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Abstract

In1 recent years, there has been a great interest in prostate segmentation, which is a important and 

challenging task for CT image guided radiotherapy. In this paper, a learning-based segmentation 

method via joint transductive feature selection and transductive regression is presented, which 

incorporates the physician’s simple manual specification (only taking a few seconds), to aid 

accurate segmentation, especially for the case with large irregular prostate motion. More 

specifically, for the current treatment image, experienced physician is first allowed to manually 

assign the labels for a small subset of prostate and non-prostate voxels, especially in the first and 

last slices of the prostate regions. Then, the proposed method follows the two step: in prostate-

likelihood estimation step, two novel algorithms: tLasso and wLapRLS, will be sequentially 

employed for transductive feature selection and transductive regression, respectively, aiming to 

generate the prostate-likelihood map. In multi-atlases based label fusion step, the final 

segmentation result will be obtained according to the corresponding prostate-likelihood map and 

the previous images of the same patient. The proposed method has been substantially evaluated on 

a real prostate CT dataset including 24 patients with 330 CT images, and compared with several 

state-of-the-art methods. Experimental results show that the proposed method outperforms the 

state-of-the-arts in terms of higher Dice ratio, higher true positive fraction, and lower centroid 

distances. Also, the results demonstrate that simple manual specification can help improve the 

segmentation performance, which is clinically feasible in real practice.

1. Introduction

Prostate cancer is currently becoming one of the most leading reasons for males’ cancer-

caused death worldwide. According to the report provided by the National Cancer Institute2, 

prostate cancer is estimated to cause 233,000 new cases and 29,480 deaths for U.S. males in 

2014. Nowadays, for prostate cancer treatment, the CT image guided radiotherapy has 

received many research interests, since it is able to guide the better delivery of radiation to 

the prostate [34].
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For a patient, during his/her CT image guided radiotherapy, a sequence of CT scans will be 

acquired in several days (typically 20–40), including the planning day and the treatment 

days. A CT scan acquired in the planning day is called as the planning image, and the scans 

acquired in the subsequent treatment days are called as the treatment images. In each 

treatment day, the high energy X-rays will be delivered from different directions to kill the 

cancer tissues. Thus, the key problem is becoming how to accurately determine the location 

of prostate in CT images acquired from each treatment day. Normally, during different 

treatment days, it is usual that the locations of prostate vary in different CT scans due to the 

prostate motion and other factors (e.g., human body motion). Currently, determining the 

location of prostate is often done by the physician with slice-by-slice manual segmentation. 

However, manual segmentation, which can take up to 20 minutes for each treatment image, 

is very time-consuming, especially when lots of new CT scans come. Most importantly, 

manual segmentation results could be inconsistent across different treatment days due to 

inter- and intra- operator variability.

The major challenging issues for accurate prostate segmentation in the C-T images include: 

(i) the boundary between prostate region and background (non-prostate) region is usually 

unclear due to the low contrast in the CT images, e.g., in Fig.1(a) and Fig.1(b), the same CT 

image is without and with the red contour manually delineated by the physician to indicate 

the prostate region, respectively. (ii) The locations of the prostate regions scanned from 

same patient at different treatment days are often different due to the irregular and 

unpredictable prostate motion, e.g., in Fig.1(c) where the cyan and magenta contours denote 

the manual segmentations of the two bone-aligned CT images scanned from two different 

treatment days from the same patient. We can observe the large prostate motion even after 

aligning the two scans based on their bony structures. This indicates the large prostate 

motion relative to the bones. (iii) The prostate shape appearance varies at different treatment 

days, e.g., in Fig.1(d) where the cyan and magenta contours denote the manual 

segmentations of two bone-aligned CT images from two different treatment days from the 

same patient, which indicates the large shape appearance change.

In recent years, several computer-aided prostate segmentation methods [5][19][34][35][14]

[16][32] have been developed and achieved much success for CT image guided 

radiotherapy, with the common goal of segmenting prostate in the current treatment image 

by borrowing the knowledge learned from the planning and previous treatment images. 

Unfortunately, previous methods, during segmenting the prostate in the current treatment 

day, often has limited prior knowledge about the prostate region, e.g., the magnitude of 

prostate motion. Thus, it is quite possible that when large irregular motion occurs within the 

prostate region, previous methods might be difficult to achieve good segmentation results.

According to our experimental observation, the domain specific prior knowledge, which is 

usually given by the experienced physician (only taking a few seconds), is extremely helpful 

to guide segmentation. The specific prior knowledge includes the first and last slices of 

prostate regions, and confusing voxels which lie on boundary between prostate and 

background. The first and last slices are given to help dealing with large irregular prostate 

motion. The confusing voxels are assigned the labels since in some cases prostate and 

background voxels are quite similar.
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Therefore, we want to systematically answer the question - can we use the physician’s 

simple manual specification in the current treatment image (only taking a few seconds) to 

aid better segmentation? - in this paper. To this end, we present a novel learning-based 

method for prostate segmentation, which aims to improve the segmentation results by using 

additional physician’s manual specified information. Specifically, when a new treatment 

image comes, the physician is allowed to first give some manual specification information 

on (i) the first and last slices of prostate regions and (ii) some voxels which lie on boundary 

between prostate and background if they are difficult to distinguish according to the 

physician’s consideration. Meanwhile, the planning image and treatment images obtained in 

the previous treatment days from the same patient can also be used to guide accurate 

segmentation, with their segmentation ground truth often available. Here, physician’s 

labeled voxels in the current treatment image are labeled voxels, voxels in the planning and 

previous treatment images are auxiliary voxels, and the remaining voxels in the current 

treatment image are unlabeled voxels. Our goal for segmenting prostate region is to predict 

the labels (prostate or background) for the unlabeled voxels, with incorporating the labeled 

voxels as well as the auxiliary voxels (see Fig.2 for the difference from previous supervised 

learning-based methods).

1.1. Framework of the Proposed Method

Main steps of the proposed method can be summarized as below: Firstly, to eliminate the 

whole-body patient motion which is irrelevant to the prostate segmentation, all previous and 

current treatment images are rigidly aligned to the planning image of the same patient based 

on their pelvic bone structures. Then, the ROI (Region of Interest) region is extracted 

according to the prostate mass center in the previous images. For one slice in every 3–5 

slices within the current treatment image, the physician is allowed to label a small subset of 

prostate and background voxels, especially the ones which are difficult to distinguish and 

the ones belonging to the first and last slices of the prostate region. We illustrate typical 

examples of physician’s labeling in Fig.3.

Secondly, combining with voxels sampled from the planning and previous treatment images, 

2-D low-level features are extracted. To make full use of the labeled, auxiliary, and 

unlabeled voxels, for each slice, we mathematically model the prostate-likelihood estimation 

problem as a joint transductive feature selection and transductive regression problem. tLasso 

(Transductive Lasso) is first applied to select the most discriminative features slice-byslice, 

and wLapRLS (Weighted Laplacian regularized least squares) is further adopted to predict 

the 2-D prostate-likelihood map for unlabeled voxels in each slice. The predicted 2-D 

prostate-likelihood map of each individual slice will be merged into a 3-D prostate-

likelihood map according to the order of original slices.

Finally, to use the patient-specific prostate shape information, manually segmented prostate 

regions in the planning and previous treatment images of the same patient will be rigidly 

aligned to the estimated 3-D prostate-likelihood map of the current treatment image. We 

then majority vote the multiple aligned results to obtain the final segmentation result. The 

framework of the proposed method can be referred to Fig.4.
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1.2. Contributions

Our contributions are summarized into the following triple folds:

• We present a novel learning-based 3-D prostate segmentation method for CT 

images. Our aim is to use the physician’s simple manual specification (only taking 

a few seconds) to guide accurate segmentation especially when large irregular 

prostate motion occurs in CT images.

• A transductive feature selection method, tLasso, is proposed, which mathematically 

extends traditional supervised Lasso [46][18] to a transductive manner. tLasso 

selects the most discriminative features in each slice of the current treatment image 

by taking not only the labeled and auxiliary voxels but also the unlabeled voxels 

into account, through the Laplacian regularizer.

• A prostate-likelihood predictor, wLapRLS, is proposed. wLapRLS extends 

LapRLS [2] by adding the prior label constraint of unlabeled voxels to the 

empirical loss term, whose advantage is that the results can be benefited from 

auxiliary voxels [53].

The rest of this paper is organized as follows: Section 2 introduces the related works. 

Section 3 discusses the image preprocessing used in this paper. Section 4 presents the 

technical details of the prostate-likelihood estimation, which mainly consist of the proposed 

tLasso and wLapRLS. Section 5 discusses the multi-atlases based label fusion, and Section 6 

reports the experimental results. Finally, the conclusion is given in Section 7.

2. Related Works

According to the different prostate segmentation mechanisms in CT images, the previous 

methods can be roughly categorized into three classes: registration-based, deformable-

model-based, and learning-based methods.

The registration-based methods [6][10][34][35] first warp the current treatment image onto 

the planning and previous treatment images. Then, their respective segmentation images are 

similarly warped and further combined to obtain the final segmentation result of the current 

treatment image. Chen et al., [6] designed a strategy that aligns the planning image to 

treatment image by mesh-less point set modeling and 3D non-rigid registration. Davis et al., 

[10] segmented the prostate by combining large deformation image registration with a bowel 

gas segmentation and deflation algorithm. Liao et al., [34] proposed to use anatomical 

feature selection and an online updating mechanism to integrate both population and patient-

specific information, in order to guide the accurate prostate registration. Also, Liao et al., 

[35] combined the patch-based feature representation and hierarchical sparse label 

propagation in order to automatically localize the prostate. Several experimental results have 

demonstrated the robustness and effectiveness of the registration-based methods for prostate 

segmentation. However, the segmentation accuracy is limited in the case with inconsistent 

image appearance changes in CT images [19].

The deformable-model-based methods [5][14] first initialize the deformable model by using 

the the prostate shapes learned from the planning and previous treatment images, and then 
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employ the specific optimization strategies to guide prostate segmentation. Chen et al. [5] 

simultaneously segmented the prostate and the rectum by imposing the anatomical 

constraints during the model deformation procedure. Feng et al. [14] segmented the prostate 

by using the deformable model, which integrates the gradient profile features and the 

probability distribution function features. The deformable-model-based methods can 

combine the information from both the prostate shape and image appearance for guiding 

prostate segmentation. However, the good performance largely requires the good quality of 

the deformable model initialization. In the case where the large prostate motion happens, 

obtaining a good initialization for deformable model becomes a very challenging task.

The learning-based methods [32][19], which attracted lots of interests recently, first use the 

machine learning techniques to predict the prostate-likelihood map, and then segment the 

prostate in the estimated prostate-likelihood map. In Li et al.’s method [32] and Gao et al.’s 

[19], prostate segmentation is first formulated as a prostate-likelihood estimation problem 

(AdaBoost [17] in [32], sparse representation-based classification [49] in [19]) using visual 

features (e.g., Histogram of oriented Gradients (HoG) [9] and auto-context features [47]), 

and then on the obtained likelihood map, the off-the-shelf segmentation techniques (e.g., 

level-set) are adopted to segment the prostate. Our proposed method belongs to this class of 

learning-based segmentation methods.

Beyond the above three major classes, there are other methods [6][21][44] proposed for 

prostate segmentation in CT images. Note that, besides segmenting prostate from CT 

images, other segmentation methods are also developed for segmenting prostate from other 

imaging modalities such as Magnetic Resonance (MR) [20][30][36][37] and ultrasound [43]

[54][55] images. However, they cannot be directly borrowed to segment prostate from CT 

images due to the aforementioned challenges.

3. Image Preprocessing

We here will first introduce the notations used in the following parts, and present the 

implementation details of image preprocessing, including the image pre-alignment, the ROI 

extraction, the manual interaction, the feature representation, as well as the training voxels 

sampling strategy.

3.1. Notation

In this paper, the matrices (2-D and 3-D) are denoted by bold upper case letters, the vectors 

are denoted by bold lower case ones, and the scalars are denoted by lower case ones.

As the CT image guided radiotherapy, for each patient, we have one planning image, several 

treatment images in previous treatment days, which are manually segmented by experienced 

physician off-line, as well as the treatment image in the current treatment day, which need to 

be automatically segmented. The planning image and its corresponding manual 

segmentation result are denoted as Ip and Gp, respectively. The nth treatment image, which 

is the current treatment image, is denoted as In. The previous treatment images and their 

corresponding manual segmented results are denoted as I1, I2, …, In−1 and G1, G2, …, 

Gn−1, respectively. Also, the final 3-D prostate-likelihood map and its segmentation result 
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by applying our method for the current treatment image In are denoted as Mn and Sn, 

respectively.

3.2. Aligning All Treatment Images to Planning Image

It is often inevitable that the whole-body rigid motion occurs from the patients during the 

scanning process across different treatment days, which is irrelevant to the prostate motion. 

To reduce the influence caused by the whole-body rigid motion, which is irrelevant to the 

prostate motion, the pelvic bone structure is first extracted from each image using threshold-

based segmentation, and each treatment image (I1, I2, …, In) is then rigidly aligned to the 

planning image (Ip) based on their corresponding pelvic bone structures.

3.3. ROI Extraction

Basically, the prostates are located only in a small central part of the CT images. So the ROI 

extraction, which aims to extract the central part by excluding the irrelevant and redundant 

background voxels, is useful to alleviate the computational burden and also important for 

improving the final segmentation accuracy. For each patient, the mass centers of the prostate 

in the planning and previous treatment images are first calculated, respectively. Then, we 

average the calculated mass centers as the patient-specific prostate center. Finally, we 

extract a 3-D region centered at the patient-specific prostate center. Specifically, the 

extracted ROI size is 180 × 180 × 60, which is large enough to cover the whole prostate 

volume (i.e., the normal size of the prostate is usually from 30 × 40 × 30 mm3 to 40 × 50 × 

70 mm3).

3.4. Physician's Simple Manual Interaction

When asking physician to label the current treatment image, we will not ask him/her to label 

several prostate/background voxels in each slice, which is a time-consuming task. Instead, 

we just ask physician to label a small amount of prostate and background voxels in the first 

and last slices within the prostate region, as well as one slice in every 3–5 slices within the 

central part of prostate region. The typical examples of the physician’s labeling are shown in 

Fig.3. It is noteworthy that the physician’s labeling is done after ROI extraction, so the 

physician is only required to label a small amount of slices in CT images.

For the slices which are not labeled by the physician, they will use the labeled voxels from 

the nearest slices which are labeled by the physician, since neighboring slices have similar 

features. An example in z-axis is illustrated in Fig.5.

3.5. Feature Extraction

We extracted three different kinds of features from 2-D slice, which include 9-dimensional 

histogram of oriented gradient (HoG) features [9], 30-dimensional local binary pattern 

(LBP) features [39][45][28] and 14-dimensional multi-resolution Haar wavelet features [38]. 

The window size to extract features is empirically set to 21 × 21. Specifically, HOG features 

are calculated within 3 × 3 cell blocks with 9 histogram bins similar to [9]. LBP features are 

calculated by setting the radius value as 2 and the neighboring voxel number as 8. Haar 

features are calculated by convolving the 14 multi-resolution wavelet basis functions with 

the input image similar to [38].
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4. Prostate-Likelihood Estimation

Here, we first mathematically formulate the prostate-likelihood estimation task as a joint 

transductive feature selection and transductive regression problem, by sequentially 

discussing the details of the proposed tLasso and wLapRLS, respectively. Finally, we 

present the mechanism to generate the 3-D prostate-likelihood map.

4.1. Transductive Feature Selection by tLasso

Feature selection has been demonstrated its efficacy for learning-based prostate 

segmentation[32][19], since different patients, even the same patient with different slices, 

prefer choosing different features due to the large appearance variation across different 

prostate regions. Unlike previous learning-based segmentation methods[32][19] (only using 

the training voxels to guide supervised feature selection), in our task, the information 

coming from both the large amount of unlabeled voxels (with manifold assumption), and the 

labeled voxels (provided by the physician), along with the auxiliary voxels with the known 

label, can be incorporated for jointly transductive feature selection.

For the current slice, we use nA, nL, nU to denote the numbers of the auxiliary, labeled and 

unlabeled voxels, respectively. FA ∈ ℝnA × d, FL ∈ ℝnL × d, and FU ∈ ℝnU × d are the feature 

matrix for the auxiliary, labeled, and unlabeled voxels, respectively. Thus, F ∈ ℝn × d 

denotes the row-wise combined feature matrix for the three types of voxels3. d is the 

dimension of feature space before feature selection. yA ∈ ℝnA
, yL ∈ ℝnL

, and yU ∈ ℝnU
 are 

the labels for the auxiliary, labeled, and unlabeled voxels, respectively. Formally, the 

proposed tLasso aims to (1) minimize the reconstruction error ℛaux between the auxiliary 

voxels and the corresponding label, (2) minimize the reconstruction error ℛlab between the 

labeled voxels and the corresponding label, (3) assume that all the auxiliary, labeled and 

unlabeled voxels satisfy the manifold constraint (ℛlap), and (4) impose the sparsity 

constraint to select the most significant features (ℛspa). Thus, we can obtain the following 

objective function:

(1)

where γG ∈ ℝ and γS ∈ ℝ are the two parameters to control the weights for the last two 

terms, respectively.

Specifically, the reconstruction error of ℛaux and ℛlab can be respectively written as 

follows:

(2)

and

3n = nA + nL + nU
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(3)

where β ∈ ℝd denotes the feature weight vector (the higher weight indicates the more 

significant feature), which is the parameter to be optimized in tLasso.  and 

are the ith entries of feature matrix FA and FL, respectively.  and  are the ith 

entries of labels yA and yL, respectively.

Also, the Laplacian regularization term can be formally written as:

(4)

where where L ∈ ℝn×n is graph Laplacian matrix defined as the same in literature [2][52]

[12]. Lastly, the sparsity regularization term is ℛspa = ‖β‖1.

Mathematically, the two reconstruction terms ℛaux and ℛlab can be merged as the follows:

(5)

where y ∈ ℝn is the label for all the three types of voxels (y = [yL yA yU]⊤). J ∈ ℝn×n is a 

diagonal matrix used to indicate the voxels which are labeled (including the labeled and 

auxiliary voxels) since unlabeled voxels have no contribution on the first two term, and J is 

formally defined as

(6)

Therefore, the objective function of tLasso can be formulated as follows:

(7)

Eq.(7) can be solved by using many existing convex optimization approaches, e.g., FISTA 

[31]. In this paper, we solve Eq.(7) by using the CVX toolbox [25], which is a package for 

specifying and solving convex programs. After obtaining β, we can select the corresponding 

d′ (d′ < d) features with respect to the non-zero entries in β. Also, we can generate a new 

feature matrix F′ ∈ ℝn×d′, by using the selected d′ features, to replace F.

When using FISTA for solving tLasso, it has O(n2d + nd2) in the initialization, and O(kd2) 

in the iteration, where k is the total iteration number. Thus, tLasso has O(n2d + nd2 + kd2) 

computation complexity. Also, FISTA is proven to converge in function value as O(1/k2), 

thus in practice, k << n. Therefore, the total computation complexity of tLasso is O(n2d + 

nd2).
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4.2. Prostate-Likelihood Prediction by wLapRLS

For each unlabeled voxels with the selected features in the current slice, the prostate-

likelihood prediction problem is mathematically modeled as the transductive regression task, 

in which the auxiliary voxels (sampled from the planning and previous treatment images), 

the labeled voxels (specificated by the physician), and the unlabeled voxels will be 

integrated for the regression (different from the previous supervised learning-based prostate 

segmentation methods).

For the current slice, we denote KA ∈ ℝnA×nA
, KL ∈ ℝnL×nL

, and KU ∈ ℝnU×nU
 as the pair-

wise similarity matrix for the auxiliary, labeled, and unlabeled voxels after feature selection 

by tLasso, respectively. Thus, we can further denote K ∈ ℝn×n as the pair-wise similarity 

matrix for all the three types of voxels.

Formally, the wLapRLS aims to (1) minimize the empirical loss among the auxiliary , 

labeled , and even unlabeled voxels  with their corresponding labels, (2) 

assume that all the auxiliary, labeled and unlabeled voxels satisfy the manifold constraint 

, and (3) impose the smoothness constraint  to penalize the possible solutions 

that might lead over-fitting. Thus, we can obtain the following objective function:

(8)

where γG ∈ ℝ and γC ∈ ℝ are the two parameters to control the weights for the last two 

terms, respectively.

Mathematically, the empirical loss  and  can be respectively written as follows:

(9)

and

(10)

Also, we introduce the pseudo-label yU ∈ ℝnU
 for the unlabeled voxels, thus the empirical 

loss  can be defined as:

(11)

where ωA ∈ ℝnA
, ωL ∈ ℝnL

, ωU ∈ ℝnU
 denote the corresponding prediction vectors of three 

types of voxels, which are the parameters to be optimized in wLapRLS. Note that the 

pseudo-label yU is the classification result by using the classifier trained on all the auxiliary 

voxels. Here, Support Vector Machine (SVM) is adopted to train the classifier with selected 
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features by tLasso. The advantage of using pseudo-label yU is that the results can be 

benefited from auxiliary voxels [53].

Moreover, as for the three parts of the empirical loss, we can use the prediction vector ω ∈ 

ℝn to replace the ωA, ωL, ωU, and formally integrate them as follows:

(12)

where J′ ∈ ℝn×n is a diagonal matrix used to indicate the three types of voxels as

(13)

Furthermore, the Laplacian regularization term can be formally written as:

(14)

where L′ ∈ ℝn×n is graph Laplacian matrix calculated on the selected features. Also, the 

smoothness constraint regularization term can be written as , aiming to 

prevent the possible over-fitting issue [2].

Therefore, the objective function of wLapRLS can be formulated as follows:

(15)

The ω can be computed as a close-form solution as follows:

(16)

where I is the identity matrix. Finally, by using the Representer Theorem [42], the prostate-

likelihood of the unlabeled voxels in the current slice of treatment image can be calculated 

as the corresponding part (from nA + nL + 1 to n) of vector Kω. Since in some cases, 

obtained the prostate-likelihood might be negative or noisy, we normalize all the the 

prostate-likelihood into [0, 1]. Thus, 2-D prostate-likelihood map for each slice in the 

current treatment image can be generated with the calculated prostate-likelihood of the 

unlabeled voxels.

4.3. Generating the 3-D Prostate-Likelihood Map

For all slices in the current treatment image, the obtained 2-D predicted likelihood maps will 

be merged together to generate the 3-D prostate-likelihood map according to the order of 

original slices. In [32], the authors found that the combination of segmentation results along 

two directions (z-axis and y-axis) is helpful to improve the performance. Therefore, we 

generate 3-D predicted prostate-likelihood map Mn by averaging M ,n and M ,n, where 
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M ,n and M ,n are the 3-D prostate-likelihood maps generated along z-axis and y-axis, 

respectively. Without loss of generality, the details of generating M ,n are summarized in 

Algorithm.1. Since M ,n is obtained from the slices cut from z-axis, similarly M ,n can 

also be obtained from Algorithm.1 by cutting the slices along y-axis.

Algorithm 1

Generating 3-D prostate-likelihood map M ,n

Input: Planning image Ip and ground truth Gp, previous treatment images

I1,…,In−1 and ground truth G1,…,Gn−1 and current treatment image In

Output: 3-D prostate-likelihood maps M ,n

1: for the sth slice do

2:   (FA, yA) ← Sampling the auxiliary voxels.

3:   if the sth slice is labeled by physician then

4:     (FL, yL) ← Physician’s labeling.

5:   else

6:      (FL, yL) ← Labeled voxels in the nearest slice from sth slice.

7:   end if

8:   β ← Solution returned by tLasso in Eq.(7).

9:   ω ← Solution returned by wLapRLS in Eq.(16).

10:   Calculate the prostate-likelihood by Representer Theorem [42].

11:   Assign the calculated prostate-likelihood for the sth slice in M ,n.

12: end for

5. Multi-Atlases Based Label Fusion

We now discuss the technical details of generating the final binary segmentation results 

according to the 3-D prostate-likelihood map. Although the prostates scanned at different 

days usually have large irregular motion, nonlinear transformation, and even appearance 

changing, the patient-specific prostate shape information can still be well used to guide final 

segmentation, since the shape differences among the same patient are relative smaller than 

that among different patients, in terms of the volume size, general shape, etc. To make full 

use of all the shape information from the planning and previous treatment images for 

guiding the segmentation, we adopt the multi-atlases based label fusion with the following 

steps:

Firstly, previous binary segmentation results (the ground truth of the planning and treatment 

images) G1,G2,…,Gn−1 and Gp will be rigidly aligned to the estimated prostate-likelihood 

map Mn by using the mutual-information based similarity metric with Powell’s optimization 

strategy [35].

Secondly, we average all the obtained aligned results and further conduct the voxel-wise 

majority voting for each voxel, in order to get the final segmentation result Sn. The role of 

this step in our whole segmentation method can be referred to the multi-atlases based label 

fusion step in Fig.4.
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6. Experimental Results

In this section, we will validate the advantages of the proposed prostate segmentation 

method both qualitatively and quantitatively. The CT prostate dataset used in the 

experiment, and the experimental setting are first given. Then, we will systematically 

evaluate the proposed tLasso and wLapRLS, respectively. Also, we discuss the performance 

of the proposed method when the patients are with large prostate motion. Finally, the 

proposed method will be extensively compared with several state-of-the-arts developed in 

recent years.

6.1. CT Prostate Dataset

The proposed method was evaluated on a prostate 3-D CT-image dataset consisting of 24 

patients with 330 CT images, and each patient has at least 9 images obtained from 1 

planning day and several treatment days. The original resolution of each CT image is 512 × 

512 × 60, with in-plane voxel size as 0.98 × 0.98 mm2 and the inter-slice thickness as 3 mm. 

As a benchmark CT prostate segmentation dataset, the dataset is also used in [14][34][19]

[50]. Also in [32][33], the authors have chosen 11 and 10 typical patients for experiments 

respectively, which are subsets of the 24 patients. So it is fair and reasonable for the 

proposed method to compare with previous methods [14][32][33][34][19][50] on the same 

dataset. All the images of the 24 patients are manually segmented by the experienced 

physician, which are used as ground truth for evaluation in the experiments. For each 

patient, the first 3 images (i.e., the planning image and the first two treatment images) are 

used as training images, from which the patient-specific ROI is extracted, the auxiliary 

voxels are sampled, and segmentation ground truths are available.

6.2. Experimental Setting

In the experiments, we use three common evaluation metrics: the Dice ratio, the True 

Positive Fraction (TPF), and the Centroid Distance (CD).

The Dice ratio has been widely used to evaluate the prostate segmentation methods in 

previous works [19][34][35][50]. For two binary images (i.e., predicted and manual 

segmentation results), Dice Ratio measures the total voxel number of their overlapping part 

divided by the summation of voxel numbers in respective two binary images.

The TPF indicates that the percentage of corrected predicted prostate voxels in the manually 

segmented prostate regions. Basically, higher TPF indicates better coverage of the true 

prostate region, which is very helpful for the later radiotherapy because in this case the high 

energy X-ray can be delivered to kill the cancer tissues within whole prostate region.

The CD means the Euclidean distance between the central locations of the manual 

segmentation result and predicted result. The method with lower CD normally can better 

help locate the prostate center. Since prostate CT-images are 3-D, the CD along 3 directions: 

the lateral (x-axis), anterior-posterior (y-axis), and superior-inferior (z-axis) directions are 

needed to be calculated. It is noteworthy that in superior-inferior (z-axis) direction, the CD 

are calculated as 3 times of obtained values since the inter-slice voxel size is 3 mm which is 

approximately 3 times of that in x-axis and y-axis. Note that, the calculated CD is still with 
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the sign (positive or negative) whose aim is to keep the consistency with the related works 

[14][32][33][34]. Also, we list the standard deviation of CD to address this problem in the 

following sections. Good segmentation method, which perfectly matches the ground truth, 

will have higher Dice ratio and TPF, as well as lower CD.

6.3. Evaluation on the tLasso

To evaluate the performance of the proposed tLasso for feature selection, the experiment 

mainly focuses on the following two aspects: (1) to demonstrate if the transductive 

regularizer (Laplacian regularization term) in tLasso is useful, and (2) to demonstrate if the 

performance of tLasso outperforms the state-of-the-arts feature selection or dimension 

reduction methods in prostate-likelihood estimation. Therefore, Lasso [46] and two popular 

state-of-the-arts: PCA (principle component analysis) and LDA (linear discriminative 

analysis) are adopted for comparison. For PCA and LDA, the dimension after feature 

selection is determined by maximum likelihood estimation (MLE). We use the MATLAB 

toolbox of dimension reduction [51] for the implementation of the PCA and LDA. Since the 

whole dataset includes 24 patients, and more than 300 images, a subset (patient 1, 5, 10, 15 

and 20), which include 63 images, is chosen to compare the performance of tLasso as well 

as other methods (PCA, LDA, Lasso). For different feature selection methods, we adopt the 

proposed wLapRLS as the regressor. Since wLapRLS is a regressor for prostate-likelihood 

estimation, the mean square errors (MSE) is adopted as an additional evaluation metric 

between the predict prostate-likelihood map and the manual segmentation result provided by 

the physician. Also, the Dice ratio, TPF and CD are used as the metric to validate the 

influence on the final segmentation result using different prostate-likelihood map obtained 

by different feature selection methods.

For the evaluation of MSE, since each 3-D CT image is composed by several 2-D slices, we 

adopt the win percentage of tLasso against other methods on both slice level and image 

level, respectively. For a particular slice/image, we calculate the MSE of tLasso and another 

method (e.g. PCA); if tLasso is with lower MSE, the winning number of slice-level/image-

level will be added 1. The win percentage of slice-level/image-level is defined as the 

winning number of slice-level/image-level divided by the total number of slices/images. The 

win percentage of tLasso against PCA, LDA, and Lasso on MSE can be referred to Fig.6. It 

is obvious that the proposed tLasso outperforms PCA, LDA and Lasso in terms of lower 

MSE on both slice-level and image-level.

Moreover, for the subset (patient 1, 5, 10, 15 and 20), the results of Dice ratio, TPF and CD 

among different feature selection methods are listed in Table 1. The proposed tLasso 

outperforms PCA, LDA and Lasso only except the mean CD in z-axis which is slightly 

worse than that of Lasso. Due to the instability, Lasso has much larger standard deviation on 

Dice ratio, TPF and CD, compared with tLasso. By imposing Laplacian regularizer, the 

standard deviation of MSE of tLasso is much smaller than that of Lasso, which indicates that 

using the unlabeled voxels to guide feature selection is useful.

Furthermore, some representative examples among PCA, LDA, Lasso and the proposed 

tLasso are shown in Fig.7. The result of PCA is the worst since the segmented result cannot 

match the manual delineation in some cases, and the result of LDA is better than PCA, 
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however, some important boundary voxels are incorrectly segmented. The result of Lasso is 

very closeto the manual delineation, but some voxels around the prostate boundary are still 

misclassified due to its instability, which leads to poor prostatelikelihood prediction in 

several slices. The result of tLasso is close to the manual delineations.

For parameter setting in tLasso, the two important parameters γG and γS are chosen by 

leave-one-out cross validation. Specifically, for each patient, to segment the current 

treatment image In, we will use brute-force-search strategy to estimate γG from 10−i (i = 1, 

…, 10), as well as γS from 10−j (j = 1, …, 10), using leave-one-out cross validation on the 

planning image Ip and previous treatment images I1, …, In−1. The γG and γS, which obtain 

the lowest MSE values in cross validation, will be chosen as the final parameters. In the 

experiment, γG = 10−6 and γS = 10−8 are found to be the best. The γG integrates the graph 

Laplacian assumption on all voxels, if γG is set to 0, tLasso will degenerate to Lasso. The 

results validate γG (i.e., graph Laplacian term) is helpful in prostate segmentation, because 

the performance of tLasso is better than Lasso. The γS is used to control the whole number 

of selected features, which is commonly used in many related works [46][56][23].

In addition, we have introduced two novel methods RELIEF [29] and mRMR [40] for 

comparison. Under the same experimental setting, the mean Dice ratios of RELIEF and 

mRMR are 0.863 and 0.877, respectively, and the mean TPFs of RELIEF and mRMR are 

0.839 and 0.852, respectively. Compared with these supervised feature selection methods 

(i.e., RELIEF, mRMR, Lasso), our proposed tLasso, which integrates the graph Laplacian 

assumption for transductive feature selection, can normally obtain better results.

6.4. Evaluation on the wLapRLS

To evaluate the performance of the proposed wLapRLS, two state-of-the-arts regressors, 

support vector regression (SVR) and LapRLS [2] are adopted for comparison. The feature 

selection is conducted by the proposed tLasso. We apply the LIBSVM toolbox [4] for SVR 

implementation, and two different kernels (linear kernel and RBF kernel) for SVR are 

investigated, respectively. Also the parameters of SVR are chosen using leave-one-out cross 

validation on the auxiliary voxels sampled from the planning and previous treatment images 

for each patient. The parameters (c = 10, g = 10 in LIBSVM) which obtain the lowest MSE 

among all the candidate parameters are selected. The reasons for choosing SVR and 

LapRLS for comparison are two folds: (1) To demonstrate if using the information of the 

unlabeled voxels (introducing Laplacian regularizer) is helpful, because SVR is a supervised 

regressor; (2) To demonstrate if imposing the prior label constraint (introducing the PA in 

the objective function of wLapRLS) is useful. We also choose the patient 1, 5, 10, 15 and 20 

as an example. The results of the Dice ratio, TPF and CD by the SVR (linear and RBF 

kernel), LapRLS and proposed wLapRLS can be referred to Table 2.

It can be found that the proposed wLapRLS outperforms the SVR (linear and RBF kernel) 

and LapRLS except the CD in y-axis which is slightly worse than that of SVR (RBF) and 

the CD in z-axis which is slightly worse than that of LapRLS. It also demonstrates that (i) 

using the Laplacian regularizer term and (ii) imposing prior label constraint are helpful to 

accurately locate the prostate.
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Moreover, the win percentage (with the same definition as that in the previous section) of 

wLapRLS against SVR (linear), SVR (RBF) and LapRLS on MSE can be referred to Fig.8. 

We can found that the proposed wLapRLS is usually with lower MSE compared with the 

related methods both on the slice-level and image-level.

It is obvious that making full use of the structure information of unlabeled voxels 

(wLapRLS and LapRLS) will improve the results compared with only using the label 

information of the labeled and auxiliary voxels (SVR). Furthermore, some representative 

examples among SVR, LapRLS and the proposed wLapRLS are shown in Fig.9. Although 

both the Dice ratios of SVR (RBF) and LapRLS are higher than 0.9, they still fail to 

correctly segment the slices at the top part of the prostate. i.e., the first row in Fig.9 (SVR 

with linear kernel even does not locate the prostate in the first slice); some boundary voxels 

in other slices. i.e., the second to fifth rows in Fig.9.

For parameter setting in wLapRLS, the two important parameters γC and γG are chosen by 

leave-one-out cross validation, which is the same with parameter selection in tLasso 

mentioned above. Specifically for each patient, to segment the current treatment image In, 

we will brute-force-search γC from 10−i (i = 1, …, 10), as well as γG from 10−j (j = 1, …, 

10), using leave-one-out cross validation on the planning image Ip and previous treatment 

images I1, …, In−1. The γC and γG, which obtain the lowest MSE values in cross validation, 

will be chosen as the final parameters. In the experiment, γC = 10−6 and γG = 10−5 are found 

to be the best.

6.5. Comparison with Previous Methods

We now extensively compare the proposed method with previous ones since the manual 

segmented results of the 24 patients are available by experienced physician. The mean, 

standard deviation, and median value of the Dice ratio, TPF, and CD (3-directions) are 

calculated for all the 24 patients in Table 3. Also for each patient, we list the Dice ratio in 

Fig.10, TPF and CD in Fig.11, respectively. According to our observation, the proposed 

method can achieve satisfactory results, of which Dice ratio is larger than 0.9, TPF is around 

0.9, also CD in three directions are small.

Moreover, to further evaluate the performance of the proposed method, the results of several 

state-of-the-arts are illustrated for comparison, which include deformable-model based 

methods [5][14][50], registration-based methods [10][33][34][35], and learning-based 

method [32][19]. The best results reported in the corresponding papers are listed. The 

comparisons among different methods are listed in Table 4. Evaluated metrics include mean 

Dice ratio, median TPF (in [5][32], median TPF are evaluated instead of mean TPF), and 

Average Surface Distance (ASD). The ASD is adopted to discretely measure the Euclidean 

distance between the surface of the manual segmentation result and predicted segmentation 

result. Because different CT datasets are used for experiments, for Davis et al.’s work [10] 

and Chen et al.’s work [5], the results of [10] and [5] are listed separately for reference. For 

the related works [14][34][35][19][50], all the 24 patients are evaluated which is the same 

with ours, so we name the 24 patients CT dataset as CT dataset 1. For Li et al.’s work [32] 

and Liao et al.’s work [33], two different subsets of the 24 patients CT dataset are chosen 

and evaluated, which are named as CT dataset 2 and CT dataset 3, respectively. For fair 
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comparison, we selected the same subsets with [32][33], respectively. From the results listed 

in Table 4, it is obvious that the proposed method outperforms the previous ones in terms of 

higher Dice ratio. In the mean time, higher TPF are achieved by the proposed method 

compared with [5] and [32]. Except the ASD is slightly worse than several related methods.

From the above observation, we can infer that physician’s manual specification information 

is quite useful for predicting the possible central location of prostate, because we just use the 

low-level features without any advanced features, like auto-context features [47] used in 

literature [32]. Furthermore, we also illustrate in Fig.14 several typical segmented examples 

for the image 8 of patient 1, the image 11 of patient 4, the image 10 of patient 14, the image 

8 of patient 20 and the image 7 of patient 24, with different slice indexes, respectively. In 

Fig.14, the red curves denote the manual segmentation results by the physician, and the 

yellow curves denote the segmentation results by the proposed methods. We can found that 

the predicted prostate boundaries are very close to the boundaries delineated by the 

physician. Also the proposed method can accurately separate the prostate regions and 

background even in the top and bottom slices, which are usually considered very difficult to 

segment. According to the Dice ratio reported in Fig.10, the segmentation result of patient 

14 is almost the worst (mean Dice ratio is 0.859) by applying the proposed method, 

however, we can still found the prostate region is successfully located using our method in 

Fig.14.

6.6. Patients with Large Prostate Motion

Since the proposed method aims at using physician’s knowledge to aid prostate 

segmentation, especially for the prostates with large irregular motion. In our work, we use 

the same CT dataset 1 as [19][35], and the same CT dataset 2 as [32], it is known that the 

patients 3, 10 and 15 are with larger prostate motion, which can be referred to Fig.12. In Fig.

12, we calculate the standard deviation of the prostate centers among the planning and 

treatment images for each patient, and it is obvious that patient 3, 10, 15 are with large 

prostate motion.

For patient 10, the median Dice ratio is 0.908. For patient 15, the median Dice ratio is 0.918, 

which are better than the corresponding results reported in [32][19][35]. Applying the 

proposed method to patient 3, the median Dice ratio is 0.905, which is worse than [19][35]. 

The comparison is listed in Fig.13. It demonstrates that the proposed method is effective 

when large irregular motion occurs within prostate regions.

7. Conclusion

In this paper, we presented a novel transductive learning-based method to segment the 

prostate in CT images. Our proposed method aims to further improve the segmentation 

performance by making full use of the physician’s simple manual specification (only taking 

a few seconds). Specifically, the physician’s manual specification, as well as the patient-

specific information obtained from the planning and previous treatment images, will be 

simultaneously employed to guide the accurate segmentation. The proposed method mainly 

contains the two steps: in prostate-likelihood estimation step, two novel algorithms: tLasso 

and wLapRLS, will sequentially adopted for joint transductive feature selection and 

Shi et al. Page 16

Neurocomputing. Author manuscript; available in PMC 2016 January 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



transductive regression, respectively, aiming to generate the prostate-likelihood map. In 

multi-atlases based label fusion step, the final segmentation result will be obtained according 

to the corresponding prostate-likelihood map as well as the previous images of the same 

patient. We evaluated the proposed method on a real CT prostate dataset, delineated by the 

experienced physician, which consists of 24 patients with 330 images. Experimental results 

indicate that, our proposed method can obtain higher Dice ratio, higher true positive 

fraction, as well as lower centroid distances compared with several state-of-the-arts, 

especially for the cases with large irregular prostate motion. It demonstrates that physician’s 

simple manual specification is quite useful for guiding segmentation when large irregular 

prostate motion occurs within the prostate regions. In our future work, more advanced 

features and more intelligent manual specification methods will be investigated for better 

segmentation results.
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Figure 1. 
Challenges in automated prostate CT segmentation. (a)(b) Low contrast in CT image 

(without and with the manual segmentation); (c) Large prostate motion, (d) large shape 

appearance change, relative to the bones, even after bone-based alignment for the two CT 

images.
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Figure 2. 
The difference between previous supervised methods and the proposed transductive method. 

Our proposed method uses the information from both the physician’s knowledge as well as 

the planning and previous treatment images. Red and blue lines in the current image of the 

proposed method mean prostate and background voxels labeled by the physician, 

respectively.
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Figure 3. 
Typical examples of physician’s labeling. Red curve denotes the labeled prostate voxels, and 

blue curve denotes the labeled background voxels. The labeled voxels usually lie on the 

boundary of the prostate region and background, which are difficult to distinguish.
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Figure 4. 
The flowchart of the proposed transductive prostate segmentation method.
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Figure 5. 
An example in z-axis, labeled voxels are shared for the slices which are not labeled by the 

physician. The four slices which are not labeled will share the same labeled voxels of their 

nearest slices, respectively.
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Figure 6. 
The win percentage of tLasso against other methods (PCA, LDA and Lasso) on MSE in 

slice level and image level, respectively. Slice level means that the comparison is on each 

corresponding individual slice, while image level means that the comparison is on each 

corresponding individual image.
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Figure 7. 
Representative segmentation results for patient 1, 5, 10, 15 and 20 shown in different rows, 

by different feature selection methods shown in different columns. Red curve indicates 

manual segmentation results by physician and yellow curve indicates automated 

segmentation results.
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Figure 8. 
The win percentage of wLapRLS against SVR (linear), SVR (RBF) and LapRLS on MSE in 

slice level and image level, respectively. Slice level means that the comparison is on each 

corresponding individual slice, while image level means that the comparison is on each 

corresponding individual image.
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Figure 9. 
Representative segmentation results for patient 1, 5, 10, 15 and 20 shown in different rows 

by different regression methods shown in different columns. Red curve indicates manual 

segmentation results by physician and yellow curve indicates automated segmentation 

results by different regression methods. Feature selection is conducted by tLasso.

Shi et al. Page 31

Neurocomputing. Author manuscript; available in PMC 2016 January 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 10. 
The Dice ratio of the 24 patients. Five horizontal lines (ascending order in values) means the 

min, 25% percentile, median, 75% percentile, and the max value, respectively.
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Figure 11. 
The results of TPF and CD along the lateral (x-axis), anterior-posterior (y-axis), and 

superior-inferior (z-axis) directions, respectively. Five horizontal lines (ascending order in 

values) means the min, 25% percentile, median, 75% percentile, and the max value, 

respectively.
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Figure 12. 
The standard deviation of prostate centers for each patients. Patient 3, 10, 15 are with large 

prostate motion according to the observation
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Figure 13. 
The median Dice ratio of patient 3, 10 and 15 compared with [32][19][35]. The patient 3, 10 

and 15 are considered with large irregular prostate motion.
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Figure 14. 
Typical segmentation results for Patients 1, 4, 14, 20, 24 with different slice indexes in 

different rows. Red curve indicates manual segmentation results by physician and yellow 

curve indicates segmentation results by using our proposed method.
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Table 1

Comparison on the mean and standard deviation on the Dice ratio, TPF, and CD among different feature 

selection methods for patient 1, 5, 10, 15 and 20. The regressor is the proposed wLapRLS. The best results are 

marked by bold font.

Methods PCA LDA Lasso tLasso

Dice ratio 0.768 ± 0.048 0.878 ± 0.045 0.919 ± 0.060 0.936 ± 0.039

TPF 0.703 ± 0.065 0.830 ± 0.057 0.868 ± 0.083 0.877 ± 0.050

CD (x-axis) (mm) 0.917 ± 3.139 −0.258 ± 0.948 −0.109 ± 2.320 −0.038 ± 0.227

CD (y-axis) (mm) 1.805 ± 3.715 −0.401 ± 1.730 0.193 ± 2.022 0.171 ± 0.656

CD (z-axis) (mm) −0.216 ± 0.664 −0.097 ± 0.330 0.033 ± 0.476 −0.038 ± 0.127
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Table 2

Comparison on the mean and standard deviation on the Dice ratio, TPF, and CD among different regressors 

(SVR with linear kernel, SVR with RBF kernel, LapRLS, wLapRLS) for patient 1, 5, 10, 15 and 20. Feature 

selction is conducted by tLasso. The best results are marked by bold font.

Methods SVR (linear) SVR (RBF) LapRLS wLapRLS

Dice ratio 0.855 ± 0.057 0.909 ± 0.043 0.918 ± 0.042 0.936 ± 0.039

TPF 0.782 ± 0.073 0.843 ± 0.063 0.861 ± 0.063 0.877 ± 0.050

CD (x-axis) (mm) −0.144 ± 0.992 −0.085 ± 0.255 −0.065 ± 0.240 −0.038 ± 0.227

CD (y-axis) (mm) −0.594 ± 2.136 0.115 ± 0.497 0.202 ± 0.435 0.171 ± 0.656

CD (z-axis) (mm) −0.118 ± 0.359 −0.025 ± 0.146 −0.019 ± 0.099 −0.038 ± 0.127
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Table 3

The Dice ratio, TPF and CD for the 24 patients by using the proposed method.

Mean ± Std Median

Dice ratio 0.920 ± 0.036 0.926

TPF 0.901 ± 0.052 0.901

CD (x-axis) (mm) −0.08 ± 1.27 −0.12

CD (y-axis) (mm) 0.02 ± 0.80 0.04

CD (z-axis) (mm) −0.12 ± 0.83 −0.09
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