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Abstract 

Knee contact pressure is a crucial factor in the knee rehabilitation programs. Although contact pressure can be 

estimated using finite element analysis, this approach is generally time-consuming and does not satisfy the real-time 

requirements of a clinical set-up. Therefore, a real-time surrogate method to estimate the contact pressure would be 

advantageous. 

This study implemented a novel computational framework using wavelet time delay neural network (WTDNN) to 

provide a real-time estimation of contact pressure at the medial tibiofemoral interface of a knee implant. For a 

number of experimental gait trials, joint kinematics/kinetics and the resultant contact pressure were computed 

through multi-body dynamic and explicit finite element analyses to establish a training database for the proposed 

WTDNN. The trained network was then tested by predicting the maximum contact pressure at the medial 

tibiofemoral knee implant for two different knee rehabilitation patterns; “medial thrust” and “trunk sway”. WTDNN 
predictions were compared against the calculations from an explicit finite element analysis (gold standard). 

Results showed that the proposed WTDNN could accurately calculate the maximum contact pressure at the medial 
tibiofemoral knee implant for medial thrust (RMSE=1.7MPa, =6.2% and =0.98) and trunk sway (RMSE

=2.6MPa, =9.3%, =0.96) much faster than the finite element method. The proposed methodology could 

therefore serve as a cost-effective surrogate model to provide real-time evaluation of the gait retraining programs in 

terms of the resultant maximum contact pressures. 
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1. Introduction:1 

Growing prevalence of knee osteoarthritis (OA) as the main cause of knee arthroplasty on one hand and cost, 2 
risk and complications of the surgery on the other hand have led to the significant development of non-surgical gait 3 
modifications [1-7]. Gait modification aims to alter walking patterns to decrease knee joint loading through minor 4 
changes in gait kinematics. Similarly the load reduction on the artificial knee joint can also be achieved through gait 5 
modifications and rehabilitation strategies to minimize wear and prolong the clinical life time of the prosthesis.  A 6 
number of gait modifications have been reported in the literature to reduce knee joint loading [8-12]. These 7 
modification strategies have been mainly designed to offload the knee joint. However, offloading gait interventions 8 
may reduce knee contact area, leading to an adverse increase in contact pressure on the joint bearing surfaces. 9 
Therefore an off-loading strategy may not be very beneficial  and  can even be detrimental to the knee joint [13]. 10 
Therefore the resultant contact pressure on the articulating surfaces should be considered in clinical implementation 11 
of rehabilitation programs. 12 

Finite element analysis (FEA) is a powerful computational technique to calculate contact pressure [14-17]. 13 
However this approach is highly time-demanding and computationally expensive. Therefore, FEA is mainly used as a 14 
post-processing stage for multi-body dynamic analysis to provide tissue-level information. In fact, the available FEA 15 
methods do not satisfy the necessity of real-time calculation in a clinical setup. In clinical rehabilitation, patients 16 
should be trained to internalize the rehabilitation strategy as their daily walking patterns. Therefore, real-time 17 
evaluation of contact pressure benefits the clinical implementation of rehabilitation programs, for example to 18 
investigate the effect of a rehabilitation strategy on the knee joint contact pressure.  19 
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Artificial intelligence is a relatively new method that has been used in various fields of biomechanics as a 

real-time surrogate model [18-21]. An artificial intelligent network consists of a number of processor units (neurons) 

that are densely connected to each other via numeric weights. Once a set of inputs and resultant outputs are presented 

to the network; the causal relationships between inputs and outputs would be captured and stored in numeric weights. 

Thus, the network “learns” the interaction between inputs and outputs. Given a “new” set of inputs that has not seen 

by the network before , the trained neural network (surrogate model) can generalize the relationship to produce the 

associated output and release the necessity of running the original model and repetition of time consuming 

calculations [22]. In particular, neural networks have been jointly used with finite element simulation in a variety of 

biomechanics studies such as load estimation [23-25] and bone remodeling [26, 27]. Study of Lu et al. to best of our 

knowledge is the only study that has used the aforementioned approach to predict the contact pressure[28]. Lu et al. 

predicted the spatial distribution of contact stress at medial tibia cartilage for a simplified contact model with 400 

structural elements. A one-by-one mapping was developed from the three dimensional force data space into the 

resultant contact stress through a time delay neural network (TDNN). However, their proposed TDNN had a fairly 

large structure (1200 inputs, 400 outputs and 280 hidden neurons) for a simplified contact model which limits its 

practical function in realistic application. In fact due to the one-by-one mapping set-up̍ the proposed TDNN 

structure cannot be used for a more realistic contact model since increasing the number of elements in the model 

would increase the number of inputs and outputs resulting in a more complicated structure which requires further 

number of training data sets. On the other hand, in clinical applications, resultant maximum contact pressures are 

mainly of interests. In this case, the time history of spatial contact pressure distribution is not required. Instead, the 

maximum contact pressures and the corresponding contact regions that occur over the entire gait cycle should be 

focused. 40 



The aims of this study were to: (1) propose a novel computational framework to predict the distribution of 41 
“maximum” contact pressure instead of “spatial” distribution through a simple cost-efficient neural network structure 42 
for a realistic contact model, (2) demonstrate the advantages of the proposed approach in an application to provide a  43 
real-time evaluation of knee rehabilitation strategies in terms of maximum contact pressure and corresponding 44 
contact regions at the medial tibiofemoral knee implant.  45 

2. Materials and methods46 

Artificial intelligent surrogates require a primary database to describe the “causal” interactions between 47 
inputs and outputs [29]. Therefore, a number of gait trials, obtained from literature, were imported to multi-body 48 
dynamic (MBD) analysis to estimate knee joint kinematics and kinetics. Resultant kinematics and forces, from MBD 49 
analysis, were then used as boundary conditions and load profiles in finite element analysis (FEA) to calculate the 50 
contact pressure distribution. A data matrix constructed from knee kinematics/kinetics (inputs) and contact pressures 51 
(outputs) served as the required training database for the proposed surrogate model. The overall ability of this 52 
surrogate was then tested by predicting the contact pressure for a number of rehabilitation gait trials. It should be 53 
pointed out that FEA was used for a twofold purpose: first, to construct the training database and second, as a gold 54 
standard to compare with the surrogate predictions. Figure 1 shows an overview of the methodology used in this 55 
study. 56 

2.1. Database 57 
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Experimental gait trials of four subjects, implanted with unilateral knee prosthesis (three male and one 

female, height: 168.3±2.6 cm; mass: 69.2±6.2 kg), were obtained from a previously published repository [https://

simtk.org/home/kneeloads;accessed on June 2013]. All subjects were implanted with sensor-based knee prostheses 

that have been specifically manufactured for in vivo measurement of knee joint forces [30]. The database included 

three dimensional ground reaction forces (GRFs) (force-plates, AMTI, Watertown, MA,USA) and marker trajectory 

data obtained from a six-camera Vicon motion analysis system (Oxford Metrics, Oxford, UK) with a modified 

version of the University of Western Australia (UWA) marker set, with additional markers on the toes [31]. All the 

gait trials were recorded over ground at a self-selected pace. For a complete description of walking trials see [30]. 

66 
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Gait trials contained normal, walking pole, bouncy, crouch, fore-foot strike and smooth patterns (107 trials) 

as well as medial thrust and trunk sway patterns (37 trials). In brief, medial thrust pattern included a slight decrease 

in pelvis obliquity and a slight increase in pelvis axial rotation and leg flexion compared to normal gait [11]. In trunk 

sway, subjects (except subject 4) walked with an increased lateral lean of trunk in frontal plane over the standing leg 

[10]. Since “medial thrust” and “trunk sway” have been objectively designed for knee rehabilitation purposes, in the 

rest of this study , normal, walking pole, bouncy, crouch, fore-foot strike and smooth  are refereed as “training data” 
which were used to train the surrogate model (neural network) and “medial thrust” and “walking pole” are referred 
as “ prediction data” which were aimed to be predicted by the neural network. A gait cycle was defined as the time 

interval between foot strike of one leg to the following foot strike of the same leg [32]. Subsequently two complete 

gait cycles were picked up for each trial, leading to a total of 288 data sets (144 trials × two gait cycles). Training 

gait cycles (214 data sets) were used to train the surrogate model. The remaining 74 gait cycles, associated with 

rehabilitation programs, were then used as test data space to evaluate the performance of the surrogate model (see 78 
Figure 1). 79 
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2.2. Multi-body dynamics simulation 80 
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Experimental GRFs and marker trajectories were imported into the three-dimensional multi-body simulation 

software: AnyBody Modeling System (version 5.2, AnyBody Technology, Aalborg, Denmark). A  lower  extremity  

musculoskeletal  model  was  used  in AnyBody  software  based  on  the  University  of  Twente  Lower Extremity  

Model  (TLEM) [33]. The  TLEM  model  is  available in  the  published  repository  of  AnyBody  software. This 

model included approximately 160 muscle units as well as thigh, patella, shank and foot segments. Hip joint was 

modeled as a spherical joint with three degrees of freedom (DOF): flexion-extension, abduction-adduction and 

internal-external rotation. Knee joint was modeled as a hinge joint with only one DOF for flexion-extension and 

universal joint was considered for ankle-subtalar complex. Since the assumptions of the simplified knee joint and 

rigid multi-bodies were made, the detailed knee implant was not considered in the multi body dynamic analysis. For 

each subject, the generic musculoskeletal model was scaled based on a Length–Mass–Fat scaling law in which body 

mass, body height and segment length were taken into account. Segment lengths were calculated according to the 

markers’ coordination in an optimization routine in which the model was scaled such that  the differences between 

“model marker” and the “experimental marker” trajectories were minimized. Detailed information about scaling 

techniques for a musculoskeletal model can be found in [34-36]. The scaled model was then recruited in an inverse 

dynamics approach in AnyBody software in which joint kinetics and muscle forces were calculated. Joint kinetics 

were calculated from equilibrium equations. Muscle forces were calculated as an optimization problem in which 

muscle recruitments, based on a cubic polynomial muscle recruitment criterion, were computed in order to minimize  

the maximum muscle activities subject to equilibrium constraints and positive muscle force constraints [34, 37]. 

Knee flexion-extension angle and three dimensional knee reaction forces, aligned in medial-lateral, proximal-distal 

and anterior-posterior directions, were calculated for each gait cycle. Calculated knee kinematic and kinetic 

waveforms were then normalized to 100 samples, through the linear interpolation technique (MATLAB v. 2009, The 

MathWorks, Inc., Natick, MA,USA),  representing one complete gait cycle from heel strike (0%) to toe-off (100%)

(Figure 2). Normalized knee kinematic and kinetic waveforms served as the boundary condition and loading profiles 

required for FEA.  104 

2.3. Explicit finite element simulation 105 

The tibiofemoral knee implant of the subject was modeled in the commercial finite element package; 106 
ABAQUS/Explicit (version 6.12 Simulia Inc., Providence, RI, USA) using a computer aided design (CAD) model of 107 
a typical fixed bearing posterior stabilized total knee implant. The knee implant consisted of two main parts; femoral 108 
component and tibia insert (Figure 3). Rigid body assumptions were applied to both femoral and tibia insert 109 
components, with a simple linear elastic foundation model defined between the two contacting bodies[38]. 110 

Modified quadratic tetrahedron 10-node elements (C3D10M) were used to mesh the tibiofemoral knee 111 
implant in ABAQUS.  Convergence was tested by  decreasing  the  edge  length  of  elements  from  8 mm  to  0.5 112 
mm  in  five steps  (8, 4,2,1, and 0.5 mm). The solution converged to a mesh with the average element edge length of 113 
1 mm. The converged mesh contained over 86000 C3D10M elements to represent the femoral component (4200 114 
elements with 6700 nodes) and the tibia insert (4400 elements with 6600 nodes). Further increase in the mesh density 115 
resulted in minor changes to the calculated contact pressure (≤ 5%). The physical interaction between these two 116 
components was taken into account as a surface-to-surface contact (femur as the master surface and tibia as the slave 117 
surface) through a penalty based approach and an isotropic friction coefficient of 0.04 [38, 39]. The tibia insert was 118 
constrained in all available DOFs and the femoral component was only allowed for flexion-extension under the three 119 
dimensional load. Three dimensional knee loadings and knee flexion angle were obtained from multi-body dynamic 120 
analysis (Figure 2).  The FE model calculated the contact pressure at each node for each time increment. Although the 121 
contact pressures were calculated on the whole tibia surface, only medial tibia compartment of the knee implant was 122 
focused to illustrate the proposed methodology since this part is mainly prone to higher contact pressure during gait 123 



[40]. 124 

2.4. Field output construction 125 
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Using FEA, the time history of spatial contact pressures were calculated at the nodes in contact, however 

only the maximum values of nodal pressures over the entire gait were concerned in this study. Each gait cycle was 

depicted as a topographic outline in which the maximum contact pressures and the corresponding contact regions 

(contact nodes) were highlighted over the entire gait cycle. In order to form such a topographic outline, an output 

field was established in the following three steps: 130 

Step1. Define the widest potential contact region (PSURF): All of the achievable contact contours within 131 
the entire simulation frames were combined over all the training gait cycles to construct the widest potential contact 132 
zone called PSURF (Figure 4). Indeed PSURF was a vector of node numbers that represented a comprehensive 133 
collection of potential contact nodes.  134 

Step2. Calculate the maximum values of contact pressures on PSURF: Each training gait cycle was 135 
outlined through the maximum values of contact pressures associated with the nodes in PSURF. Maximum contact 136 
pressure values were then arranged in a vector and treated as a pressure signal for that gait cycle. Pressure signals 137 
were combined over all training gait cycles to form a matrix called CPRESS-MAX in which each column was 138 
allocated for one training gait cycle (Figure 4). 139 

Step3. Partition the PSURF into five sub-regions: The pressure signal, defined for each gait cycle, 140 
contained an overall description of that gait cycle including a variety of different pressure values ranging from low to 141 
high values associated with low and high pressure contact regions which occurred within that gait cycle. In order to 142 
reduce the variability of network’s output and increase the prediction ability of the proposed surrogate model, PSURF 143 
(contact nodes) was divided into five sub-regions: sub-region I (contact pressure >16 MPa), sub-region II  144 
(10MPa<contact pressure ≤16 MPa), sub-region III (2MPa<contact pressure ≤10 MPa), sub-region IV 145 
(0.5MPa<contact pressure ≤2 MPa) and sub-region V (0 MPa<contact pressure ≤0.5 MPa). For each contact node 146 
belonged to PSURF, the class membership probability to each sub-region was determined; for example for sub-region 147 
I: 148 

     
total number of gait cycles in which the maximum contact pressure on node  16 MPa

( )
total number of training gait cycles 

I PSURFnodei
i

nodeP i 


 Ł 149 

 Accordingly, using the CPRESS-MAX matrix, five membership probability values were calculated for each 150 
node as ( ) ( ) ( ) ( ) ( ), , , ,I II III IV Vnode node node node nodei i i i iP P P P P . Each node was assigned to the sub-region with the highest 151 

membership probability. In other words, the maximum values of contact pressure for a node in sub-region I were 152 
above 16 MPa in most of the training trials while a node in sub-region V mostly had maximum contact pressure 153 
lower than 0.5 MPa (Figure 5). Upper and lower pressure boundaries of sub-regions were chosen so as to have sub-154 
regions with equal numbers of nodes as far as possible. 155 

2.5. Surrogate model: wavelet time delay neural network 156 

Due to the advantages of time delay neural network (TDNN) for real-time estimation of contact stress[28] 157 
and major drawbacks of this structure stemmed from global activation functions[29, 41, 42], a three-layer wavelet 158 
time delay neural network (WTDNN) was developed in the present study. This structure had a similar architecture 159 
with TDNN: a feed-forward neural network with a tapped delay line, added to the input layer, which enabled the 160 
network to store a short-time history of input patterns[43]. In each layer, neurons were connected to the neurons of 161 
the next layer via numeric values (weights). Thus a weighted sum of all inputs was fed into each hidden neuron 162 
where an activation function acted on this weighted sum to produce the hidden neuron’s output. Although hidden 163 



6 
neurons are generally activated with a global activation function, in the present structure hidden neurons were 164 

activated with wavelets (Figure 6). Each input node was related to each hidden neuron, with a special value of shift, 165 
scale and input weight parameters. Therefore, each of the hidden neurons was activated with a multi-dimensional 166 
wavelet defined as the tensor product of one-dimensional wavelets corresponding to each input as below [18]: 167 

 i

Ni

k=1

k ik ik
i 1 2 3 N

ik

x w -t
ȥ x =  ,x ,x , . . .     ,x ȥ 1,2, .., ;   1,2,3, ,

Ȝ ik N i M
 

    
 

 ł 168 

In which  is Daubechies4 (db4) wavelet function ; Ni indicates the number of input nodes, M is the 169 

number of hidden neurons and wik ,tik and Ȝik are the input weight, shift and scale parameters relating kth input to the ith170 
hidden neuron respectively. It should be pointed out that each hidden neuron acted on each input signal by a shifted 171 
and scaled version of mother wavelet (db4). The outputs of hidden neurons were fed in to the output neuron via 172 
special values of weights led to a 1×M output weight matrix. Consequently the output of the proposed network was 173 
defined as follows:  174 

 
M

i
i i 1 2 3 Ni

=1

= , , , y +ȥ x x x ,x yw . . .       1,2,...., ;i M Ń 175 

Where  i 1 2 3 Ni
, , , . . ȥ x .x x ,x is defined in equation (2) and wi is the output weight relating ith hidden neuron 176 

to the output node and  is the bias. Five groups of parameters (input weights, shift, scale, output weights and bias 177 

value) were adjusted in WTDNN training as required in the above equations. It should be pointed out that unlike the 178 
conventional neural networks; in the case of WTDNN, it was important to initialize the adjustable parameters before 179 
training in order to ensure that the daughter wavelets (shifted and scaled versions of mother wavelet) covered the 180 
entire input data space. Therefore, the WTDNN was trained within the two main steps; first the adjustable parameters 181 
were initialized , see [44]; second, a MATLAB script (v. 2009, MathWorks, Inc., Natick, MA, USA) was developed 182 
to train the WTDNN based on scaled conjugate gradient algorithm (SCG). For a complete description of SCG one 183 
can refer to [45]. 184 
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Five parallel WTDNNs served to predict the maximum contact pressure values at the nodes in contact; one 

WTDNN was allocated to predict the pressure distribution of each sub-region. Each network had one input layer 

with four inputs (Ni=4) including knee flexion angle plus three dimensional knee reaction forces. In this approach, 

the maximum contact pressure values associated with each sub-region were arranged as a vector and treated as a 

pressure signal (output signal). Thus, each WTDNN had a single output layer with one output neuron and the input 

data space (knee flexion angle and knee reaction forces) were re-sampled and interpolated to have an equal size with 

the output signal. 191 

192 
193 
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198 
199 
200 

Training gait trials , including normal, bouncy, crouch, smooth, walking pole and forefoot strike patterns of 

four subjects, were used to train the generic networks while testing trials (medial thrust and trunk sway) were not 

included in the network training procedure and were only used to test the performance of the trained WTDNNs. 

Training data space was randomly divided into three main subsets; 70% for training, 15% for validation and 15% to 

test the generalization ability of the trained network. The optimal numbers of hidden neurons and training epochs 

were determined due to the network prediction error on validation and test subsets. Hidden neurons and training 

epochs were increased until adding more hidden neurons/training epochs would increase the network prediction error 

on the test subset due to over-fitting. The error goal was set to 0.0001 and the training algorithm was continued to 

achieve the error goal or until the maximum epochs were reached. The optimal tapped delay was also determined by 

trial and error. All of the above analyses were conducted in MATLAB. According to [46], the network was trained 201 

ȥ(t)

y



and run 100 times for each test data set (testing gait cycle) and the average of these 100 runs was considered as the 202 
network prediction for that test data set. WTDNNs predictions were then combined together and assigned to the 203 
corresponding contact regions (PSURF) to form the topography of maximum contact pressure distribution. The 204 
performance of the WTDNNs were benchmarked against the FEA (gold standard) in terms of root mean square error 205 
( RMSE) and its normalized percentage ( ) as well as Pearson correlation coefficient (). 206 

3. Results207 

3.1. Maximum contact pressure prediction on sub-regions 208 

The widest potential contact region (PSURF) contained a total of 500 nodes. The PSURF region was then 209 
divided into five partitions from high-pressure sub-region (sub-region I) to low-pressure sub-region (sub-region V) 210 
with 101 nodes in sub-region I, 102 nodes in sub-region II,109 nodes in sub-region III, 46 nodes in sub-region IV and 211 
141 nodes in sub-region V. For each sub-region, the pressure values estimated by WTDNN were compared with the 212 
corresponding values obtained from FEA for medial thrust (Figure 7) and trunk sway (Figure 8) rehabilitation 213 
patterns. Table 1 summarizes the structure of the networks and the accuracy of predictions in terms of RMSE , 214 

and Pearson correlation ( ). For medial thrust prediction, cross correlation values ranged from =0.89 to 215 
=0.97 and all of the errors ( ) were less than 14% compared to FEA results. The predicted pressure signal of 216 

sub-region I had the lowest error of =6.3% with the correlation coefficient above =0.95. The predicted 217 
pressure signal of sub-region II had the highest error of =13.2% with the correlation coefficient of =0.89. 218 

For trunk sway prediction, errors were slightly increased compared to the corresponding sub-regions of medial thrust 219 
pattern since subject 4 did not undergo trunk sway rehabilitation and predictions were averaged on a fewer number of 220 
subjects. Cross correlation coefficients ranged from = 0.81 to = 0.97 and all of the  values were less than 221 
15%. The lowest prediction error was related to sub-region I ( 7.3%, = 0.95) and the highest error 222 
occurred in sub-region V ( 14.3%, = 0.81). 223 

3.2. Topographic representation of maximum contact pressure distribution 224 

For each subject, five pressure signals were obtained from WTDNNs and were combined to reconstruct the 225 
complete pressure signal of a gait cycle. For each subject, pressure signals were then averaged over the testing gait 226 
cycles of each pattern (medial thrust or trunk sway) to generate an overall estimation of that rehabilitation pattern. 227 
Consequently WTDNN predictions and FEA calculations were then assigned to the corresponding contact regions 228 
(PSURF) to form the topographic representation of the maximum contact pressure distribution. Figures 9 and 10 229 
present the topographic outline of medial thrust and trunk sway rehabilitation patterns for each subject. The 230 
quantitative comparison of the predicted topographies (Table 2) shows that WTDNN could predict the maximum 231 
contact pressure distributions to a high level of accuracy for medial thrust (RMSE=1.7MPa,  6.2% and  = 232 
0.98) and trunk sway (RMSE=2.6MPa,  9.3%,  = 0.96). The simulation time for a complete gait cycle, 233 

234 discretized into 100 increments, was approximately 40 minutes for the FE model, compared to 30 seconds for 

the WTDNN on the same CPU ( Dual-Core CPU 2.93GHz, 4GB RAM).  235 

4. Discussion236 

237 
238 
239 
240 
241 
242 
243 

Incorporating the localization property of wavelets and temporal pattern prediction of time delay neural 

networks, wavelet time delay neural network was developed as a novel surrogate model which provided a real-time 

evaluation of knee rehabilitation programs in terms of maximum contact pressure distribution. The generalization 

ability of the proposed structure was tested by predicting the maximum contact pressure distribution associated with 

two rehabilitation patterns for four different subjects. To build the initial training database, required to train the 

WTDNN surrogate, a total of 214 FE simulations were performed. This initial step was time consuming; however, 

once WTDNN was developed, it facilitated the simulation of hundreds of analyses in a fraction of the time required 

to run the original FE model and therefore released the necessity of repeating the time consuming calculations. 244 
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4.1. Topographic outline of maximum contact pressure distribution 245 

Previous attempt to predict contact pressure through artificial intelligence has been limited to a one-by-one 246 
mapping from “force” data space into the resultant “contact stress” using a large neural network structure for a 247 
simplified contact model and for a small number of data sets (25 sets) including only uniform levels of loading 248 
[28].Therefore, the actual feasibility of the proposed TDNN did not consider realistic gait. Indeed Lu et al proposed 249 
an approach which may not be practical in realistic applications since the size of the required network will increase 250 
rapidly as the contact model includes further number of elements. Additionally, in clinical rehabilitation, the time 251 
history of spatial contact pressure distribution is not needed and only maximum contact pressures are of interest. 252 
Therefore, to release the necessity of a large-structure neural network, a topographic outline of contact pressures was 253 
defined to highlight the maximum nodal contact pressures and the corresponding contact nodes over a complete gait 254 
cycle. To form this topographic outline, the widest contact zone (PSURF) was defined by including a comprehensive 255 
collection of potential contact nodes over all training gait cycles. It should be pointed out that PSURF was 256 
established from the training gait trials (training data space). However due to the nature of probability and the 257 
mathematical principle of induction, for a new walking pattern (rehabilitation strategy), the probability of contact on 258 
a node which was not included in PSURF would be very low, and the probability of high contact pressure occurrence 259 
on such a node would be even less. As a result, predicting the maximum contact pressures associated with the nodes 260 
in PSURF would suffice as a real-time evaluation of the rehabilitation programs in terms of the resultant contact 261 
pressures. 262 

For each gait cycle, the maximum contact pressure values associated with the contact nodes (PSURF) were 263 
arranged as a vector and treated as the pressure signal to be predicted by a single-output neural network. This 264 
pressure signal contained a large variety of different values from 0 MPa associated with a low pressure contact region 265 
to 31 MPa for a high pressure contact region that might occur during a gait cycle. In order to improve the prediction 266 
ability of the network, PSURF was partitioned into five sub-regions based on the probability of contact pressure 267 
levels that might occur on each sub-region. For example those nodes that mostly experienced contact pressures lower 268 
than 0.5 MPa over the training gait cycles were classified as the low pressure sub-region (sub-region V). From a 269 
technical point of view, nodes belonged to a sub-region would likely experience similar values of maximum contact 270 
pressure for a new walking condition (rehabilitation trial).Thus, partitioning the PSURF reduced the amount of 271 
variability in the network output which enhanced the prediction ability of the network. The maximum pressure values 272 
of nodes belonged to each sub-region were then arranged in a pressure sub-signal and assigned to the output of the 273 
surrogate model.  274 

4.2. Wavelet time delay neural network 275 

Time delay neural network (TDNN) has been used successfully for real-time estimation [47, 48]. Particularly 276 
Lu et al, has reported the superiority of TDNN compared to feed forward structure to predict contact stress  [28]. 277 
However, a major drawback of traditional neural networks (e.g. TDNN) is that hidden neurons are activated by global 278 
infinite functions. Therefore, local data structures are discarded in learning process [41]. In addition, the initial 279 
weights are adjusted randomly at the beginning of the training algorithm which can slow down the training process 280 
[29]. Another disadvantage is that the network may fall in to a local minimum during the training procedure so the 281 
network output never converges to the target [42].To release the aforementioned disadvantages, wavelet has been 282 
introduced to the neural network structure[49]. Recent studies have shown that replacing the global infinite activation 283 
functions with local wavelets increases the functionality of the network in terms of prediction accuracy [18, 50, 51]. 284 
Hence, wavelet was embedded in the structure of the surrogate model. Table 3 summarizes a systematic comparison 285 
between the present study and the previously published research by Lu et al[28]. 286 

287 



4.3. Limitations and future research directions 288 

There are a number of limitations in this study. First, the present study used the CAD model of a typical 289 
implant [52-55] which had different geometry compared to the original prosthesis by which the subjects were 290 
implanted. In fact subjects were implanted with a sensor-based prosthesis that was specifically manufactured  to 291 
measure in vivo knee loadings[30]. Although the geometry of knee prosthesis can alter the absolute values of contact 292 
pressures calculated in FEA, the present study did not aim to report the absolute values of pressure and the proposed 293 
methodology will be equally applicable to any implant geometries. 294 

295 
296 
297 
298 
299 
300 
301 
302 
303 
304 
305 

Second, rigid body constraints were applied in the finite element simulation to both femoral component and 

tibia insert. In fact Halloran et al(2005) showed that rigid body analysis of the tibiofemoral knee implant can 

calculate contact pressure and contact area in an acceptable consistence with a full deformable analysis [38] whilst 

rigid body simulation would be much more time-efficient. Accordingly, rigid body constraints were applied to both 

femoral and tibia insert to produce the required training input-output data sets with a reasonable computational cost. 

This is consistent with the present multi-body dynamics analysis that no detailed modeling on the knee implant was 

included. The present approach can also be trained based on the contact pressure and von Mises stress obtained from 

a deformable simulation of knee implant. Third, knee joint was modeled with only one DOF (flexion–extension). 

Although six DOFs are possible for the knee joint, the dominant movement of the knee joint takes place in the 

sagittal plane and knee joint has been mostly simplified as a hinge joint[11, 56, 57]. This is also consistent with our 

musculoskeletal model (TLEM model) in which knee joint has been modeled as a hinge joint with one degree of 

freedom for flexion-extension. 306 

The proposed WTDNN was trained based on a number of examples (training gait trials) to learn the input-307 
output interaction and then generalized the relationship to new situations (testing gait trials). Thus it released the 308 
necessity of iterative computations and provided a concise real-time evaluation of rehabilitation treatments in terms 309 
of the resultant maximum contact pressure. Accordingly this intelligent surrogate model can also benefit sensitivity 310 
investigations where an output measure should be calculated repeatedly for a variety of perturbed inputs and time-311 
consuming computation is required in each iteration. For example with a trained WTDNN it would be possible to 312 
investigate the effect of knee flexion angle on the resultant contact pressure at the medial tibiofemoral knee joint. 313 
Moreover, exploiting the artificial intelligence, it would be interesting and beneficial to predict the resultant contact 314 
pressure based on other available inputs such as ground reaction forces and/or gait kinematics. Using a trained 315 
WTDNN and telemetry facilities, it would be possible to provide a real-time monitoring of joint contact pressure for 316 
patients at home. Future research is required to explore the efficiency of the proposed approach for further numbers 317 
of subjects or other rehabilitation patterns. Training the proposed scheme with further numbers of subjects and 318 
employing additional inputs such as age or knee alignment in WTDNN creation process will be conducted in future 319 
studies.  320 

5. Conclusion321 

Our study demonstrated the feasibility of wavelet time delay neural network to provide a real-time evaluation 322 
of knee rehabilitation strategies in terms of the resultant maximum contact pressure. The proposed network predicted 323 
the maximum contact pressure distribution at the medial tibia compartment of a knee implant using knee flexion 324 
angle and three dimensional knee reaction forces (inputs). All the prediction errors were less than 8% for medial 325 
thrust gait modification and below 11% for trunk sway gait modification. Accordingly the proposed approach could 326 
provide the topography of maximum contact pressure distribution in which the maximum values of pressures and the 327 
corresponding contact regions were demonstrated. These kinds of topographic outlines generate a cost-effective and 328 
real-time evaluation of rehabilitation patterns to recognize the likely high-pressure contact regions that might occur in 329 
clinical execution of knee rehabilitation strategies.  330 
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Figure 1 Schematic description of the proposed methodology 
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Figure 2 Normalized knee joint force and flexion angle (served as FEA boundary condition and load) 
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Figure 3 CAD model of the fixed bearing posterior stabilized knee implant which was used in this study 
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Figure 4 PSURF and CPRESS_MAX matrix; PURF contained a comprehensive collection of potential 
contact nodes over all training gait cycles. Each gait cycle was represented with the maximum contact 

pressure values associated with the nodes in PSURF.  

 

 

 

 

 

 

 

 



Figure 5 Three sample nodes from PSURF belonged to sub-region I, sub-region III and sub-region V. The maximum values of 

contact pressure for the node in sub-region I were mostly above 16 MPa whilst the node in sub-region III essentially experienced 

maximum contact pressure values in the range of 2 MPa to 10 MPa. 
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Figure 6 A schematic block diagram of the proposed wavelet time delay neural network with four inputs (Ni =4) and one output. 
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Figure 7 A sample comparison between WTDNN estimations (red bars) and FEA calculations (blue bars). Note maximum contact 
pressure values were associated with medial thrust gait pattern for sub-region I to V. 
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Figure 8 A sample comparison between WTDNN estimations (red bars) and FEA calculations (blue bars). Note maximum contact 
pressure values were associated with trunk sway gait pattern for sub-region I to V. 



 

 

 

 

 

 

Figure 9 Finite element computations and WTDNN predictions were settled in the corresponding contact nodes (preserved 

in PSURF) to form a topographic outline of maximum contact pressure distribution for medial thrust rehabilitation. 
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Figure 10 Finite element computations and WTDNN predictions were settled in the corresponding 

contact nodes (preserved in PSURF) to form the topographic outline of maximum contact pressure 

distribution for trunk sway rehabilitation. Subject 4 did not undergo trunk sway rehabilitation. 
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Table 1 WTDNN structures which were allocated to each sub-region. Each network had four inputs (knee flexion and 

three dimensional knee reaction forces) and one single output (the contact pressure signal). For each sub-region, 

prediction errors were averaged over four subjects to represent an overall evaluation of the WTDNN prediction ability on 

a specific pressure sub-region. 

 

 
 Sub-region Cluster-specific network RMSE(MPa) NRMSE    

  Time delay ,[hidden layer1, hidden layer 2], epochs    

 

 

Medial thrust 

Sub-region I [0 5],[35],3000 1.2 6.3% 0.96 

Sub-region II [0 3],[30],3000 2.0 13.2% 0.89 

Sub-region III [0 5],[25],3000 1.3 11.0% 0.94 

Sub-region IV  [0 3],[20],1000 0.3 5.2% 0.97 

Sub-region V [0 3],[20],1000 0.1 5.8% 0.94 

      

 

 

Trunk sway 

Sub-region I [0 5],[30],3000 1.5 7.3% 0.95 

Sub-region II  [0 5], [25],3000 2.4 13.1% 0.94 

Sub-region III [0 5],[25],3000 1.6 11.4% 0.94 

Sub-region IV  [0 3],[20],1000 0.5 7.4% 0.97 

Sub-region V [0 3],[18],2000 0.5 14.3% 0.81 

Table 1



 

Table 2 Prediction accuracy of WTDNN for topographic outlines of medial thrust and trunk sway patterns related to each 

subject. 

 

 

 

 

 

 

 

 Subject RMSE(MPa) NRMSE(%)   

 

 

Medial thrust 

Subject 1 1.7 5.7 0.99 

Subject 2 1.5 5.0 0.98 

Subject 3 1.9 7.3 0.97 

Subject 4 1.8 6.6 0.98 

Average 1.7 MPa 6.2% 0.98 

     

 

Trunk sway 

Subject 1 2.6 9.1  0.96 

Subject 2 2.4 8.2  0.95 

Subject 3 2.7 10.4 0.97 

Average 2.6 MPa 9.3% 0.96 



Table 2



Table 3 A comparison between the present study and a previously published research 

Study  Network 

architecture 

Structure 

[inputs, hidden neurons, outputs] 

#Training  

datasets 

#Test 

data sets 

Output field Issues 

Lu et al.[26]  

FFANN 

 

[1200,80,400] 

 

20 sets 

 

5 sets 

Spatial contact 

stress distribution 

 

 

Increasing the number of elements 

in the contact model enlarges the 

structure of the surrogate 

TDNN [1200,280,400] 20 sets 5 sets Spatial contact 

stress distribution 

 

      

 

 

Present study 

      

 

WTDNN 

 

[4,20,1] 

 

214 sets 

 

74 sets 

Maximum contact 

pressure distribution 

Increasing the number of elements 

in the contact model increases the 

size of the pressure signal but does 

not enlarge the network structure. 

Table 3
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