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Abstract

Knee contact pressure is a crucial factor in the knee rehabilitatbgmams. Although contact pressure can be
estimated using finite element analysis, this approach is generally timevtiogsand does not satisfy the real-time
requirements of a clinical set-up. Therefore, a real-time surrogate method toe=gienabntact pressure would be
advantageous.

This study implemented a novel computational framework using wavelet time delaymeturaitk (WTDNN) to
provide a real-time estimation of contact pressure at the medial tibiofemtmdhce of a knee implant. For a
number of experimental gait trials, joint kinematics/kinetics and the resultartact pressure were computed
through multi-body dynamic and explicit finite element analyses to establismiagrdatabase for the proposed
WTDNN. The trained network was then tested by predicting the maximum cqmissure at the medial
tibiofemoral knee implant for two different knee rehabilitatpatterns; “medial thrust and “trunk sway. WTDNN
predictions were compared against the calculations from an explicit finite element analysssafuudald).

Results showed that the proposed WTDNN could accurately calculate the maximum cestagoepat the medial
tibiofemoral knee implant for medial thrusR(SE=1.7MPa,NRMSE =6.2% an@ =0.98) and trunk swaMEE
=2.6MPa,NRMSE =9.3%, =0.96) much faster than the finite element method. The proposed methodology coul
therefore serve as a cost-effective surrogate model to provide real-time evadfidtiergait retraining programs in
terms of the resultant maximum contact pressures.

Keywords: Gait analysis, Rehabilitation, Knee implant, Medial thrust, Trunk sWiaye delay neural network,
Wavelet
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1. Introduction:

Growing prevalence of knee osteoarthritis (OA) as the main cause of knee adtyropl one hand and cost,
risk and complications of the surgery on the other hand have led to the sigmégatdpment of non-surgical gait
modifications]. Gait modification aims to alter walking patteimslecrease knee joint loading through minor
changes in gait kinematics. Similarly the load reduction on the atiknee joint can also be achieved through gait
modifications and rehabilitation strategies to minimize wear and prolongitieatlife time of the prosthesis. A
number of gait modifications have been reported in the literature to reduce knedogmling ]. These
modification strategies have been mainly designed to offload the knee jomevelr, offloading gait interventions
may reduce knee contact area, leading to an adverse increase in cadsigtepon the joint bearing surfaces
Therefore an off-loading strategy may not be very beneficial and can everribewlet to the knee joir@S]
Therefore the resultant contact pressure on the articulating surfaces ishaaldsidered in clinical implementation
of rehabilitation programs.

Finite element analysis (FEA) is a powerful computational technique to calculam;tcpressurY]
However this approach is highly time-demanding and computationally expensive. Tédr&fa is mainly used as a
postprocessing stage for multi-body dynamic analysis to provide tissue-legahition. In fact, the available FEA
methods do not satisfy the necessity of real-time calculation in a clseagp. In clinical rehabilitation, patients
should be trained to internalize the rehabilitation strategy as thdyr walking patterns. Therefore, real-time
evaluation of contact pressure benefits the clinical implementation of iedtadil programs, for example to
investigate the effect of a rehabilitation strategy on the knee joint contact pressur

Artificial intelligence is a relatively new method that has been used inugfields of biomechanics as a
real-time surrogate modl]. An artificial intelligent network consists of a number of processor units (neurons
that are densely connected to each other via numeric weights. Once a set of inputs and resultant outputs are prese
to the network; the causal relationships between inputs and outputs would be captured and stored in numeric weig
Thus, the networKlearng the interaction between inputs and outputs. Givémeav” set of inputs that has not seen
by the network before , the trained neural network (surrogate model) can generalize the relationship to produce
associated output and release the necessity of running the original model and repetition of time consumi
calculations]. In particular, neural networks have been jointly used with finite element simulation in a variety o
biomechanics studies such as load estim3-25] and bone rem [26, 27]. Study af tairbest of our
knowledge is the only study that has used the aforementioned approach totpeedicitact pressu8]. Lu et al.
predicted the spatial distribution of contact strasmedial tibia cartilage for a simplified contact model with 400
structural elements. A or®~one mapping was developed from the three dimensional force data space into the
resultant contact stress through a time delay neural network (TDNN). Howresiemproposed TDNN had a fairly
large structure (1200 inputs, 400 outputs and 280 hidden neurons) for a simplified contacivhicialdimits its
practical function in realistic application. In fact due to the loyjj@ne mapping set-up the proposed TDNN
structure cannot be used for a more realistic contact model since incréasimgniber of elements in the model
would increase the number of inputs and outputs resulting in a more complicategrestwitth requires further
number of training data sets. On the other hand, in clinical applications, mesué&mum contact pressures are
mainly of interests. In this case, the time history of spatial coptassure distribution is not required. Instead, the
maximum contact pressures and the corresponding contact regions that ocche emiré gait cycle should be
focused.
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The aims of this study were to: (1) propose a novel computational frameworgdiotpghe distribution of
“maximun? contact pressure instead‘spatial’ distribution through a simple cost-efficient neural network structure
for a realistic contact model, (2) demonstrate the advantages of the proposed aippaoaaplication to provide a
real-time evaluation of knee rehabilitation strategies in terms of maxipantact pressure and corresponding
contact regions at the medial tibiofemoral knee implant.

2. Materialsand methods

Artificial intelligent surrogates require a primary database to desdie “causal interactions between
inputs and output@Q]. Therefore, a number of gait trials, obtained from litgratare imported to multi-body
dynamic (MBD) analysis to estimate knee joint kinematics and kinetics. Reddltantatics and forces, from MBD
analysis, were then used as boundary conditions and load profiles in finite element aRBKi® (calculate the
contact pressure distribution. A data matrix constructed from knee kineniagtis& (inputs) and contact pressures
(outputs) served as the required training database for the proposed surrogateTimedmlerall ability of this
surrogate was then tested by predicting the contact pressure for a number oftaBbalgiit trials. It should be
pointed out that FEA was used for a twofold purpose: first, to construtiiaihing database and second, as a gold
standard to compare with the surrogate predictions. Figure 1 shows an overviewrdtloelology used in this
study.

2.1. Database

Experimental gait trials of four subjects, implanted with unilateral kmesthesis (three male and one
female, height: 168.3£2.6 cm; mass: 69.2+6.2 kg), were obtained from a previously published repository [https
simtk.org/home/kneeloads;accessed on June 2013]. All subjects were implanted with sensor-based knee prosth
that have been specifically manufactured for in vivo measurement of knee joint fdifcebh "E tabase included
three dimensional ground reaction forces (GRFs) (force-plates, AMTI, Watertown, MA,USA) and marker trajector
data obtained from a six-camera Vicon motion analysis system (Oxford Metrics, Oxford, UK) with a modified
version of the University of Western Australia (UWA) marker set, with additional markers on the toes]. All the
gait trials were recorded over ground at a self-selected pace. For a complete description of walking trials see [30].

Gait trials contained normal, walking ppleouncy, crouch, fore-foot strike and smooth patterns (107 trials)
as well as medial thrust and trunk sway patterns (37 trials).ef bmedial thrust pattern included a slight decrease
in pelvis obliquity and a slight increase in pelvis axial rotation anfléggpn compared to normal g. In trunk
sway, subjects (except subject 4) walked with an increased lateral lean of trunk in frontal plane ovaditloeleta
. Since “medial thrust and “trunk sway have been objectively designed for knee rehabilitation purposes, in the
rest of this study , normal, walking pole, bouncy, crouch, fore-foot strike and srapethbfereed as “training data”
which were used to train the surrogate model (neural network) and “medial thrust and “walking polé’ are referred
as “ prediction data” which were aimed to be predicted by the neural network. A gait cycle was defined as the time
interval between foot strike of one leg to the following foot strike of the sag [32]. Subsequently two complet
gait cycles were picked up for each trial, leading to a total of 288 data sets (144 trials x two gait cycles). Trainir
gait cycles(214 data sets) were used to train the surrogate model. The remaining 74 gait cycles, associated w

rehabilitation programs, were then used as test data space to evaluate the performance of the surrogate model (se
Figure 1).
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2.2. M ulti-body dynamics simulation

Experimental GRFs and marker trajectories were imported into the three-dimemnsidtidlody simulation
software: AnyBody Modeling System (version 5.2, AnyBody Technology, Aalborg, Dehndarlower extremity
musculoskeletal model was used in AnyBody software based on the Wniwdrsiwente Lower Extremity
Model (TLEM) . The TLEM model is available in the published repositoryAaiyBody software. This
model included approximately 160 muscle units as well as thigh, patella, shank and fieettseddip joint was
modeled as a spherical joint with three degrees of freedom (DOF): flexionierteabduction-adduction and
internal-external rotation. Knee joint was modeled as a hinge joint with only @fefdr flexion-extension and
universal joint was considered for ankle-subtalar complex. Since the assumptions of the simplified knee joint ai
rigid multi-bodies were made, the detailed knee implant was not considered in the multi body dynamic analysis. F
each subject, the generic musculoskeletal model was scaled based on aMasgffat scaling law in which body
mass, body height and segment length were taken into account. Segment lengths were calculated according tc
markes’ coordination in an optimization routine in which the model was scaled suchhéhalifferences between
“model market and the“experimental marké&rtrajectories were minimized. Detailed information about scaling
techniques for a musculoskeletal model can be fou4-36]. The scaled model was then recruited in an inve
dynamics approach in AnyBody software in which joint kinetics and muscle forces were calculated. Joint kinetic
were calculated from equilibrium equations. Muscle forces were calcudatad optimization problem in which
muscle recruitments, based on a cubic polynomial muscle recruitment criterion, were computed in order to minimi
the maximum muscle activities subject to equilibrium constraints and positive muscle force co =. [34, 37
Knee flexion-extension angle and three dimensional knee reaction forces, aligned in medial-lateral, proximal-dist
and anterior-posterior directions, were calculated dach gait cycle. Calculated knee kinematic and kinetic
waveforms were then normalized to 100 samples, through the linear interpolation technique (MATLAB v. 2009, Th
MathWorks, Inc., Natick, MA,USA), representing one complete gait cycle from heel strike (0%) to toe-off (100%)
(Figure2). Normalized knee kinematic and kinetic waveforms served as the boundary condition and loading profile
required for FEA.

2.3.Explicit finite element simulation

The tibiofemoral knee implant of the subject was modeled in the commercia éleiment package;
ABAQUS/EXxplicit (version 6.12 Simulia Inc., Providence, RI, USA) using a compided aesignCAD) model of
a typical fixed bearing posterior stabilized total knee implant. The knearitngbnsisted of two main parts; femoral
component and tibia insert (Figure 3). Rigid body assumptions were applied to bothl fanbriibia insert
components, with a simple linear elastic foundation model defined between the two contactirlﬂodies[%].

Modified quadratic tetrahedron 10-node elements (C3D10M) were used to mesh the tibioflemeeral
implant in ABAQUS. Convergence was tested by decreasing the edge lengilenants from 8 mm to 0.5
mm in five steps (8, 4,2,1, and 0.5 mm). The solution converged to a mesh withrégeaaiement edge length of
1 mm. The converged mesh contained over 86000 C3D10M elements to represent thecemuooaknt (4200
elements with 6700 nodes) and the tibia insert (4400 elements with 6600 nodes). Furtherimtreasesh density
resulted in minor changes to the calculated contact pregsui%). The physical interaction between these two
components was taken into account as a sutfasarface contact (femur as the master surface and tibia as the slave
surface) through a penalty based approachaansotropic friction coefficient of 0.0@@9}. The tibia insert was
constrained in all available DOFs and the femoral component was only allowed for-Betémsion under the three
dimensional load. Three dimensional knee loadings and knee flexion angle were obtainedifidsody dynamic
analysis (Figur®). The FE model calculated the contact pressure at each node for each time increment. thkthough
contact pressures were calculated on the whole tibia surface, only mediabtilgpartment of the knee implant was
focused to illustrate the proposed methodology since this part is mainly pronéeo ¢dgtact pressure during gait
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125 2.4.Field output construction

126 Using FEA, the time history of spatial contact pressures were calculated at the nodes in contact, howe\
127 only the maximum values of nodal pressures over the entire gait were concethisdstudy. Each gait cycle was
128 depicted as a topographic outline in which the maximum contact pressures and the corresporatingegmris

129 (contact nodes) were highlighted over the entire gait cycle. In order tosiactma topographic outline, an output
130 field was establisheith the following three steps:

131 Stepl. Define the widest potential contact region (PSURF): All of the achievable contact contours within
132 the entire simulation frames were combined over all the training gait cgctemstruct the widest potential contact
133 zone called PSURF (Figurg.4ndeed PSURF waa vector of node numbers that represented a comprehensive
134  collection of potential contact nodes.

135 Step2. Calculate the maximum values of contact pressures on PSURF: Each training gait cycle was
136 outlined through the maximum values of contact pressures associated witidésein PSURF. Maximum contact
137 pressure values were then arranged in a vector and treated as a prgsalfershat gait cycle. Pressure signals
138 were combined over all training gait cycles to form a matrix called CPRESS in which each column was
139 allocated for one training gait cycle (Figure 4

140 Step3. Partition the PSURF into five sub-regions: The pressure signal, defined for each gait cycle,
141 contained an overall description of that gait cycle including a variety ofeliff@ressure values ranging from low to
142 high values associated with low and high pressure contact regions which daeeitiie that gait cycle. In order to
143  reduce the variability of network’s output and increase the prediction ability of the proposed surrogate model, PSURF
144  (contact nodes) was divided into five sub-regions: sub-region | (contassyse >16 MPa), sub-regidh
145 (10MPa<contact pressurel6 MPa), sub-region Il (2MPa<contact pressurel0 MPa), sub-region IV
146 (0.5MPa<contact pressur® MPa) and sub-region V (0 MPa<contact pressw@®5 MPa). For each contact node
147 belonged to PSURF, the class membership probability to each sub-region was determined; for exaoipiegion
148 I

total number of gait cycles in which the maximumteot pressure on node> 16 MPa
149  p'(node) = gar ey d nodg € PSURF (1

total number of training gait cycles

150 Accordingly, using the CPRESS-MAX matrix, five membership probability valese walculated for each

151 node a$'(node), P' (node, P' ( nog, I ( nage P( npa. Each node was assigned to the sub-region with the highest
152 membership probability. In other words, the maximum values of contact pressaedole in sub-region | were

153 above 16 MPa in most of the training trials while a node in sub-region V mostly hadhumaydontact pressure

154 lower than 0.5 MPa (Figure 5)pper and lower pressure boundaries of sub-regions were chosen so as to have sul
155 regions with equal numbers of nodes as far as possible.

156 2.5.Surrogate model: wavelet time delay neural network
157 Due to the advantages of time delay neural network (TDNN) for real-tinmeagisin of contact stre

158 and major drawbacks of this structure stemmed from global activation fu@A&,three-layer wavelet
159 time delay neural network (WTDNN) was developed in the present study. tilituse had a similar architecture
160 with TDNN: a feed-forward neural network with a tapped delay line, addduetanput layer, which enabled the
161 network to store a short-time history of input patt@s[43]. In each lagieroms were connected to the neurons of
162 the next layer via numeric values (weights). Thus a weighted sum of all wpst$ed into each hidden neuron
163  where an activation function acted on this weighted sum to produce the hidden neuron’s output. Although hidden
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164 neurons are generally activated with a global activation function, in the prgsacture hidden neurons were

165 activated with wavelets (Figure.@&ach input node was related to each hidden neuron, with a special value of shift,
166 scale and input weight parameters. Therefore, each of the hidden neurons was actikaaethuiii-dimensional
167 wavelet defined as the tensor product of one-dimensional wavelets corresponding to each input below [18]:

Ni
168 (¥ %o Xs, - - _'XN)znw(XkVXJ] k=12,...N;i=123,..M ®)
k=1 ik
169 In which y(t) is Daubechies4 (db4) wavelet function;;iidlicates the number of input nodes, M is the

170 number of hidden neurons ang W andiy are the input weight, shift and scale parameters reIaff'irirgoIat to the
171 hidden neuron respectively. It should be pointed out that each hidden neuron actedioputaitinal by a shifted
172 and scaled version of mother wavelet (db4). The outputs of hidden neurons were fed ioutpahaeuron via
173 special values of weights led to a 1xM output weight matrix. Consequbatlyutput of the proposed network was
174  defined as follows:

175 y:iwi\yi (xl,xz,x3,. - X )+3_/ i=1,2,...M ; 3)

i=1

176 Where v, (xl,x2 X3, - "’XNi) is defined in equation (2) and is the output weight relatin§' hidden neuron

177 to the output node ang is the bias. Five groups of parameters (input weights, shift, scale, output waighigas
178 value) were adjusted in WTDNN training as required in the above equatishsuld be pointed out that unlike the
179 conventional neural networks; in the case of WTDNN, it was importanitialize the adjustable parameters before
180 training in order to ensure that the daughter wavelets (shifted and seasgohs of mother wavelet) covered the
181 entire input data space. Therefore, the WTDNN was trained within thenaivosteps; first the adjustable parameters
182 were initialized , se@;l}second, a MATLAB script (v. 2009, MathWorks, Inc., Natick, MA, USA) was developed
183 to train the WTDNN based on scaled conjugate gradient algorithm (SCG). For atmodgdcription of SCG one

184 can refer t.

185 Five parallel WTDNNSs served to predict the maximum contact pressure values at the nodes in contact; ol
186 WTDNN was allocated to predict the pressure distribution of each sub-region. Each network had one input lay
187 with four inputs (N=4) including knee flexion angle plus three dimensional knee reaction forces. In this approach
188 the maximum contact pressure values associated with each sub-region were arranged as a vector and treated
189 pressure signal (output signal). TheachWTDNN had a single output layer with one output neuron and the input
190 data space (knee flexion angle and knee reaction forces) were re-sampled and interpolated to have an equal size
191 the output signal.

192 Training gait trials , including normabouncy, crouch, smooth, walking pole and forefoot strike patterns of
193 four subjects, were used to train the generic networks while testing trials (medial thrust and trunk sway) were n
194 included in the network training procedure and were only used to test the performance of the trained WTDNN
195 Training data space was randomly divided into three main subsets; 70%irforgy 15% for validation and 15% to

196 test the generalization ability of the trained network. The optimal nwrdfenidden neurons and training epochs
197 were determined due to the network prediction error on validation and bssttsuHidden neurons and training
198 epochs were increased until adding more hidden neurons/training epochs waaddrtbe network prediction error
199 on the test subset due to over-fitting. The error goal was set to 0.0001 dradriimg algorithm was continued to

200 achieve the error goal or until the maximum epochs were reached. The optimaldelayedas also determined by

201 trial and error. All of the above analyses were conducted in MATLAB. Accortdi, the network was trained



202 and run 100 times for each test data set (testing gait cycle) and the aversge df(0 runs was considered as the
203 network prediction for that test data set. WTDNNs predictions were then conmtbettier and assigned to the
204  corresponding contact regions (PSURF) to form the topography of maximum contact pressimatioi. The
205 performance of the WTDNNs were benchmarked against the FEA (gold standarm)srof root mean square error
206 (RMSE) and its normalized percentageRMSE ) as well as Pearson correlation coeffidient (

207 3. Results
208 3.1.Maximum contact pressure prediction on sub-regions
209 The widest potential contact region (PSURF) contained a total of 500 nbued?SURF region was then

210 divided into five partitions from high-pressure sub-region (sub-region Hwepressure sub-region (sub-region V)
211 with 101 nodes in sub-region I, 102 nodes in sub-region 11,109 nodes in sub-region lll, 46 nodesegian 1V and
212 141 nodes in sub-region V. For each sub-region, the pressure values estimafEDNN Were compared with the
213 corresponding values obtained from FEA for medial thrust (Figure 7)tran#é sway (Figure 8) rehabilitation
214 patterns. Table 1 summarizes the structure of the networks and the aacgugeglictions in terms oRMSE,
215 NRMSE@)and Pearson correlatiop (). For medial thrust prediction, cross correlation values ranged from =0.89 1
216 ,=0.97 and all of the errors’NRMSE ) were less than 14% compared to FEA results. The predicted pigisal of
217 sub-region | had the lowest error =6.3% with the correlation coefficient gbe0e5. The predicted
218 pressure signal of sub-region Il had the highest errodROASE =13.2% with the correagfficient of, =0.89
219  For trunk sway prediction, errors were slightly increased compared to the corregpsulaliregions of medial thrust
220 pattern since subject 4 did not undergo trunk sway rehabilitation and predictions weregeeragewer number of
221 subjects. Cross correlation coefficients ranged fpom = 0.8l to = 0.97 andr@INRUSE values were less than
222 15%. The lowest prediction error was related to sub-refgi6RNRMSE = 7.3%, , = 0.95) and the highest error
223  occurred in sub-regiov (NRMSE = 14.3%, , = 0.81).

224 3.2. Topogr aphic representation of maximum contact pressure distribution

225 For each subject, five pressure signals were obtained from WTDNNs and were cotobi@shstruct the
226 complete pressure signal of a gait cycle. For each subject, pressure sigreakhen averaged over the testing gait
227 cycles of each pattern (medial thrust or trunk sway) to generate an ovenadities of that rehabilitation pattern.
228 Consequently WTDNN predictions and FEA calculations were then assigned to the coirgsponthct regions
229 (PSURF) to form the topographic representation of the maximum contact pressubeitiistriFigures9 and 10
230 present the topographic outline of medial thrust and trunk sway rehabilitatt@rnpafor each subject. The
231 quantitative comparison of the predicted topographies (Table 2) shows that WTDMNpoedict the maximum
232 contact pressure distributions to a high level of accuracy for medial tlRMSEE 1.7MPa, NRMSE= 6.2% angd =
233 0.98) and trunk swayRMSE =2.6MPa, NRMSE= 9.3%,, = 0.96). The simulation time for a complete gait cycle,
234  discretized into 100 increments, was approximadé@yninutes for the FE model, compared to 30 seconds for
235 the WTDNN onthe same CPyDual-Core CPL2.93GHz, 4GBRAM).

236 4. Discussion

237 Incorporating the localization property of wavelets and temporal pattern predictiimeoidelay neural

238 networks, wavelet time delay neural network was developed as a novel sumogalewhich provided a real-time

239 evaluation of knee rehabilitation programs in terms of maximum contact pressuieution. The generalization

240 ability of the proposed structure was tested by predicting the maximum contact pressure distribution associated w
241 two rehabilitation patterns for four different subject®. build the initial training database, required to train the
242 WTDNN surrogate, a total of 214 FE simulations were performbis initial step was time consuming; however,
243 once WTDNN was developei,facilitated the simulation of hundreds of analyses in a fraction of the time required
244 torun the original E model and therefore released the necessity of repeating the time consuming calculations.
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4.1. Topogr aphic outline of maximum contact pressuredistribution

Previous attempt to predict contact pressure through artificial intelligence éradirbged to a one-by-one
mapping from“force” data space into the resultdmontact stressusing a large neural network structure for a
simplified contact model and for a small number of data sets (25 sets) including dolynuleivels of loading
.Therefore, the actual feasibility of the proposed TDNN did not conssdéistic gait. Indeed Lu el proposed
an approach which may not be practical in realistic applications sinsi&zéhef the required network will increase
rapidly as the contact model includes further number of elements. Additionatljnical rehabilitation, the time
history of spatial contact pressure distribution is not needed and only unaxiontact pressures are of interest.
Therefore, to release the necessity tdrge-structure neural network, a topographic outline of contact pressures was
defined to highlight the maximum nodal contact pressures and the corresponding comsicveod complete gait
cycle. To form this topographic outline, the widest contact zone (PSURFjefined by including a comprehensive
collection of potential contact nodes over all training gait cycleshétuld be pointed out that PSURF was
established from the training gait trials (training data space). Howexetadthe nature of probability and the
mathematical principle of induction, for a new walking pattern (rehatidit strategy), the probability of contact on
a node which was not included in PSURF would be very low, and the probability of higbt gmetsure occurrence
on such a node would be even less. As a result, predicting the maximum contact pressuaesdasgbche nodes
in PSURF would suffice as a real-time evaluation of the rehabilitation progratesms of the resultant contact
pressures.

For each gait cycle, the maximum contact pressure values associated with dce rmoades (PSURF) were
arranged as a vector and treated as the pressure signal to be predicted Ig-@utging neural network. This
pressure signal contained a large variety of different values from 0 MPa asbedthta low pressure contact region
to 31 MPa for a high pressure contact region that might occur during a gait nyatdet to improve the prediction
ability of the network, PSURF was partitioned into five sub-regions bagetthe probability of contact pressure
levels that might occur on each sub-region. For example those nodes that mostgnegdezontact pressures lower
than 0.5 MPa over the training gait cycles were classified as the low pressureisnbga-region V). From a
technical point of view, nodes belonged to a sub-region would likely experienitar sialues of maximum contact
pressure for a new walking condition (rehabilitation trial). Thus, partitiortiegRSURF reduced the amount of
variability in the network output which enhanced the prediction abilitiie@network. The maximum pressure values
of nodes belonged to each sub-region were then arranged in a pressure sub-signigreattagbe output of the
surrogate model.

4.2.Wavelet time delay neural network

Time delay neural network (TDNN) has been used successfully for real-timetesn ]. Particularly
Lu et al, has reported the superiority of TDNN compared to feed forwarduséruct predict contact stresE[ZS]
However, a major drawback of traditional neural networks (e.g. TDNN) is that hidden neurons/atedciloy global
infinite functions. Therefore, local data structures are discarded in learning psm addition, the initial
weights are adjusted randomly at the beginning of the training algorithm wéduicklow down the training process
. Another disadvantage is that the network may fall in to a local mmimhuring the training procedure so the
network output never converges to the ta@ [42].To release the aforementiomkedrdeges, wavelet has been
introduced to the neural network struc[49]. Recent studies have shown that reépkagiofal infinite activation
functions with local wavelets increases the functionality of the netwotdrims of prediction accura 51]
Hence, wavelet was embedded in the structure of the surrogate model. Table 3 sunansgsmmatic comparison
between the present study and the previously published research by et al[28].
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4.3.Limitations and future research directions

There are a number of limitations in this study. First, the present study usedBhen@lel of a typical
implant ] which had different geometry compared to the original h@sist by which the subjects were
implanted. In fact subjects were implanted with a sensor-based prosthesis that cifamlgpenanufactured to
measure in vivo knee Ioadi30]. Although the geometry of knee prosthesiberahe absolute values of contact
pressures calculated in FEA, the present study did not aim to report theakiahles of pressure and the proposed
methodology will be equally applicable to any implant geometries.

Second, rigid body constraints were applied in the finite element simulatiothtdelbworal component and
tibia insert. In fact Halloran et al(2005) showed that rigid body analysis ofildieéemoral knee implant can
calculate contact pressure and contact area in an acceptable consisteactlviieformable analysi whilst
rigid body simulation would be much more time-efficient. Accordingly, rigid bowlystraints were applied to both
femoral and tibia insert to produce the required training input-output data setsredtboaable computational cost.
This is consistent with the present multi-body dynamics analysis that ntedeteideling on the knee implant was
included. The present approach can also be trained based on the contact pressure and von Mises stress obtainec
a deformable simulation of knee implant. Third, knee joint was modeled with only one DOF (festemsion).
Although six DOFs are possible for the knee joint, the dominant movement of the knee joint takes place in tt
sagittal plane and knee joint has been mostly simplified as a hin. This is also consistent with our
musculoskeletal model (TLEM model) in which knee joint has been modeled as a hinge joint with one degree |
freedom for flexion-extension.

The proposed WTDNN was trained based on a number of examples (training gaitariedsh the input-
output interaction and then generalized the relationship to new situatiomsg(gest trials). Thus it released the
necessity of iterative computations and provided a concise real-time evaluatgrabilitation treatments in terms
of the resultant maximum contact pressure. Accordingly this intelligerdgaie model can also benefit sensitivity
investigations where an output measure should be calculated repeatedly for aotaré@tyrbed inputs and time-
consuming computation is required in each iteration. For example with a trainBélM/it would be possible to
investigate the effect of knee flexion angle on the resultant contact pressheemedial tibiofemoral knee joint.
Moreover, exploiting the artificial intelligence, it would be interesting beneficial to predict the resultant contact
pressure based on other available inputs such as ground reaction forces and/oeggitidd. Using a trained
WTDNN and telemetry facilities, it would be possible to provide a real-timmritoring of joint contact pressure for
patients at home. Future research is required to explore the efficiency of the proposechdppirfo@ther numbers
of subjects or other rehabilitation patterns. Training the proposed scheémédurtiher numbers of subjectsich
employing additional inputs such as age or knee alignment in WTDNN creatiosproidebe conducted in future
studies.

5. Conclusion

Our study demonstrated the feasibility of wavelet time delay neural netwpréigle a real-time evaluation
of knee rehabilitation strategies in terms of the resultant maximum t@néssure. The proposed network predicted
the maximum contact pressure distribution at the medial tibia compartmentneearkplant using knee flexion
angle and three dimensional knee reaction forces (inputs). All the prediotiva were less than 8% for medial
thrust gait modification and below 11% for trunk sway gait modificatiatofdingly the proposed approach could
provide the topography of maximum contact pressure distribution in which the maxiahues of pressures and the
corresponding contact regions were demonstrated. These kinds of topographic outliregs getest-effective and
real-time evaluation of rehabilitation patterngeécognize the likely high-pressure contact regions that might occur in
clinical execution of knee rehabilitation strategies.
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Figure 1 Schematic description of the proposed methodology
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Figure 2 Normalized knee joint force and flexion angle (served as FEAlAnucondition and load)
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Figure 3 CAD model of the fixed bearing posterior stabilized knee implant which was used in this study
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Figure 4 PSURF and CPRESS_MAX matrix; PURF contained a comprehensive collegaiantial
contact nodes over all training gait cycles. Each gait cycle was represented with themmawimtact
pressure values associated with the nodes in PSURF.
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Figure 5 Three sample nodes from PSURF belonged to sub-regidgmiegion Il and sub-region V. The maximum values of
contact pressure for the node in sub-region | were mostly above 1&/MBathe node in sub-region Il essentially experienced
maximum contact pressure values in the range of 2 MPa to 10 MPa.
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Figure 7 A sample comparison between WTDNN estimations (red bars) andafdt#ations (blue bars). Note maximum contact
pressure values were associated with medial thrust gait pattern for subkregion
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Figure 8 A sample comparison between WTDNN estimations (red bars) and FEA calculations (blue bars). Note maximum contact
pressure values were associated with trunk sway gait pattern for sub-region [ to V.



Figure 9
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Figure 9 Finite element computations and WTDNN predictions were settled in the corresponding contact nedesi(pres
in PSURF) to form a topographic outline of maximum contact pressure distribution for meuaa réfrabilitation.



Figure 10
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Figure 10 Finite element computations and WTDNN predictions were settled in the corresponding
contact nodes (preserved in PSURF) to form the topographic outline of maximum contact pressure
distribution for trunk sway rehabilitation. Subject 4 did not undergo trunk sway rehabilitation.



Table 1

Table 1 WTDNN structures which were allocated to each sub-region. Eacbrkédtad four inputs (knee flexion and

three dimensional knee reaction forces) and one single output (the corgastirersignal)For each sub-region,

prediction errors were averaged over four subjects to represent an oveldition of the WTDNN prediction ability on
a specific pressure sub-region.

Sub-region Cluster-specific networ k WSE(M Pa) m ;
Time delay ,[hidden layer, hidden layer 2], epochs
Sub-region | [0 5],[35],3000 12 6.3% 0.96
Sub-region I [0 3],[30],3000 20 13.2% 0.89
Medial thrust  Sub-region Il [0 5],[25],3000 1.3 11.0% 0.94
Sub-regionV [0 3],[20],2000 0.3 5.2% 0.97
Sub-region V [0 3],[201,2000 0.1 5.8% 0.94
Sub-region | [0 5],[30],3000 15 7.3% 0.95
Sub-regionll [0 5], [25],3000 2.4 13.1% 0.94
Trunk sway  Sub-region llI [0 5],[25],3000 1.6 11.4% 0.94
Sub-regionV [0 3],[201,2000 0.5 7.4% 0.97
Sub-region V [0 3],[18],2000 0.5 14.3% 0.81




Table 2

Table 2 Prediction accuracy of WTDNN for topographic outlines of mediasttand trunk sway patterns related to each

subject.

Subject RMSEMPa)  NRMSE (%) p
Subject 1 17 5.7 0.99
Subject 2 15 5.0 0.98

Medial thrust Subject 3 1.9 73 0.97
Subject 4 18 6.6 0.98
Average 1.7 MPa 6.2% 0.98
Subject 1 2.6 9.1 0.96

Trunk sway Subject 2 24 8.2 0.95
Subject 3 27 10.4 0.97

Average 2.6 MPa 9.3% 0.96




Table 3

Table 3 A comparison between the present study and a previoushhpdhilesearch

Study Network Structure #Training #Test Output field |ssues
architecture  [inputs, hidden neurons, outputs] datasets data sets
Lu et al.[26] Spatial contact
FFANN [1200,80,400] 20 sets 5 sets stress distribution

Increasing the number of elemen
in the contact model enlarges tt
structure of the surrogate

TDNN [1200,280,400] 20 sets 5 sets Spatial contact

stress distribution

Maximum contact  Increasing the number of elemen
Present study WTDNN [4,20,1] 214 sets 74 sets pressure distribution in the contact model increases tl
size of the pressure signal but do

not enlarge the network structure.
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