to the worst one. It can be seen, that simply

cross-validating the number of dimensions, the POM algorithm

can be improved to a great extent (POM versus K-POM com-

parison), and that the use of a more intelligent technique for se-

lecting the bases for projecting is a good option (KRGB-POM

versus K-POM). The QP kernel learning technique of methods

KLRGB-POM and OKLRGB-POM also improve the results.

Finally, it can be seen that using a weighting matrix in CKTA

can help to improve the results in terms of MAE (KLRGB-

POM versus OKLRGB-POM). The results also show that the

proposals are competitive with the selected ordinal state-of-the-

art methods (KDLOR and SVORIM) and are able to outperform

the standard linear POM algorithm in most cases. The cases of

the toy and eucalyptus datasets are very good examples of the

1http://www.uco.es/grupos/ayrna/neucom-kpom
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Table 4: Results obtained for each method reported in terms of Acc.

Dataset POM K-POM KRGB-POM KLRGB-POM OKLRGB-POM KDLOR SVORIM

contact-lenses 65.56 ± 15.74 50.00 ± 20.53 60.00 ± 18.88 62.23 ± 13.79 62.22 ± 13.79 48.89 ± 21.41 63.89 ± 8.84

pasture 46.30 ± 13.40 60.74 ± 16.18 63.33 ± 13.42 64.44 ± 13.18 65.19 ± 11.57 60.74 ± 11.20 66.67 ± 11.30

squash-stored 38.97 ± 15.38 60.51 ± 12.73 69.49 ± 12.20 66.15 ± 11.36 65.13 ± 11.02 65.38 ± 13.36 63.33 ± 11.37

squash-unstored 36.67 ± 14.66 62.05 ± 14.27 76.15 ± 11.13 77.95 ± 12.08 76.92 ± 12.29 73.33 ± 13.81 75.38 ± 12.02

tae 43.86 ± 11.49 36.32 ± 6.00 57.28 ± 7.17 57.89 ± 6.37 57.46 ± 6.26 57.28 ± 5.43 57.19 ± 6.87

SWD 52.88 ± 3.22 55.81 ± 2.84 57.28 ± 3.38 57.51 ± 3.45 57.09 ± 3.61 47.93 ± 2.98 56.73 ± 2.78

diabetes5 42.73 ± 10.98 41.52 ± 14.46 44.55 ± 13.58 48.18 ± 8.32 49.39 ± 7.80 52.42 ± 5.69 49.09 ± 7.40

pyrim5 46.67 ± 10.95 59.90 ± 8.13 57.37 ± 9.23 57.72 ± 8.67 60.00 ± 9.11 49.12 ± 10.82 58.77 ± 9.88

triazines5 30.85 ± 1.08 45.39 ± 3.84 42.70 ± 10.04 44.40 ± 5.05 44.82 ± 4.36 46.60 ± 2.46 45.96 ± 2.66

wisconsin5 28.50 ± 6.33 29.52 ± 4.24 24.76 ± 8.11 20.95 ± 3.51 20.75 ± 3.64 21.22 ± 1.48 26.33 ± 4.89

machine5 85.16 ± 4.28 83.84 ± 5.31 83.33 ± 5.03 82.83 ± 5.50 83.90 ± 4.02 82.14 ± 4.40 83.58 ± 3.87

toy 30.13 ± 5.36 91.15 ± 3.44 92.09 ± 3.05 91.16 ± 3.14 90.84 ± 3.60 88.93 ± 3.17 94.76 ± 2.57

auto5 62.11 ± 5.04 75.82 ± 3.77 75.37 ± 4.15 74.32 ± 4.60 74.08 ± 4.92 70.99 ± 4.55 74.76 ± 3.37

housing5 60.68 ± 4.09 73.12 ± 4.08 73.81 ± 4.05 76.17 ± 2.88 76.98 ± 2.80 73.81 ± 3.14 75.51 ± 3.17

eucalyptus 15.02 ± 1.51 52.92 ± 3.47 55.60 ± 3.17 61.54 ± 2.43 61.07 ± 5.56 56.90 ± 3.69 60.69 ± 2.58

stock5 63.77 ± 2.25 84.24 ± 1.86 87.59 ± 1.67 88.98 ± 1.68 89.02 ± 1.98 85.28 ± 2.05 87.87 ± 1.83

LEV 53.92 ± 3.18 61.95 ± 2.69 62.15 ± 2.41 62.40 ± 2.77 62.60 ± 2.81 54.60 ± 2.88 61.72 ± 2.87

automobile 38.78 ± 20.14 53.59 ± 5.82 69.62 ± 6.69 64.87 ± 4.89 65.90 ± 5.39 70.71 ± 6.32 70.71 ± 4.19

heating 53.02 ± 3.80 69.41 ± 2.70 86.77 ± 2.89 81.25 ± 3.78 82.41 ± 1.91 78.23 ± 6.64 74.74 ± 5.43

cooling 50.36 ± 3.84 64.84 ± 2.41 73.63 ± 3.01 71.04 ± 2.49 70.82 ± 2.65 72.64 ± 3.49 68.61 ± 5.02

diabetes10 25.15 ± 11.62 20.30 ± 9.75 23.03 ± 8.85 22.73 ± 7.83 23.03 ± 8.85 19.09 ± 8.04 20.00 ± 10.78

pyrim10 32.81 ± 10.41 34.21 ± 10.95 30.18 ± 11.80 22.64 ± 5.01 22.63 ± 5.55 30.18 ± 8.73 37.72 ± 7.58

triazines10 6.23 ± 0.80 29.29 ± 4.73 24.18 ± 10.42 30.35 ± 6.34 29.15 ± 7.56 23.76 ± 4.26 29.86 ± 3.28

wisconsin10 15.92 ± 5.48 12.65 ± 4.37 12.45 ± 5.98 10.82 ± 2.99 10.61 ± 3.69 6.53 ± 0.83 11.22 ± 3.93

machine10 64.84 ± 6.51 67.99 ± 4.87 67.36 ± 6.15 68.43 ± 5.43 66.98 ± 4.14 65.03 ± 5.28 65.41 ± 5.11

auto10 37.24 ± 4.53 55.71 ± 4.88 55.10 ± 4.99 51.36 ± 11.00 52.72 ± 10.56 47.31 ± 4.86 56.12 ± 4.48

housing10 35.96 ± 2.96 58.01 ± 5.18 58.32 ± 3.93 56.33 ± 4.96 56.51 ± 4.02 55.30 ± 4.23 59.00 ± 3.97

stock10 34.10 ± 3.02 68.45 ± 2.42 74.85 ± 3.21 82.31 ± 2.13 82.28 ± 2.10 71.76 ± 3.57 79.08 ± 2.37

Ranking 5.71 4.46 3.36 3.04 3.29 4.95 3.20

Friedman’s test: Confidence interval C0 = (0, Fα=0.05) = 2.15, F-valAcc : 8.24 � C0

The best method is in bold face and the second one in italics.

Table 5: Results obtained for each method reported in terms of MAE.

Dataset POM K-POM KRGB-POM KLRGB-POM OKLRGB-POM KDLOR SVORIM

contact-lenses 0.500 ± 0.255 0.722 ± 0.298 0.561 ± 0.257 0.378 ± 0.138 0.377 ± 0.138 0.656 ± 0.239 0.522 ± 0.122

pasture 0.589 ± 0.168 0.426 ± 0.168 0.370 ± 0.132 0.356 ± 0.132 0.348 ± 0.116 0.396 ± 0.116 0.333 ± 0.113

squash-stored 0.792 ± 0.260 0.426 ± 0.153 0.308 ± 0.128 0.344 ± 0.121 0.351 ± 0.117 0.362 ± 0.147 0.377 ± 0.118

squash-unstored 0.797 ± 0.246 0.385 ± 0.146 0.238 ± 0.111 0.221 ± 0.121 0.231 ± 0.123 0.267 ± 0.138 0.246 ± 0.120

tae 0.751 ± 0.200 0.650 ± 0.063 0.533 ± 0.106 0.456 ± 0.065 0.465 ± 0.067 0.453 ± 0.058 0.468 ± 0.071

SWD 0.504 ± 0.035 0.460 ± 0.029 0.446 ± 0.037 0.445 ± 0.035 0.448 ± 0.037 0.591 ± 0.033 0.446 ± 0.029

diabetes5 0.670 ± 0.130 0.733 ± 0.151 0.718 ± 0.272 0.633 ± 0.179 0.620 ± 0.143 0.621 ± 0.093 0.667 ± 0.099

pyrim5 0.711 ± 0.155 0.442 ± 0.114 0.474 ± 0.129 0.470 ± 0.110 0.465 ± 0.115 0.596 ± 0.124 0.449 ± 0.125

triazines5 1.053 ± 0.032 0.677 ± 0.049 0.842 ± 0.428 0.738 ± 0.131 0.713 ± 0.080 0.671 ± 0.032 0.677 ± 0.035

wisconsin5 1.144 ± 0.156 1.007 ± 0.088 1.401 ± 0.373 1.041 ± 0.051 1.043 ± 0.051 1.110 ± 0.022 1.040 ± 0.058

machine5 0.178 ± 0.045 0.198 ± 0.052 0.195 ± 0.064 0.184 ± 0.063 0.177 ± 0.043 0.214 ± 0.062 0.181 ± 0.038

toy 0.944 ± 0.122 0.090 ± 0.034 0.079 ± 0.031 0.088 ± 0.031 0.092 ± 0.036 0.111 ± 0.032 0.052 ± 0.026

auto5 0.385 ± 0.054 0.246 ± 0.040 0.251 ± 0.043 0.255 ± 0.050 0.265 ± 0.053 0.297 ± 0.051 0.262 ± 0.036

housing5 0.404 ± 0.041 0.283 ± 0.045 0.270 ± 0.045 0.250 ± 0.031 0.243 ± 0.033 0.269 ± 0.032 0.251 ± 0.034

eucalyptus 1.940 ± 0.276 0.557 ± 0.045 0.529 ± 0.051 0.436 ± 0.031 0.453 ± 0.142 0.504 ± 0.046 0.439 ± 0.032

stock5 0.375 ± 0.022 0.158 ± 0.019 0.124 ± 0.017 0.111 ± 0.017 0.110 ± 0.020 0.148 ± 0.021 0.121 ± 0.018

LEV 0.505 ± 0.033 0.418 ± 0.029 0.416 ± 0.024 0.413 ± 0.031 0.412 ± 0.030 0.514 ± 0.034 0.420 ± 0.030

automobile 1.153 ± 0.750 0.522 ± 0.072 0.411 ± 0.101 0.402 ± 0.073 0.393 ± 0.076 0.384 ± 0.088 0.368 ± 0.075

heating 0.555 ± 0.040 0.341 ± 0.032 0.134 ± 0.028 0.200 ± 0.058 0.184 ± 0.022 0.225 ± 0.067 0.273 ± 0.065

cooling 0.580 ± 0.049 0.396 ± 0.026 0.272 ± 0.031 0.307 ± 0.028 0.305 ± 0.030 0.296 ± 0.036 0.350 ± 0.062

diabetes10 1.442 ± 0.331 1.645 ± 0.296 1.500 ± 0.351 1.382 ± 0.328 1.352 ± 0.222 1.521 ± 0.256 1.527 ± 0.291

pyrim10 1.344 ± 0.214 1.058 ± 0.196 1.351 ± 0.429 1.379 ± 0.163 1.332 ± 0.193 1.342 ± 0.274 0.995 ± 0.185

triazines10 2.742 ± 0.417 1.311 ± 0.095 2.188 ± 1.363 1.409 ± 0.426 1.548 ± 0.654 1.438 ± 0.081 1.288 ± 0.095

wisconsin10 2.431 ± 0.190 2.224 ± 0.139 3.228 ± 0.780 2.251 ± 0.124 2.232 ± 0.087 2.359 ± 0.051 2.319 ± 0.099

machine10 0.534 ± 0.137 0.501 ± 0.132 0.516 ± 0.142 0.451 ± 0.099 0.464 ± 0.081 0.531 ± 0.146 0.482 ± 0.109

auto10 0.769 ± 0.070 0.518 ± 0.058 0.525 ± 0.067 0.645 ± 0.412 0.610 ± 0.399 0.680 ± 0.075 0.504 ± 0.057

housing10 0.844 ± 0.061 0.525 ± 0.073 0.502 ± 0.058 0.562 ± 0.099 0.580 ± 0.074 0.521 ± 0.056 0.482 ± 0.059

stock10 0.870 ± 0.049 0.319 ± 0.025 0.258 ± 0.032 0.180 ± 0.021 0.179 ± 0.021 0.290 ± 0.035 0.212 ± 0.024

Ranking 6.25 4.52 4.09 2.93 2.71 4.54 2.96

Friedman’s test: Confidence interval C0 = (0, Fα=0.05) = 2.15, F-valAcc : 13.86 � C0

The best method is in bold face and the second one in italics.

capability of the proposals to deal with nonlinearly separable

data. Indeed, in those datasets where the POM has achieved

better results, the proposed methods also obtained a similar per-

formance.

As can be observed in the results, OKLRGB-POM performs

better than KLRGB-POM in MAE but worse in Acc. This is

a consequence of the cost matrices introduced in Section 3.2,

where a uniform cost for all errors (KLRGB) is clearly favour-
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ing accuracy, while non-uniform costs (OKLRGB) are better

for reducing MAE. However, when dealing with ordinal re-

gression problems, classifiers obtaining better MAE results are

generally preferred. Similar conclusions were found in [29]

when comparing the results obtained by SVORIM to its explicit

version, SVOREX (where only adjacent classes are taken into

account for the slacks).

To determine the statistical significance of the differences

observed between the different methodologies, a procedure to

compare multiple classifiers in multiple datasets is employed

[30]. Table 4 and Table 5 also show the result of applying

the statistical non-parametric Friedman’s test (for a significance

level of and α = 0.05) to the mean Acc and MAE rankings. It

can be seen that the test rejects the null-hypothesis that all of the

algorithms perform similarly in mean ranking for all the metrics

(note that for MAE the significant differences are larger).

On the basis of this rejection and following the guidelines

in [30], we consider the best performing methods in Acc and

MAE (i.e., KLRGB-POM and OKLRGB-POM, respectively)

as control methods for the following tests. Furthermore, we

also consider the method POM as a control method, to anal-

yse the performance of the original linear method with respect

to the rest of developed techniques. We compare these three

methods to the rest according to their rankings. The Holm’s

test is an approach to compare all classifiers to a given classi-

fier (a control method). The test statistics for comparing the i-th

and j-th method using this procedure is:

z =
Ri − Rl
q

L(L+1)

6T

,

where L is the number of algorithms, T is the number of datasets

and Ri is the mean ranking of the i-th method. The z value is

used to find the corresponding probability from the table of the

normal distribution, which is then compared with an appropri-

ate level of significance α. Holm’s test adjusts the value for α

in order to compensate for multiple comparisons. This is done

in a step-up procedure that sequentially tests the hypotheses or-

dered by their significance. We denote the ordered p-values by

p1, p2, . . . , pq so that p1 ≤ p2 ≤ . . . ≤ pq. Holm’s test compares

each pi with α∗
Holm
= α/(L−i), starting from the most significant

p value. If p1 is below α/(L − 1), the corresponding hypothesis

is rejected and we allow to compare p2 with α/(L − 2). If the

second hypothesis is rejected, the test proceeds with the third,

and so on.

This process is included in Table 6, where the results from

the Holm statistical test are shown. Several conclusions can

be drawn. First, it can be seen that the POM algorithm is sig-

nificantly improved by most of the algorithms in terms of Acc

and MAE, specially by KLRGB-POM in Acc and OKLRGB-

POM in MAE. Considering the KLRGB-POM method, one can

appreciate that it significantly outperforms the K-POM tech-

nique, meaning this that the use of the regularised gradient-

based technique for selecting the optimal dimensions helps to

improve the performance of the proposed kernelisation of the

POM method. It is also better than the KDLOR method. How-

ever, no significant differences can be seen between this tech-

Table 6: Results of the Holm procedure using POM, KLRGB-POM and

OKLRGB-POM as control methods: corrected α values, compared method and

p-values, ordered by the number of comparison (i).

Control alg.: POM Acc MAE

i α∗
0.05

α∗
0.10

Method pi Method pi

1 0.0083 0.0167 KLRGB-POM 0.0000−− OKLRGB-POM 0.0000−−
2 0.0100 0.0200 SVORIM 0.0000−− KLRGB-POM 0.0000−−
3 0.0125 0.0250 OKLRGB-POM 0.0000−− SVORIM 0.0000−−
4 0.0167 0.0333 KRGB-POM 0.0000−− KRGB-POM 0.0001−−
5 0.0250 0.0500 K-POM 0.0304− K-POM 0.0027−−
6 0.0500 0.1000 KDLOR 0.1853 KDLOR 0.0029−−
Control alg.: KLRGB-POM Acc MAE

i α∗
0.05

α∗
0.10

Method pi Method pi

1 0.0083 0.0167 POM 0.0000++ POM 0.0000++
2 0.0100 0.0200 KDLOR 0.0009++ KDLOR 0.0053++
3 0.0125 0.0250 K-POM 0.0133+ K-POM 0.0059++
4 0.0167 0.0333 KRGB-POM 0.5777 KRGB-POM 0.0444

5 0.0250 0.0500 OKLRGB-POM 0.6650 OKLRGB-POM 0.7105

6 0.0500 0.1000 SVORIM 0.7807 SVORIM 0.9507

Control alg.: OKLRGB-POM Acc MAE

i α∗
0.05

α∗
0.10

Method pi Method pi

1 0.0083 0.0167 POM 0.0000++ POM 0.0000++
2 0.0100 0.0200 KDLOR 0.0040++ KDLOR 0.0016++
3 0.0125 0.0250 K-POM 0.0412 K-POM 0.0018++
4 0.0167 0.0333 KLRGB-POM 0.6650 KRGB-POM 0.0172+
5 0.0250 0.0500 SVORIM 0.8771 SVORIM 0.6650

6 0.0500 0.1000 KRGB-POM 0.9015 KLRGB-POM 0.7105

Win (++) or lose (−−) with statistical significant difference for α = 0.05

Win (+) or lose (−) with statistical difference with α = 0.10

nique and the rest of methodologies that make use of this reg-

ularised gradient-based technique (although it presents better

performance in mean ranking, as can be seen in Table 4 and

Table 5). Concerning the ordinal version (OKLRGB-POM),

similar results can be found, although in this case, there ex-

ists significant differences with respect to KRGB-POM in MAE

(which is similar to KLRGB-POM but using gradient descent

for adjusting the kernel). As can be seen, the developed tech-

niques present statistically significant differences when com-

pared to KDLOR, and improved SVORIM results (although not

significantly). We should take into account that SVORIM is in-

deed one of the most successful and widely used technique in

the state-of-the-art of ordinal regression [2]. As a summary,

both multiple kernel proposals (OKLRGB-POM and KLRGB-

POM) improve the results of POM and other kernel techniques

(KDLOR and K-POM), while OKLRGB-POM is also able to

improve the results from the proposal based on gradient descent

(KRGB-POM). The kernelisation strategy is suitable for en-

abling the POM method to perform nonlinear decision bound-

aries and to reach the state-of-the-art results (SVORIM), while

still obtaining natural probability estimations, which can only

be approximated by POM.

We now analyse how the selection of the dimensions dif-

fer for all the datasets. This is done by considering K-POM

and KRGB-POM methods, that make use of different strategies

for selecting the dominant dimensions of the projected subspace

and result in very different performance. Table 7 reports the per-

centage of agreement between both selections (i.e, if both algo-

rithms consider the base ui to be suitable, or the contrary). From

this result, it can be seen that although from certain datasets the

level of agreement is very high (meaning this that the selected

dimensions for the KRGB-POM method are the ones associ-
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ated to the first eigenvalues), for most of the datasets, the level

of agreement is medium or low, indicating therefore that the

selection of the most suitable dimensions is necessary.

Table 7: Agreement between the selected dimensions for K-POM and KRGB-

POM methods.

Dataset Mean ± Std Dataset Mean ± Std

contact-lenses 55.19 ± 21.49 eucalyptus 31.15 ± 10.16

pasture 64.07 ± 14.82 stock5 68.15 ± 16.80

squash-stored 65.81 ± 21.83 LEV 84.67 ± 14.49

squash-unstored 68.63 ± 18.57 automobile 30.57 ± 7.39

tae 40.62 ± 11.88 heating 74.84 ± 6.65

SWD 83.37 ± 12.12 cooling 77.32 ± 8.39

diabetes5 79.68 ± 17.22 diabetes10 74.77 ± 16.26

pyrim5 47.94 ± 19.93 pyrim10 39.80 ± 13.90

triazines5 19.51 ± 7.51 triazines10 22.89 ± 11.10

wisconsin5 10.05 ± 3.21 wisconsin10 9.06 ± 3.87

machine5 96.89 ± 0.96 machine10 95.03 ± 0.83

toy 64.45 ± 15.23 auto10 93.72 ± 4.86

auto5 94.78 ± 4.10 housing10 90.31 ± 0.77

housing5 89.98 ± 6.22 stock10 56.49 ± 23.05

5. Conclusions and future work

This paper explores the concept of the empirical feature

space (an isomorphic space to the original feature space in-

duced by the kernel trick) to reformulate a well-known ordinal

regression method (the Proportional Odds Model or POM) in

order to handle nonlinearly separable classification tasks. Dif-

ferent ideas are considered, such as the optimisation of the ker-

nel matrix for tackling ordinal information and the optimisation

of the dimensionality of the reduced empirical feature space.

These proposals can be used to easily kernelise any existing

liner ordinal regression method, independently of their formu-

lation. The different experiments show that the proposed kernel

techniques are able to increase the performance of linear ordi-

nal regression methods, such as the POM and reach the per-

formance of the state-of-the-art methods, while still being able

to derive natural probability estimates. As future work, several

promising lines can be introduced. Firstly, given the connec-

tion between our proposal and the Nyström approximation [31],

we plan to reformulate this methodology in order to deal with

large-scale datasets (by considering the steps followed for the

Nyström method approximation). Note that our method, as it is

at the moment, may be unaffordable for some large-scale prob-

lems, given the use of the singular value decomposition over the

complete Gram matrix. Furthermore, because of the good syn-

ergy between the kernel learning technique and the proposed

ordinal weight matrix, other ordinal kernel algorithms can also

be used to analyse its performance.
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