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Asynchronous Gossip Principal Components Analysis
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Abstract

This paper deals with Principal Components Analysis (PCA) of data spread over

a network where central coordination and synchronous communication between

networking nodes are forbidden. We propose an asynchronous and decentralized

PCA algorithm dedicated to large scale problems, where ”large” simultaneously

applies to dimensionality, number of observations and network size. It is based

on the integration of a dimension reduction step into a Gossip consensus proto-

col. Unlike other approaches, a straightforward dual formulation makes it suitable

when observed dimensions are distributed. We theoretically show its equivalence

with a centralized PCA under a low-rank assumption on training data. An ex-

perimental analysis reveals that it achieves a good accuracy with a reasonable

communication cost even when the low-rank assumption is relaxed.

Keywords: Distributed Machine Learning, Dimensionality reduction, Gossip

protocols

1. Introduction

Dimensionality reduction plays an important role in solving large scale ma-

chine learning problems where input data usually consists of a huge number of

observations in a high-dimensional space. Classification, regression, or similarity

ranking of such raw data often raise computation and storage issues. In practice,

the intrinsic dimensionality of observed phenomena is much lower than the ex-

trinsic dimension of the input space. Dimensionality reduction then aims at pro-
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jecting input data into a lower-dimensional space such that subsequent learning

stages keep a maximal accuracy.

Principal Components Analysis (PCA) is a linear approach to dimensionality

reduction [1, 2]. Given a sample matrix X ∈ R
D×n made of n observations in

R
D, PCA finds an orthonormal basis U⋆ = [u1 . . .uq], uk ∈ R

D that projects the

input sample X into the q-dimensional subspace, q < D, that retains the maximal

variance in X. Equivalently, the PCA solution is the linear projection that best

conserves the Gram matrix (i.e., the matrix of pairwise inner-products):

U⋆ = argmin
U∈RD×q

∥

∥X⊤X−X⊤UU⊤X
∥

∥

2

F
s.t. U⋆⊤ = U⋆−1 (1)

The optimal conservation of the inner product makes PCA particularly suited to

feed algorithms that solely rely on the inner product instead of the input data [3]

(e.g., Support Vector Machines). PCA enjoys a closed-form solution, as U⋆ is

made of the q leading eigenvectors of the sample covariance matrix [2]:

C =
1

n
XX⊤ − µµ⊤ where µ =

1

n
X1 is the sample mean (2)

Like most statistical learning tools, PCA was formulated for centralized setups

where all data are available at a single location. This assumes that the solution can

be computed by a single machine and that all intermediary results fit in the main

memory. However, this assumption is unrealistic in most applicative fields that

deal with very large sample matrices. For instance, in biomedical, multimedia, or

remote sensing applications, D and n often grows up to millions. The sample and

covariance matrices then scale in Terabytes. Moreover, the O(D3) complexity of

covariance eigendecomposition translates into an exa-flop computation cost. Be-

sides, along with the democratization of connected devices, data tends to originate

from an increasing number of distributed sources with reasonable computing ca-

pacity, immersed in large unreliable networks without any central coordination.

This has led to a number of so-called Distributed PCA algorithms, designed to

deal with the spread of input data over multiple networking nodes.

Because computing µ and C would involve the full data X which is unknown

to individual nodes, distributed PCA requires dedicated algorithms combining

node-local optimization and inter-node communications. Distributed PCA en-

compasses two main scenarios, depending of the way the entries of X are spread

over the networking nodes. Consider a network made of N (strongly-connected)

nodes. In a Distributed Samples (DS) scenario, each node i holds a distinct sam-

ple Xi ∈ R
D×ni of ni observations (i.e., the columns of X are distributed). Con-
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versely, in a Distributed Coordinates (DC) scenario, each node holds all n obser-

vations, but only gets a subset Xi ∈ R
Di×n of their components (i.e., the rows

of X are distributed). On average, each Xi is then N times smaller than X, thus

ni ≪ D in DS case while Di ≪ n in DC case. No assumption is made on

their exact sizes, as they may be very different at each node. In both DS and DC

scenarios, a typical objective is to provide all nodes with compressed representa-

tions of their locally-hosted observations that account for the contribution of all

components. Nodes then have to find a consensus basis U⋆ that minimizes the

PCA objective defined in Equation (1) over the complete data. Usually, one also

wants an operator that allows projection of future observations into the same out-

put space, but not all approaches are able to provide such operator at a low cost.

In spite of similar goals, the DS and DC scenarios have been tackled separately

with very different approaches in the distributed PCA litterature [4].

In this work, we consider the asynchronous decentralized PCA problem, which

specializes distributed PCA by adding the following constraints:

(C1) No sample exchange - Samples cannot be exchanged between nodes, for

size, privacy or property reasons.

(C2) Asynchrony - Nodes must never wait for each other.

(C3) Decentralization - All nodes and links must play the same role. Formally,

nodes and links must be selected for communication with the same proba-

bility and all nodes must run the same procedures.

(C4) Consensus - All nodes must obtain the same orthogonal basis. Node-local

solutions must allow projection of future observations.

Satisfying these four constraints, a distributed PCA algorithm gains applica-

bility to a wider range of networking situations such as sensor networks, Internet-

enabled multimedia devices, cloud computing systems, etc, where central coordi-

nation or synchronous functioning can be inapplicable.

In this paper, we propose a decentralized and asynchronous algorithm called

Asynchronous Gossip Principal Component Analysis (AGPCA) that satisfy all

the above constraints. Our algorithm is a revision and extension of previous work

presented in [5]. The original contributions of this paper are the following:

- We give a formal and in-depth description of AGPCA in the DS case, as

well as the intuitions leading to the algorithm.
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- We propose an extension to the DC case through a dual transcription.

- Provided a low rank property is met on the data, we give a theoretical garan-

tee that AGPCA yields the exact solution of the centralized PCA.

- We present experiments for both DS and DC scenarios, as well as results

for various network topologies.

The remaining of this paper is organized as follows: In the next Section, we

detail related works on distributed PCA algorithms. Then, we present our AGPCA

algorithm for the DS case in Section 3. We present the extension to the DC case

in Section 4. In section 5, we theoretically show that the output of AGPCA is

identical to a centralized PCA under a low-rank assumption on the data. The last

section gathers experimental results both in DS and DC case, before we conclude.

2. Related Work

In this section, we present existing algorithms for distributed PCA. We first

present methods that integrate prior information on the input data. Then, we com-

pare existing algorithms in terms of decentralization and asynchrony. Finally, we

discuss the benefits of approaches based on model aggregation over those based

on iterative optimization passes over the data.

2.1. Prior knowledge about input data

Existing distributed PCA approaches can be first distinguished by their level

of prior knowledge about the input data matrix X. Indeed, X can either carry

node-local observations independently of their network relationships or integrate

properties of the network graph itself. In the latter case, a typical object of interest

is the adjacency matrix of the weighted network graph, whose entries correspond

to some scalar relationship between nodes. For instance, when these entries repre-

sent estimated geographic distances between neighbouring sensors, their absolute

geographic position can be recovered by computing the three principal compo-

nents through distributed PCA [6].

Other methods have considered the case where the data distribution inherits

specific characteristics from the network structure, such as statistical dependen-

cies. This happens when, e.g., data is generated by flowing through directed paths

along the network structure, thus making data at downstream nodes dependent

of data at upstream nodes, but independent from each other. Properly modeling

these statistical dependencies through Graphical Models, either undirected (e.g.,
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Decomposable Gaussian Graphical Models [7]) or directed (e.g., Directed Gaus-

sian Acyclic Graphical Models [8]), one can benefit from the natural sparsity of

the concentration matrix (i.e., the inverse covariance) or its Cholesky factor to

estimate the principal subspace with reduced communication costs.

On the contrary, in this work the network topology has no relevance in the

desired result, as information is solely carried by the nodes and not by the links.

Still, link-related data can be seen as observations relative to one or both of their

ends, making methods aimed at node-related data suitable for link-related data.

2.2. Decentralization and asynchrony

Another classification criterion separates decentralized approaches from those

which assign node-specific roles and asynchronous approaches from those based

on synchronous communications.

In [9], a parallel PCA algorithm is proposed. Sufficient statistics Xi1 and

XiX
⊤
i are locally computed at all nodes and transmitted to a master node that

performs a global Singular Value Decomposition (SVD) to obtain the PCA result.

This approach is only suitable when the master node can handle the O(D3) com-

plexity of the SVD and assumes that D×D covariance matrices can be exchanged

on the network, which is unrealistic in many large scale contexts.

In [4], a distributed PCA algorithm for the DC scenario is proposed. Exchang-

ing only q × q matrices, nodes iteratively maximize the variance retained by the

reduced basis. Even though the process is decentralized, nodes have to update

their estimates synchronously before performing any further computation, thus

violating (C2). The whole system performance is then limited by the slowest

networking node. Moreover, synchronous updating is hard to sustain in large net-

works and can result in overwhelming idle phases even when nodes have identical

computing resources.

A fully asynchronous and decentralized Power Iteration method is proposed

in [10] using random matrix sparsifications and a nested Sum-Weight Gossip av-

eraging protocol to reduce communication costs. However, its original formula-

tion only provides the first principal component. Synchronous passes would be

required to sequentially obtain the next ones.

2.3. Multiple passes over the data vs. model aggregation

An important feature of some methods is to require only one pass over node-

local data. This is the case of [9, 11], contrarily to [6, 10] which require multiple

access to the Xi because of their iterative optimization scheme. Temporary access
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to data is frequently considered in online approaches like [4] to handle stream data

under short-time ergodicity and stationarity assumptions.

In [11], the authors propose an operator to aggregate Mixtures of Probabilistic

PCA models (MPPCA, [12]) in a maximum-likelihood sense, without resorting

to the original data used to train the models. Multiple models can thus be trained

in a first phase, and aggregated in a second phase. Used in conjunction with the

Gossip optimization framework proposed in [13], one can easily obtain a decen-

tralized and asynchronous PCA algorithm. However, as developped in [14], model

aggregation give best results when models are further selected through neighbors

cross-validation, which seems non-trivial to achieve in an asynchronous fashion.

In [15], the authors first compute sufficient local statistics and aggregate them

by means of a distributed consensus algorithm before locally computing PCA on

the aggregated statistics. Aggregation of the local statistics requires exchanging

D × D matrix estimates, which can be prohibitive for high-dimensional input

spaces. Our approach is akin to [15], but solves this problem by computing PCA

before the distributed aggregation.

3. Asynchronous Gossip PCA for Distributed Samples scenario

In this section, we introduce our proposed AGPCA algorithm, which is suit-

able for both DS and DC scenarios. This section details AGPCA for the DS sce-

nario. We present the extension of AGPCA to the DC scenario in the next section.

In a DS scenario, each node hosts a local sample Xi ∈ R
D×ni made of ni

observations [x1, . . . ,xni
] in R

D. In such scenario, AGPCA provides all nodes

with the same orthogonal basis U⋆ ∈ R
D×q that spans the q-principal subspace

of the full covariance matrix C as defined by Equation (2). Each node i can

then project its local data Xi to obtain Yi = U⋆⊤Xi, where Yi ∈ R
q×ni is the

compressed representation of Xi. Importantly, any future observation xnew can be

compressed in the same way: ynew = U⋆⊤xnew, even if Xi is deleted or was only

accessible during training (e.g., streaming data case).

The intuition behind AGPCA is built upon the following 4 main principles:

1. Distributed PCA can be formulated as a distributed averaging of covariance

matrices followed by local eigendecompositions.

2. Asynchronous and decentralized averaging of covariance matrices is possi-

ble through Sum-Weight Gossip consensus protocols [16].

3. By properly defining uniform scaling and sum operators for orthogonal

bases, we can extend the Sum-Weight Gossip protocol to exchange only the
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Algorithm 1 AGPCA-DS Emission procedure

1: ai ← Xi1 ; Gi ← X⊤
i Xi ; wi ← ni

2: (Vi,Li)← eigendecompose(Gi)

3: Ui ← XiViΛ
− 1

2

i

4: loop

5: j ← randomNeighbor(i)
6: (ai,Li, wi)← 1

2
(ai,Li, wi)

7: Send (ai,Ui,Li, wi) to j
8: end loop

Algorithm 2 AGPCA-DS Reception procedure

1: loop

2: Upon receipt of (aj,Uj,Lj, wj)
3: ai ← ai + aj ; wi ← wi + wj

4: Q0 ← Ui

5: for t ∈ [0,max t[ do

6: (Qt+1,Rt+1)← QR(UiLiU
⊤
i Qt+UjLjU

⊤
j Qt)

7: end for
8: Ui ← Qmax t ; Li ← diag(Rmax t)
9: end loop

q leading eigenvectors of the local covariance matrices, and consequently

achieve a better network efficiency.

4. Using the duality between the eigendecomposition of the covariance and

Gram matrices through Singular Value Decomposition (SVD), we can com-

pute the local Gram matrices (ni × ni) instead of the local covariance ma-

trices (D ×D) and consequently reduce the memory usage at each node.

In the remaining of this section, we detail each of these points leading to AG-

PCA procedures for the DS scenario to be concurrently run at each node as pre-

sented in Algorithm 1 and 21.

1When implementing AGPCA, care should be taken that iterations of Algorithm 1 and Algo-

rithm 2 be mutually exclusive, to ensure integrity of the concurrently updated variables.

7



3.1. Distributed PCA as a distributed averaging problem

From Equation (1), the sample correlation matrix XX⊤ and the sample sum

X1 are sufficient statistics to compute the PCA solution. As observed in [15, 9],

these statistics can be obtained by computing partial statistics Xi1 and XiX
⊤
i at

each node i and summing over i. As a result, the full sample mean and covariance

matrix can be computed as a distributed average of locally-computed means µi =
1
ni
Xi1 and correlation matrices Bi = XiX

⊤
i :

µ =
1

n
X1 =

1

n

N
∑

i

Xi1 =
1

∑

i ni

N
∑

i

niµi (3)

C =
1

n
XX⊤ − µµ⊤ =

1

n

N
∑

i

XiX
⊤
i − µµ⊤ =

1
∑

i ni

N
∑

i

Bi − µµ⊤ (4)

Provided these weighted averages are computed in a decentralized and asyn-

chronous fashion, all nodes get the full covariance matrix C. Locally eigende-

composing C at every nodes finally gives the global PCA solution U⋆.

Remark that Xi1 and XiX
⊤
i are easily computed together in a single pass

over Xi. Also notice that once local sufficient statistics are computed, input sam-

ples can be dropped without concern. Therefore, such a scheme is suitable when

streaming data.

3.2. Gossip protocols for asynchronous decentralized averaging

To compute Equations (3-4) in a decentralized and asynchronous fashion, AG-

PCA uses a Sum-Weight Gossip protocol [16, 17].

Sum-Weight protocols are an asynchronous subclass of Gossip consensus al-

gorithms for distributed averaging. Gossip consensus algorithms proceed by iter-

ative linear combinations of node estimates through randomized communications.

An example of Gossip averaging protocol is Newscast [18]. In Newscast,

random node pairs regularly average their estimates until reaching consensus. As-

suming each node i holds a local vector estimate vi in a vector space V , at any

random time t two random nodes s and r awake, exchange their estimates and

update as follows:

vs(t+ 1) =
1

2
(vs(t) + vr(t)) vr(t+ 1) =

1

2
(vs(t) + vr(t)) (5)

This update rule entails two properties:
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• Mass conservation. The sum of the estimates over the network is con-

served:
∑

i

vi(t) =
∑

i

vi(0)

• Convergence to consensus. The variance of the estimates tends to zero:

lim
t→∞

∑

i

∣

∣

∣

∣

∣

vi(t)−
∑

j

vj(t)

∣

∣

∣

∣

∣

2

= 0

A trivial consequence of these properties is ∀i, limt→∞ vi(t) = 1
N

∑

j vj(0).
Unfortunately, Newscast requires synchronous updating of random node pairs,

thus violating constraint (C2).

Sum-Weight protocols aims at removing pairwise synchronization by adding

a new estimate wi ∈ R called weight, with initial value wi(0) = 1. In contrast

to Newscast, all nodes send their current sum and weight to randomly selected

neighbors following independent Poisson emission clocks and select targets in-

dependently at random without waiting for their answer. The update rules of the

sender node s and receiver node r are modified as follows:

vs(t+ 1) =
1

2
vs(t) ws(t+ 1) =

1

2
ws(t) (6)

vr(t+ 1) = vr(t) +
1

2
vs(t) wr(t+ 1) = wr(t) +

1

2
ws(t) (7)

As first shown in [16] under synchronous assumptions, and then in [17] for the

general case, the quotient of the two estimates converges to the desired average.

∀i, lim
t→∞

1

wi(t)
vi(t) =

1
∑

j wj(0)

∑

j

vj(0) =
1

N

∑

j

vj(0) (8)

Moreover, convergence to the consensus is exponential provided that the network

has a sufficient conductance [19]. In this case, the number of message exchanges

required to achieve a given estimation error ε scales logarithmically with the num-

ber of nodes and ε.

As weighted averages, µ and C can be estimated using the above-defined Sum-

Weight protocol, by defining node-local estimates ai(t),Bi(t) and weights wi(t)
such that:

ai(0) = Xi1 Bi(0) = XiX
⊤
i wi(0) = ni (9)
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By applying the Gossip protocol defined by Equations (6-7) to ai(t),Bi(t) and

wi(t), we get a covariance estimate Ci(t):

Ci(t) =
Bi(t)

wi(t)
− ai(t)ai(t)

⊤

wi(t)2
(10)

Note that initial estimates Ci(0) are the covariance matrices of their corresponding

Xi. The limit in (8) shows that each
ai(t)
wi(t)

tends to the global mean µ and each Ci

tends to the global covariance matrix C:

∀i,



















lim
t→∞

ai(t)

wi(t)
=

∑

i X
⊤
i 1

∑

i ni

=

∑

i niµi
∑

i ni

= µ

lim
t→∞

Ci(t) =

∑

i Bi(0)
∑

i wi(0)
− µµ⊤ =

1

n

∑

i

XiX
⊤
i − µµ⊤ = C

(11)

Once each node gets a sufficiently accurate estimate for C, the final PCA result

can be locally computed at any node i by eigendecomposition of Ci.

Remark this strategy, which will be referred to as Late-PCA in the rest of the

paper, is used in [15] in a synchronous consensus framework. Yet it suffers one

major drawback: updating estimates Bi using Equations (6-7) requires transmis-

sion of D × D matrices, which can be too large to exchange on the network. In

[5], we thus proposed to reduce matrices Bi by means of local PCA before their

transmission, resulting in what we called an Early-PCA scheme.

3.3. Gossiping in the compressed domain: Early PCA

There are two main reasons that make the Late PCA approach unwanted, both

based on the fact that such a scheme does not benefit from the rank-deficiency of

the local covariance matrices implied by ni ≪ D. Firstly, the size of exchanged

information is homogeneous to the input statistics (D ×D), not to the output re-

sult (D × q). Therefore, we vainly exchange information that will be canceled in

the end, because dimensionality reduction happens after the distributed averaging

phase. Secondly, the distributed nature of the process does not allow any compu-

tational advantage for high dimension, since all nodes have to perform the same

O(D3) eigendecomposition operation. Consequently, if the eigendecomposition

of C is the computational bottleneck due to large values of D, the distributed

scheme is unlikely to bring any speed-up gain.

The Early-PCA approach aims at moving the dimension reduction step before

the distributed averaging step, in order to take advantage of the rank deficiency
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of Ci. To this purpose, we reformulate the updates rules in Equations (6-7) so as

to handle eigenpairs instead of the full matrices Bi. This allows us to implicitly

compute the average of very large matrices without ever resorting to their explicit

form but rather using their factorized expression.

Observe that the senders update rule (6) is a simple uniform scaling. Assuming

s holds the decomposed form UsLsU
⊤
s of its estimate Bs, the update is simply:

Us(t+ 1) = Us(t) Ls(t+ 1) =
1

2
Ls(t) (12)

This update leads to the emission procedure of AGPCA to be concurently run at

every node of the network, as presented in Algorithm 1.

Adapting the receivers update rule (7) is slightly more involving since we need

to compute the eigendecomposition of a sum of two matrices given their own

eigendecompositions. We propose to rely on the well-known Orthogonal Itera-

tions technique (as in [6]) to fit an orthonormal basis to the principal subspace of

an input matrix by iterating QR decompositions. Assume Bs(t) and Br(t) are re-

spectively factorized as Us(t)Ls(t)Us(t)
⊤ and Ur(t)Lr(t)Ur(t)

⊤. Starting from

a random D×q basis Q0, and denoting by QR(·) the economy QR decomposition,

we iteratively compute

Qτ+1Rτ+1 = QR((Bs +Br)Qτ )

= QR(UsLs(U
⊤
s Qτ ) +UrLr(U

⊤
r Qτ )) (13)

Qτ tends to become an orthonormal basis for the q-principal subspace of Bs(t) +
Br(t), with corresponding eigenvalues on the diagonal of Rτ . Thus, Q∞ gives

Ur(t+1) and the diagonal entries of R∞, denoted by diag(R∞), give Lr(t+1).
The parentheses in Equation (13) are of great importance. Indeed, observe

that instead of expanding UsLsU
⊤
s and UrLrU

⊤
r , we first multiply U⊤

s and U⊤
r

by Qτ , resulting in a q× q matrix. By doing so, we never store any D×D matrix,

and the QR decomposition is rather performed on a D × q matrix.

Finally, the dominant eigenvectors U⋆ of Ci are obtained by locally computing

its eigendecomposition using Orthogonal Iterations (parentheses are also added to

highlight the computational gain):

Ci =
1

wi(t)
(UiLi)(U

⊤
i )−

1

wi(t)2
(ai(t))(ai(t)

⊤) (14)

This update leads to the reception procedure concurrently run at every node and

presented in Algorithm 2.
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Since typically q ≪ D, combining Algorithms 1 and 2 allows to define an

averaging protocol that exchanges D× q messages while staying equivalent to the

original Sum-Weight protocol defined by Equations (6-7), provided that the rank

of XX⊤ is lower than q. This is formally supported in the theoretical analysis

presented in Section 5.

3.4. Dual relation between covariance and Gramian eigendecompositions

While Early-PCA gets rid of D × D entities in the networking step, we can

further avoid D × D matrices in the entire algorithm. This is particularly use-

ful when covariance matrices do not fit in node memory. To this end, we must

avoid explicit computation and storage of the initial Bi(0) locally computed in

Equation (9), reminding that we are only interested in their q principal subspace.

Thankfully, the eigendecompositions Bi = UiLiU
⊤
i can be obtained from those

of the ni × ni local Gram matrices X⊤
i Xi = ViΛiV

⊤
i , through their well-known

relation with the Singular Value Decomposition (SVD) of X. Indeed,

B2
i = XiX

⊤
i XiX

⊤
i = XiViΛiV

⊤
i X

⊤
i = (XiViΛ

− 1

2

i )Λ2
i (XiViΛ

− 1

2

i )⊤

and (XiViΛ
− 1

2

i )⊤(XiViΛ
− 1

2

i ) = I

Then,

Ui = XiViΛ
− 1

2

i and Li = Λi (15)

We thus compute, store and factorize X⊤
i Xi (which is ni × ni) instead of XiX

⊤
i

(which is D ×D) and obtain Ui and Li with no additional storage cost.

4. Asynchronous Gossip PCA for Distributed Coordinates scenario

In this section, we present the DC scenario and show that AGPCA can solve it

as well. Contrarily to the DS scenario, each node hosts a local sample Zi ∈ R
Di×n

made of Di ≪ D dimensions of the same set of n observations. The full data Z

corresponds to stacking the Zi in rows:

Z⊤ = [Z⊤
1 , . . . ,Z

⊤
N ] (16)

Observations thus lie in the direct sum of the locally observed subspaces
⊕

i R
Di .

Let µ = Z1/n denote the data mean and Z̃ = Z− µ1⊤ the centered data.

In DC scenarios, it is useless to provide nodes with a D × q orthogonal basis

since nodes only hold part of the input vectors and are thus unable to perform
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Algorithm 3 AGPCA-DC Emission Procedure

1: Ci ← ZiZ
⊤
i ; wi ← Di

2: (Ui,Li)← eigendecompose(Ci)

3: Vi ← Z⊤
i UiL

− 1

2

i

4: loop

5: j ← randomNeighbor(i)
6: (Vi,Li, wi)← 1

2
(Vi,Li, wi)

7: Send (Vi,Li, wi) to j
8: end loop

Algorithm 4 AGPCA-DC Reception Procedure

1: loop

2: Upon receipt of (Vj,Lj, wj)
3: wi ← wi + wj

4: Q0 ← Vi

5: for t ∈ [0,max t[ do

6: (Qt+1,Rt+1)← QR(ViLiV
⊤
i Qt+VjLjV

⊤
j Qt)

7: end for
8: Vi ← Qmax t ; Li ← diag(Rmax t)
9: end loop

the projection. Instead, AGPCA directly provides a compressed representation

Y ≡ U⋆⊤Z̃ that account for all dimensions of all observations.

Using the same ideas that allowed us to improve the efficiency in the DS case,

we rely on the duality between the covariance and the Gram eigendecompositions.

Recall that

C =
1

n
Z̃Z̃⊤ = U⋆L⋆U⋆⊤ (17)

Introducing the SVD of the centered data Z̃ = UL
1

2V⊤, where Z̃Z̃⊤ = ULU⊤

and Z̃⊤Z̃ = VLV⊤, we have U⋆ = U and L⋆ = L/n. Consequently,

Y = U⋆⊤Z̃ = nL⋆ 1

2V⊤ (18)

Define D = Z̃⊤Z̃/D.
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Clearly its eigendecomposition is V(L/D)V⊤ = V(nL⋆/D)V⊤, and

D =
1

D
(Z− 1

n
Z11⊤)⊤(Z− 1

n
Z11⊤)

=

(

I − 11⊤

n

)

Z⊤Z

D

(

I − 11⊤

n

)

(19)

Observing that Equation 19 only involves Z⊤Z/D, we remark that Z⊤Z/D =
(
∑

i Z
⊤
i Zi)/(

∑

i Di) is a weighted average of the locally-computable uncentered

Gram matrices Z⊤
i Zi. This average can be computed using the same protocol as

for the DS case, defined by Equations (12-13). Using the factors V and L/D of

D in Equation (18), we can obtain the compressed representations scaled by
√
D.

For most applications, this scaling factor has no impact. In applications for which

the output basis needs to be orthonormal (and not only orthogonal), the scale can

be recovered by gossiping Di with an initial weight on 1, provided the size of the

network is known at each node.

4.1. Early-PCA aggregation in DC scenarios

Clearly, the Early-PCA aggregation scheme described in Section 3 also ap-

plies: We only need to compute and exchange the eigendecomposed forms Z⊤
i Zi =

ViLiV
⊤
i . Since local Gram matrices are n× n and are much larger than the local

correlation matrices (of size Di × Di ≪ n × n), we use the same dual property

as in Section 3 to obtain the Gram eigendecomposition from the local correlation

matrices ZiZ
⊤
i = UiLiU

⊤
i :

Zi = UiL
1

2

i V
⊤
i ⇒ Vi = Z⊤

i UiL
− 1

2

i

The initial ViLiV
⊤
i can then be obtained at a low storage and computation cost.

The corresponding emission and reception procedures are shown in Algorithms 3

and 4.

Once the averaging protocol has provided all nodes with the eigendecompo-

sition of Z⊤Z/D, we can locally apply Orthogonal Iterations to Equation (19) to

obtain the eigendecomposition V(L⋆/D)V⊤ of D at all nodes. Each node finally

computes the full compressed data using Y = n(L⋆/D)
1

2V⊤.

This shows that using our AGPCA strategy, we can efficiently solve distributed

PCA for both DS and DC scenarios by just swapping the roles of covariance and

Gram matrices. A nice consequence is that theoretical results in one case hold in

the other one.
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4.2. Projection of subsequent observations

In DC scenarios, projecting future observations is not as straightforward as in

the DS case, because new observations generate new entries in all nodes. Thus,

all nodes have to participate in the projection of new observations. Remark the

compressed representation y of a new observation z is computed by:

y = n(L⋆/D)−
1

2V⊤Z
⊤z

D
(20)

Observing that Z⊤z/D =
∑

i Z
⊤
i zi/D is also a weighted average, y can easily be

recovered by simply Gossiping Z⊤
i zi with initial weights Di and combining the

result with the previously obtained factors V and L/D.

5. Theoretical analysis

In this section, we theoretically prove that AGPCA yields the same solution as

a centralized PCA, provided assumptions are made on the rank of input data. We

limit our analysis to the DS case, as the same arguments can easily be translated to

the DC case by substituting the covariance matrices by the Gram matrices. Noting

X ∈ R
D the input data, this result is expressed in the following theorem:

Theorem 1. If rank(X) ≤ q, then AGPCA yields the exact solution of a PCA run

over X:

∀i,U⊤
i Xi = U⋆⊤Xi (21)

PROOF. The centralized PCA uses the following eigendecomposition:

C =
1

n
XX⊤ − µµ⊤ = U⋆L⋆U⋆⊤ (22)

The proof sketch is as follows: We first show that the local decompositions XiX
⊤
i =

UiLiU
⊤
i perfectly reconstruct the local data Xi. Then, we show our Gossip pro-

tocol aggregating the Ui allows for a perfect reconstruction of
∑

i XiX
⊤
i at every

node. The proof is completed by remarking AGPCA provides the eigendecompo-

sition of the covariance matrices obtained from the reconstruction of
∑

i XiX
⊤
i .

To prove local factorizations induce no loss of information, we use the as-

sumption that rank(X) ≤ q. We thus have:

rank(X) ≤ q ⇒ rank(XXT ) ≤ q (23)
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Let us denote Hq = span(X) ⊂ R
q. Since at any node i, Xi is a subset of X,

we have span(Xi) ⊆ Hq, and consequently rank(XiX
⊤
i ) ≤ q. It follows that the

initial local decompositions keeping only the q leading eigenvectors (the others

being associated with null eigenvalues) perfectly reconstruct the local correlation

matrices:

∀i,UiLiU
⊤
i = XiX

⊤
i = Bi (24)

Considering the Gossip averaging, we first prove our update rules in Equa-

tions (12-13) are equivalent to the Gossip updates in Equations (6-7). Remark

that as and ws are explicitly updated using Equation (6-7). Checking validity of

the sender update of Bs (line 6 in Algorithm 1) is trivial:

Bs(t+ 1) = Us(t)
1

2
Ls(t)Us(t)

T =
1

2
Bs(t).

On the receiver side, provided that span(Us(t)) ⊆ Hq and span(Ur(t)) ⊆ Hq,

using Othogonal Iterations to obtain the q leading eigenvectors of the weighted

sum has two interesting properties: The reconstruction is perfect, that is

Ur(t+1)Lr(t+1)Ur(t+1) = Ur(t)Lr(t)Ur(t)
⊤ +

1

2
Us(t)Ls(t)Us(t)

⊤ (25)

and the obtained basis is in the same subspace, i.e., Ur(t+1) ⊆ Hq. These proper-

ties come from the fact that span(Ur∪Us) ⊆ Hq, and thus rank(Ur(t)Lr(t)Ur(t)
⊤+

Us(t)Ls(t)Us(t)
⊤/2) ≤ q Remarking that initially ∀i, span(Ui(0)) ⊂ Hq, it fol-

lows by induction that at any time t:

Br(t+ 1) = Ur(t+1)Lr(t+1)Ur(t+1)

= Ur(t)Lr(t)Ur(t)
⊤ +

1

2
Us(t)Ls(t)Us(t)

⊤

= Br(t) +
1

2
Bs(t)

That is, Equation (13) is equivalent to Equation (7).

Convergence of Equations (6-7) to the network average at all nodes has already

been proved [16, 17]. For completeness though, we show that Equations (6-7)

drive all Ci to C. Let us introduce the Euclidean errors Ei between covariances
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locally reconstructed by our protocol and the exact covariance matrix:

∀i, Ei(t) = ‖Ci(t)−C‖2F

=

∥

∥

∥

∥

1

wi(t)
Bi(t)−

1

wi(t)2
ai(t)ai(t)

⊤ − 1

n
XX⊤ + µµ⊤

∥

∥

∥

∥

2

F

≤
∥

∥

∥

∥

1

wi(t)
Bi(t)−

1

n
XX⊤

∥

∥

∥

∥

2

F

+

∥

∥

∥

∥

1

wi(t)2
ai(t)ai(t)

⊤ − µµ⊤

∥

∥

∥

∥

2

F

From Equations (9), and (3-4), we have n =
∑

i wi(0), XX⊤ =
∑

i Bi(0) and

µ = (
∑

i ai(0))/(
∑

i wi(0)). Then, we obtain

Ei(t) ≤
∥

∥

∥

∥

∥

Bi(t)

wi(t)
−

∑

j Bj(0)
∑

j wj(0)

∥

∥

∥

∥

∥

2

F

+

∥

∥

∥

∥

∥

ai(t)ai(t)
⊤

wi(t)2
−

(
∑

j aj(0))(
∑

j aj(0))
⊤

(
∑

j wj(0))2

∥

∥

∥

∥

∥

2

F

(26)

According to Equations (6-7), each single entry of (Bi, ai, wi) is identically up-

dated. The following Lemma then shows that every quotient of Bi or ai and wi

tends to its network average (the proof is deferred to Appendix A):

Lemma 2. Under update rules in Equations (6-7):

∀i, lim
t→∞

Bi(t)

wi(t)
=

∑

j Bj(0)
∑

j wj(0)
and lim

t→∞

ai(t)

wi(t)
=

∑

j aj(0)
∑

j wj(0)
(27)

In turn, it implies that both terms in Equation (26) tend to zero, and therefore

entails the convergence of local estimates to the covariance matrix:

lim
t→∞

Ci(t) = C (28)

�

6. Experiments

In this section, we experimentally evaluate AGPCA, both on synthetic and

natural data. Experiments for Distributed Samples and Distributed Coordinates

scenarios are reported separately. Synthetic data were obtained by sampling n ob-

servations from a D-dimensional Gaussian distribution, which covariance matrix
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Figure 1: Convergence of AGPCA compared to a Late PCA strategy and the centralized PCA

solution on a synthetic dataset drawn from a Gaussian distribution (D = 200, p = 30, n = 10000),
spread on N = 100 nodes. Here q is set to D.

was arbitrarily generated with rank p ≪ D and such that all dimensions are cor-

related in R
D. For natural data, we used the MNIST handwritten digits dataset,

which contains 60000 grayscale images of 28 × 28 pixels, that is, D = 784 [20].

Unless specified, the network is assumed fully connected, sender-receiver pairs

being uniformly selected at random.
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Figure 2: Convergence of AGPCA on the same data and network as Figure 1, but setting q = 30 =
p≪ D.
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p.
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Figure 4: Convergence of AGPCA on MNIST spread over N = 100 nodes, for various q.

6.1. Distributed Samples scenario

In DS scenario, the objective of AGPCA is two-fold : (i) providing all nodes

with the same projection matrix U, (ii) making U as close as possible to the

solution U⋆ of a centralized PCA solution computed over the aggregated network

data X. We thus measure the average Euclidean reconstruction error between the

locally reconstructed covariances Ci and the exact C, defined by E = ‖Ci(∞)−
C‖2F/‖C‖2F . We considered three cases: q = D, q = p, and q < p:

• When q = D, the centralized PCA solution U⋆ reconstructs the covari-

ance with zero error. In this case, experiments on synthetic data show that

AGPCA asymptotically provides all nodes with the exact U⋆. Figure 1 il-

lustrates the convergence to this optimum versus time and show that both

Early and Late PCA strategies allow a perfect reconstruction.

• When q = p ≪ D, Figure 2 confirms the theoretical result of Theorem 1,

as convergence to the optimum still holds if the intrinsic dimension p of X

is lower than q.

• By contrast, when q < p, the ideal projection itself accounts for less than

100% of the variance in the data. In such case, AGPCA still guarantees
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Figure 5: Average number of message emissions per node required to converge against the number

of nodes in the network, evaluated on MNIST with q = 50.

that all nodes converge to the same projection matrix U. This ensures that

any observation is projected into the same output space whichever the node

we consider. However, the error induced by the Orthogonal Iterations steps

leads to a slight deviation from the optimal global PCA solution U⋆. Exper-

iments reported in Figure 3 for various q reveal that even for high compres-

sion rates, the deviation from the optimal basis is still very low.

Similar experiments were conducted on the MNIST dataset, whose intrinsic

dimensionality was shown in previous works to be much lower than D = 784.

Figure 4 highlights that AGPCA achieves the same reconstruction error as a cen-

tralized PCA up to the numerical precision for q ≥ 75. For lower values, it is

slightly suboptimal, but the deviation is kept under 1% until q = 3, and always

under 2%. Figure 4 also shows that the convergence rate of the aggregation pro-

tocol is not impacted by switching from a Late PCA to an Early PCA scheme.

Interestingly, lower values for q bring faster convergence.

Concerning communication costs, the efficiency of AGPCA is illustrated in

Figure 5. This figure displays the number of messages each node has to emit in

order to reach convergence (convergence is assumed when E improves by less

than 0.01% between two message events). This number of messages per node

appears to logarithmically scale with the number of nodes in the network. This
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ensures easy scaling to large networks.

6.2. Distributed Coordinates scenario

In a DC scenario, our accuracy criterion is still the Euclidean reconstruction

error, but it is now computed as E = ‖YT
i Yi − XTX‖. To evaluate AGPCA

in such scenarios, we spread a synthetic dataset similar to Figure 1 by assigning

a uniformly drawn number of dimensions Di to each node i, such that node 1

gets the D1 first dimensions, node 2 gets the next D2 and so forth, and such that
∑

i Di = D = 10000. In this scenario, Figure 6 shows that AGPCA behaves iden-

tically to the DS case, which is a logical consequence of using the same strategy.

6.3. Influence of network connectivity

Network topology usually has a great impact on speed, accuracy or even ap-

plicability of distributed learning algorithms. Gossip protocols have long been

acclaimed for their fine behavior in a wide range of networking situations. It is

worth highlighting that the Sum-Weight protocol used in AGPCA can be used to

build asynchronous generalizations of broadcast, spanning tree, workers-master

and scale-free connectivity:

• In an asynchronous broadcast scheme, senders still waken independently,

but the same message is sent to all their neighbors. To obtain a broadcast

protocol, we just need to replace the 1/2 coefficient in (6-7) by 1/N to

respect mass conservation.

• In an asynchronous spanning tree communication scheme, the network has

only N−1 links, which is the minimal number of links such that the network

stays connected. In our experiments, we used the worst conditioned non-

degenerate tree topology where nodes have at most 3 neighbors.

• In a workers-master scheme, N−1 nodes called workers hold local datasets

and can only send messages to a single master node. This master is allowed

to send messages to all workers, and may hold a local sample or not (if not,

its estimates are initialized to 0). In our experiments, we considered two

settings. In the first one, the workers and the master are selected for emis-

sion with the same probability, i.e., the master works at the same frequency

as the workers. In the second one, the master is selected N times more often

than workers, e.g., assuming it is a high-throughput server.
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Figure 6: Convergence of AGPCA in a Distributed Coordinates scenario on synthetic data similar

to Figure 1 (D = 10000, n = 200, p = 30). Each node holds a number of dimensions of the

complete data drawn uniformly in {1, . . . , 2D

N
− 1}. Here, q = p = 30.

0 200 400 600 800
0

100

200

300

400

500

600

700

Workers/Master

Spanning tree

Broadcast

Barabasi-Albert

Fully connected

Connectivity model

Network size N

R
e
q
u
ir

e
d
 m

e
s
s
a
g
e
s
 p

e
r 

n
o
d
e

Workers/Master
high frequency master

Figure 7: Number of messages per node to reach convergence for various connectivity and net-

working models. Here, q = p = 30 (same data as Figure 6).
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• An example of a scale-free network is the Barabási-Albert (BA) random

graph model, which has a power-law distribution of node degrees. Nodes

are connected to random neighbors such that the number of nodes having k
neighbors scales in k−3.

We run AGPCA for each of these connectivity models, varying the number of

involved nodes (synthetic data similar to Figure 1). Figure 7 displays the num-

ber of messages per node to reach convergence (in the same sense as Figure 5)

and compares it to the fully-connected setup we considered so far. Broadcast,

workers-master and spanning tree schemes exhibit a poor scaling which appears

linear with the number of nodes. By contrast, full and BA connectivity show a

logarithmic dependence of the communication costs on the network size. In the

workers-master case, we can recover a logarithmic scaling by allowing the master

to communicate N -times faster than the workers (in practice, such performances

at the master can be unrealistic).

The poor behavior of the broadcast scheme can be explained by remarking

that senders always emit N − 1 messages containing identical estimates. In the

point-to-point case each message integrates the contribution of all preceding up-

dates, thus making estimates mixing much faster. Concerning the spanning tree

topology, its bad mixing properties have long been studied in the Gossip protocols

and rumor spreading litterature. Due to its high average path length, information

must flow, on average, through a much larger number of intermediary nodes to

transit between any two peers.

To summarize, AGPCA, like asynchronous Gossip protocols in general, are

best-suited for networks with maximally randomized communications and lowest

average path lengths.

7. Conclusion

We presented an asynchronous and decentralized algorithm to solve PCA when

data is spread over a network. Based on the integration of a dimensionality re-

duction operator into a Sum-Weight gossip averaging protocol, it is best suited

for large setups with high extrinsic dimension, massive samples and large net-

works. Unlike other algorithms, it is applicable both in Distributed Samples and

Distributed Coordinates scenarios, thanks to the duality between covariance and

Gram matrices decompositions. Our theoretical and experimental studies show

that it is formally equivalent to running a traditional PCA when the complete data

has an intrinsic dimension lower than the output dimension, otherwise providing

a low-error approximation of the optimum.
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Perspectives include application to large-scale dimension reduction problems,

where traditional methods are unapplicable, such as signatures compression in

web-scale multimedia retrieval. Besides, while we considered a static scenario

where data is provided all at once, Gossip protocols also enjoy nice dynamics

when data and/or connectivity are time-evolving. Our approach could then be

extended to deal with time-related phenomena, such as concept drift and dynamic

networks.
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sité de Nantes (2008).

[15] S. V. Macua, P. Belanovic, S. Zazo, Consensus-based distributed principal

component analysis in wireless sensor networks, in: Signal Processing Ad-

vances in Wireless Communications (SPAWC), 2010 IEEE Eleventh Inter-

national Workshop on, IEEE, 2010, pp. 1–5.

[16] D. Kempe, A. Dobra, J. Gehrke, Gossip-based computation of aggregate in-

formation, in: Proceedings of the 44th Annual IEEE Symposium on Founda-

tions of Computer Science, FOCS ’03, IEEE Computer Society, Washington,

DC, USA, 2003, pp. 482–.

[17] F. Iutzeler, P. Ciblat, W. Hachem, Analysis of sum-weight-like algorithms

for averaging in wireless sensor networks, CoRR abs/1209.5912.

26



[18] M. Jelasity, W. Kowalczyk, M. Van Steen, Newscast computing, Tech. rep.,

Technical Report IR-CS-006, Vrije Universiteit Amsterdam, Department of

Computer Science, Amsterdam, The Netherlands (2003).

[19] D. Shah, Gossip algorithms, Now Publishers Inc, 2009.

[20] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied

to document recognition, Proceedings of the IEEE 86 (11) (1998) 2278–

2324.

[21] A. Rhodius, On the maximum of ergodicity coefficients, the dobrushin er-

godicity coefficient, and products of stochastic matrices, Linear algebra and

its applications 253 (1) (1997) 141–154.

[22] E. Seneta, Non-negative matrices and Markov chains, Springer, 2006.

Appendix A. Proof of Lemma 2

PROOF. Let’s independently consider any entry of Bi or ai, denoted using the

free variable xi. Let x = (xi)i gather all the corresponding entries from each

node i. Using the definition of x, we can rewrite Equations (6-7) into a matrix

form:

x(t+ 1)⊤ = x(t)⊤K(t) where K(t) ≡ I+
1

2
es(er − es)

⊤ (A.1)

K(t) is a random N × N matrix where (s, r) is the selected sender-receiver pair

at time t. We can then write x(t)⊤ = x(0)⊤P(t), where P(t) ≡ ∏

u≤t K(u).

Observe that ∀t,K(t)⊤1 = 1 and P(t)⊤1 = 1, meaning that K(t) and P(t) are

row-stochastic. A row-stochastic matrix that is irreducible is said to be scrambling

(see [21]). Establishing irreducibility of K amounts to check if the network graph

is strongly connected, i.e., for any two nodes (i, j) there exists a route from i
to j through available connections. Assuming bidirectional communication is

allowed between any pair of connected nodes, the only constraint to ensure K is

irreducible is that the network graph is connected, which is a logical assumption

in the distributed computing setup we consider. Consequently, K is a scrambling

matrix. Scrambling matrices are shown to be weakly ergodic [22], that is, the
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product of t realizations tends to have identical rows as t grows. This can be

proved by introducing the coefficient of ergodicity τ(·) defined by

∀A ∈ R
N×N , τ(A) =

1

2
max
i,j
‖AT (ei − ej)‖1

In words, τ(A) corresponds to the maximum L1 distance between any two rows

of A. A has equal rows if and only if τ(A) = 0. When P(t) is the forward

product of t realizations of a scrambling random matrix K, [22] states

τ(P(t+ 1)) = τ(P(t)K(t+ 1)) ≤ τ(P(t))λ2(t),

where λ2(t) is the second largest eigenvalue of K(t + 1). Then, τ(P(t)) ≤ λt
2,

where λ2 is the maximal second largest eigenvalue over all realizations of K. K(t)
being row-stochastic, we have 0 < λ2 < 1. Hence,

lim
t→∞

τ(P(t)) = 0

Recalling that x⊤(t) = x⊤(0)P(t), if P(t) has equal rows we get

∀i, xi(t)

wi(t)
=

∑

j xj(0)Pji(t)
∑

j wj(0)Pji(t)
=

P1,i(t)
∑

j xj(0)

P1,i(t)
∑

j wj(0)

Simplifying P1i(t) yields our final result:

∀i, lim
t→∞

xi(t)

wi(t)
=

∑

j xj(0)
∑

j wj(0)

�
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