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Abstract

Subsampling is used to generate bagging ensembles that are accurate and
robust to class-label noise. The effect of using smaller bootstrap samples
to train the base learners is to make the ensemble more diverse. As a re-
sult, the classification margins tend to decrease. In spite of having small
margins, these ensembles can be robust to class-label noise. The validity of
these observations is illustrated in a wide range of synthetic and real-world
classification tasks. In the problems investigated, subsampling significantly
outperforms standard bagging for different amounts of class-label noise. By
contrast, the effectiveness of subsampling in random forest is problem de-
pendent. In these types of ensembles the best overall accuracy is obtained
when the random trees are built on bootstrap samples of the same size as the
original training data. Nevertheless, subsampling becomes more effective as
the amount of class-label noise increases.

Keywords: Label noise, Bagging, small margin classifiers, bootstrap
sampling

1. Introduction

The success of large margin classifiers [46, 33, 21, 20] has prompted many
researchers to posit that large margins are a key feature in explaining the
effectiveness of these methods. In the context of ensembles, the margin is
defined as the weighted sum of votes for the correct class minus the weighted
sum of votes for the most voted class other than the correct one. The ef-
fectiveness of boosting has been ascribed to the fact that it produces large
margins on the training data. The margins increase as the ensemble grows be-
cause of boosting’s progressive focus on instances that are difficult to classify
[43]. Nonetheless, several empirical studies put in doubt the general validity
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of this view [9, 35]. Furthermore, efforts to directly optimize the margin
(or the minimum margin) have met with mixed results [40, 41]. In contrast
to boosting, bagging [7], random forest [11] and class-switching [10, 31] en-
sembles do not tend to increase the classification margins. In this paper we
show that subsampling can be used to generate bagging ensembles that are
robust to class-label noise in spite of having small margins. By contrast,
the effectiveness of subsampling in random forest is strongly problem depen-
dent. Nevertheless, for both types of ensembles, subsampling becomes more
effective as the amount of class-label noise increases.

As discussed in [53, 18], class-label noise is generally more harmful for
classification accuracy than noise in the feature values. Therefore, it is im-
portant to design classifiers that are robust to errors in the class labels of the
training instances. The deterioration in performance caused by this type of
noise is mainly due to an increase of the variance of the classifiers [36, 1, 39].
Bagging is robust to class-label noise because it is a variance reduction tech-
nique. As a result of its adaptive nature, boosting reduces the classification
bias as well as the variance [4, 48]. However, the excessive emphasis on
incorrectly labeled examples makes standard boosting algorithms ill-suited
for handling this type of noise. Nonetheless, it is possible to design robust
versions of boosting to address this shortcoming [40, 20].

A bagging ensemble is a collection of classifiers whose predictions are
combined by majority voting. Each of the classifiers in the ensemble is built
on a different bootstrap sample from the original training data. In standard
bagging, bootstrap samples of the same size of the original training set are
used to build the individual classifiers. However, this prescription need not
be optimal. Several empirical studies have shown that the generalization
capacity of bagging can significantly improve when smaller bootstrap samples
are used [24, 52, 32]. Subsampling generally makes bagging more robust to
label noise [42]. The key to this improvement is how smaller sampling ratios
affect isolated instances. By an isolated instance we mean one that is located
in a region where the majority of neighboring instances belong to a different
class. Assume a sampling ratio such that the bootstrap samples used to
build the individual classifiers contain less than 50% of the original training
instances. This means that each instance is present in less than half of the
ensemble classifiers. Therefore, the decision on the label of a given instance
is dominated by classifiers trained on bootstrap samples that do not contain
that particular instance [24, 32]. If the instance in question is an isolated one,
it is likely to receive the class label of its neighbors (i.e. the local majority



class). If the noise is uniform, most of the incorrectly labeled instances are far
from the classification boundaries. They can therefore be viewed as isolated
instances. In such cases, using smaller sampling ratios reduces the influence
of these isolated noisy instances. Consequently, the ensemble becomes more
robust.

In summary, this article presents a comprehensive empirical assessment
of the accuracy and robustness of bagging and random forest ensembles as
a function of the bootstrap sampling ratio. This study extends our previous
work [42] including more datasets, algorithms and experiments. In addition,
we illustrate how small margin ensembles can be resilient to class-label noise.

The article is organized as follows: Section 2 reviews previous work on
label noise, focusing on classification ensembles. Section 3 is devoted to
exploring the relation between margin and accuracy for different bootstrap
sampling ratios and noise levels. In section 4 we present the results of an
extensive empirical evaluation of the performance of bagging and random
forest ensembles built using subsampling. The experiments are carried out
in a wide range of classification tasks with different amounts of class-label
noise. Finally, the conclusions of this investigation are summarized in section

d.

2. Related work

Poor data quality and contamination by noise are unavoidable in many
real-world classification problems [18, 53]. This has a strong potential to mis-
lead the learning algorithms used for automatic induction from these data.
Two types of noise can be present in these problems: class-label noise and
polluted feature values [18, 53]. Class-label noise is the consequence of incor-
rect manual labeling, missing information or failures in the data measuring
process. Feature noise is often the result of a faulty data gathering process
[18, 53]. Class-label noise typically has a more pronounced misleading effect
than feature noise, except when most of the feature values are corrupted [53].
Frénay et al. [18] identify three types of label noise, characterized by differ-
ent statistical models: The Noisy Completely at Random Model (NCAR), in
which the probability of a class-label error is independent of the values of the
features, the actual class of the instance and the noise rate. To simulate this
type of noise the class labels of randomly selected instances are changed to a
different class label, also at random. The second model is Noisy at Random
(NAR). Labelling errors in this model are assumed to occur with a different



probability for each class. NAR is useful to characterize tasks in which some
classes are more susceptible to mislabeling than others. The third model is
Noisy Not at Random (NNAR). In this case, the probability of an error de-
pends on the actual class label and on the values of the features. This model
should be used when some regions of the feature space, such as boundaries
or sparse regions, are more prone to noise than others. Noise can be handled
in a preprocessing step (data cleansing) or during the learning process, as-
suming that the algorithms used for induction from the contaminated data
are robust [18].

2.1. Data cleansing

To mitigate their harmful effects, noise and outliers can be eliminated in a
preprocessing step, before the selected learning algorithm is applied. For in-
stance, it is possible to use statistical models or clustering-based methods to
detect outliers. Patterns and association rules can also be used in the cleans-
ing process [27]. An example of a pattern-based data cleansing algorithm is
described in [45, 44]. In this method, local SVM’s are used to identify and
remove instances that are suspected to be noise. For each particular training
instance, k-NN is applied to locate nearby instances. A SVM is then trained
on these instances to find the optimal separating hyperplane in that neigh-
borhood. If the label predicted by this locally trained SVM does not coincide
with the actual label, the instance is identified as noisy and discarded. This
cleansing method has been tested on real and artificial datasets, where it
showed improvements over k-NN. In [51], noisy instances are removed based
on wrappers of different classification methods. In this study, the best results
were obtained by removing or cleaning instances based on the prediction of
a SVM built with the rest of the training data. Noisy instances are often
included in the set of support vectors by a SVM classifier. Based on this ob-
servation, Fefilatyev et al. [16] propose to manually remove support vectors
that are identified as noise by an expert. Then, a new SVM is built on the
cleansed dataset. This process is iterated until no more support vectors are
identified as noisy instances.

2.2. Robust learning algorithms

Another strategy to deal with noise is the design of robust learning algo-
rithms. For instance, pruning is used in decision trees to reduce overfitting:
The presence of noise tends to increase the size of the decision trees induced
from the contaminated training data. Pruning is thus an effective way to
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improve the robustness of decision trees [12, 13]. Another robustifying strat-
egy is to explicitly incorporate in the learning algorithm the fact that the
values of the features and the class labels can be polluted by noise. This
strategy is adopted in the construction of Credal Decision Trees [28]. These
types of trees are grown using the Imprecise Info-Gain Ratio (IIGR) as a
splitting criterion. In this method the values of the features and class labels
are approximated using probabilities and uncertainty measures.

It is also possible to adapt the algorithms used to build Support Vector
Machines to improve their robustness to class-label noise. For instance, in
[47] the hinge loss is replaced by a related loss function that takes into account
the amount of noise in the data. With this loss function the optimization
problem becomes non-convex. Heuristic optimization methods are then used
to search for the global minimum of this non-convex problem. Promising
results were obtained by this robust SVM in problems with asymmetric class
noise (NAR model). A drawback of this method is that it is necessary to
estimate of amount of noise in the data. Another robust version of SVM,
called P-SVM (Probabilistic SVM) is proposed in [37] to classify magnetic
resonance medical images. The P-SVM takes as inputs not only class labels
but also class probability estimates. These probabilities are used to estimate
the confidence on the labeling of each instance. The lower the confidence on
the label, the lower the weight of that instance in the learning process. A
practical limitation of this method is that one needs both qualitative (class
labels) and quantitative (class posterior probabilities) information on the
classes.

The problem of induction from noisy data has also been extensively ad-
dressed in the area of ensemble learning. In [2], Ali and Pazzani analyze the
behavior of multiple classifier systems in the presence class-label noise. They
observed that the improvements of the ensemble with respect to a single
learner are generally smaller when the training data are contaminated with
class-label noise. However, the reduction is not uniform and depends on the
type of ensemble used.

Noise is not always harmful. In fact, noise injection is a powerful regu-
larization mechanism that has the potential of improving the generalization
capacity and robustness of prediction systems. In particular, randomization
is used to build diverse ensembles that have good generalization capacity
[4, 38, 10, 15, 11, 34, 36, 31, 29, 17, 30, 49]. Furthermore, randomized en-
sembles, such as bagging and random forests, have been shown to be robust
classifiers. By contrast, adaptive ensembles, such as boosting, are very sen-



sitive to class-label noise [15, 4, 38, 34, 36]. The differences between these
two types of ensembles can be explained by how errors are handled during
the training phase: In bagging and random forest, the randomness injected
during the construction of the ensemble is not correlated with the noise. For
this reason, the influence of the different instances is equalized during train-
ing process [23]. By contrast, boosting increases the weights of misclassified
instances irrespective of whether they are correctly labeled or not. The em-
phasis on correctly labeled instances that are difficult to classify is beneficial,
because it reduces the classification bias. However, the focus on outliers
tends to mislead the learning process. The adaptivity that makes boosting
such a powerful learner also renders it overly susceptible to noise.

There are many proposals to improve the robustness of boosting to class-
label noise. In most of these variants the weight update rule is modified
to reduce boosting’s sensitivity to noise. A successful strategy is to use
less aggressive weight updates. In standard boosting the weight updates
are exponential. Using slower updating scheme moderates the emphasis on
misclassified instances. This is generally advantageous because some of this
misclassified instances could be outliers [22]. In BrownBoost [19] misclas-
sified instances with small negative margins are assigned higher weights, as
in Adaboost. By contrast, instances whose margin is negative and above a
specified threshold receive lower weights. The rationale behind this weight
updating strategy is that instances in regions with a large class overlap tend
to have low margins. By emphasizing these instances it is possible to model
the classification boundary in more detail. Large negative margins corre-
spond to isolated instances, which are far from the classification boundary.
These instances are likely to be outliers and should therefore be discarded.
In [34], Brownboost is shown to be more robust than Adaboost in a limited
experimental setting (5 datasets for 20% class-label noise). Another way of
avoiding excessive emphasis on misclassified instances is to discard instances
whose weight is above a threshold [25]. The value of the threshold can be
determined using a validation set. This algorithm is shown to be more robust
than standard Adaboost in 8 datasets with low-medium class-label noise (up
to 10%). None of these studies [34, 25| compares the results of robust boost-
ing ensembles with bagging. Finally, it is possible to combine bagging and
boosting strategies to improve the accuracy and robustness of the resulting
ensembles [48, 26]. However, as far as we are aware, the effectiveness of these
hybrid ensembles have not been systematically evaluated in experiments with
class-label noise.



In [1] the authors propose to use credal decision trees to improve bagging’s
resilience to label noise. The results obtained with these types of ensembles
in the low to medium noise regime (0%-10% class-label noise) are comparable
to bagging of C4.5 trees. For higher noise levels (20%-30%) bagging of credal
trees is more accurate than bagging of C4.5 trees.

Subsampling can also be used to design robust bootstrap ensembles. The
individual classifiers of a bagging ensemble are built by applying the same
base learning algorithm to different m-out-of-n bootstrap samples from the
original training data. In standard bagging the number of instances in the
bootstrap sample, m, is equal to the number of instances in the original
training data, n (i.e. m = n). This choice of m need not be optimal. As an
illustration, the performance of bagged nearest neighbors is comparable to
the nearest neighbor algorithm itself [7]. However, if each bootstrap sample
contains on average less than 50% distinct instances from the training set,
the accuracy of bagged nearest neighbors can actually improve. In fact, if the
sampling ratio tends to 0 as the training set size tends to co, the performance
of bagged nearest neighbor tends to the Bayes (optimal) error [24]. Another
study [52] shows that subbagging with low sampling ratios generally improves
the accuracy of bagging when stable classifiers are combined. The optimal
subsampling ratio can be effectively determined using out-of-bag data [32].
Subsampling has also been shown to improve the robustness of bagging to
class-label noise in some classification problems [42]. In the current article,
which is an extension of this work, we present the results of a comprehensive
empirical study that provide further evidence of such improvement.

A comparison of the effectiveness of these different methods cannot be
done on the basis of published results. For instance, the SVM’s described [47,
37] are tested in very specific cases: asymmetric noise [47] or data in which
class probabilities are available [37]. An extensive empirical comparison of
the different robust learning methods would be of great interest in the field.
In terms of computational effort, ensembles of decision trees can be built
faster than SVMs, at least in principle. Depending on the characteristics of
the problem, the time complexity of SVM’s is between quadratic and cubic in
the number of training instances [6]. Decision trees are faster to build: their
time complexity is log-linear in the number of training instances and linear
in the number of attributes [50]. The time needed to combine the individual
decisions increases linearly with the number of base learners in the ensemble.



3. Subsampling in ensembles for noisy classification problems

In this section we explore how subsampling affects the classification mar-
gins in ensembles. The goal is to understand the relation between ensemble
diversity, margins and robustness. We first present the results of a set of
experiments that illustrate the effect of subsampling on the classification
margin. Then we analyze how subsampling can act as a regularization mech-
anism that reduces the influence of mislabeled data.

3.1. Subsampling and margins

To understand how classification margins are affected by sushsampling we
have carried out a series of experiments in the classification problems Three-
norm, Twonorm and Ringnorm [9]. These are synthetic datasets for which
the optimum Bayes decisions are known. Bagging ensembles and random
forests of 500 trees were trained using different bootstrap sampling ratios:
100%, which is the standard prescription, 20% and 5%. Ensembles trained
on a noiseless set are used as a baseline. The bagging and random forest en-
sembles were built on the same training sets, which consist of 300 instances.
The boosting ensembles were built on different sets of the same size. Addi-
tional ensembles were then built on copies of these sets contaminated with
20% label noise. The noise was simulated using the NCAR model. Bagging
and random forest ensembles were tested using the out-of-bag error [8]. The
out-of-bag data of a particular classifier consists of those instances which are
not included in the bootstrap sample used to build that classifier. Since they
are not used for training, they can be employed as independent test data.
Thus, to compute the out-of-bag error, each instance in the training set is
classified using only the votes of those predictors whose training sets do not
include that particular instance. Besides providing a good estimate of the
generalization capacity, the out-of-bag method allows us to analyze how the
injected noise is handled by the ensemble: The same instances, including
those whose class labels have been altered, are used both for training and for
testing. To allow comparisons across ensembles, the performance of boosting
was evaluated on the training data used to build the bagging and random
forest ensembles.

Scatter plots of the posterior probability of class 2 versus the fraction of
class 2 votes for the instances in the evaluation set are given in figures 1 and 2.
The results displayed correspond to experiments with the different ensembles,
sampling ratios and class-label noise levels. In bagging and random forest,
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Figure 1: Scatter plots of the posterior probability of class 2 versus the fraction of ensemble
class 2 votes for each instance in the evaluation set. Results are given for Threenorm
without noise (left column) and with 20% noise (right column). The plots correspond
to bagging ensembles with sampling ratios: 100% (first row), 20% (second row) and 5%
(third row). The results for boosting are presented in the forth row.
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Figure 2: Scatter plots of the posterior probability of class 2 versus the fraction of ensemble
class 2 votes for each instance in the evaluation set. Results are given for Threenorm
without noise (left column) and with 20% noise (right column). The plots correspond to
random forest ensembles with sampling ratios: 100% (first row), 20% (second row) and
5% (third row).
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the fraction of class 2 votes for a particular instance is estimated using the
classifiers for which that instance was in the out-of-bag set (i.e. the set of
instances not used to train that particular classifier). For boosting, all the
classifiers in the ensemble were used. Figure 1 presents the scatter plots
for an execution of Threemorm. Similar results are obtained in the other
datasets. The plots included in this figure display (by rows) the results for
standard bagging (100% sampling ratio), bagging using 20% sampling, 5%
sampling and boosting. The results for a noiseless training set are presented
in the first column. The results for a training set with 20% injected label
noise are presented in the second column. Figure 2 shows the corresponding
plots for random forest. In all plots the class 1 (class 2) instances are marked
as empty circles (triangles). The instances whose class has been changed into
class 1 (class 2) are marked as filled circles (triangles). The lines shown in the
plots define the decision boundaries for the Bayes classifier (horizontal line)
and the ensemble (vertical line). In addition, the errors for the ensembles
and the Bayes classifier are displayed on the right bottom corner of the plots.
For the problems with injected label noise, error values considering noise (N)
and without noise (O) are given. The Bayes classifier and the ensembles
agree in the classification of instances located in the upper right and bottom
left quadrants. The ensemble and the Bayes predictions are different for the
remaining instances.

Several noteworthy features are revealed in these plots. In the noise-
less problem (left column), the Bayes classifier assigns fairly high margins to
most instances. The classification margins of bagging ensembles are lower
than those of the Bayes classifier. Furthermore, they become smaller as the
sampling ratio decreases. However, bagging ensembles with sampling ratios
of 20% (second row) are more accurate than standard bagging, with 100%
sampling (first row), in spite of the fact that the margins are smaller. The
accuracy obtained with a sampling ratio of 5% is comparable to standard
bagging. This is contrary to the view that accuracy should improve with
increasing margin. A possible explanation of this behavior is that the differ-
ent bootstrap samples have fewer common instances as the sampling ratio
decreases. In consequence, the base classifiers become more diverse. This
increased diversity initially leads to accuracy improvements. However, if the
sampling ratio is reduced beyond a threshold, the individual classifiers be-
come inaccurate. The error reduction that results from the aggregation of
their decisions in the ensemble is not sufficient to compensate the lack of ac-
curacy of the base learners. As a result, the fraction of instances with small
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and negative margins increases (see 5% sampling, third row, left plot).

A similar behavior is observed when label noise is present in the training
set (right column): The classification margins are now smaller in all cases,
relative to the noiseless situation. The test error (second row, right column)
initially improves with decreasing sampling rates. However, if the sampling
ratio is too low the performance of the ensemble eventually deteriorates. A
similar behavior has been reported in class-switching ensembles [31].

The behavior for boosting (last row) is somewhat different. Because of its
adaptive nature, boosting produces larger margins than bagging. While this
is effective in the noiseless setting, it can be disruptive in noisy problems.
In particular, when 20% class-label noise is injected boosting has the worst
accuracy.

The results for random forest (shown in Figure 2) are qualitatively similar
to those of bagging. However, the margins in random forest ensemble are
typically smaller than in bagging or boosting. This is a consequence of the
higher diversity provided by the random trees that make up the ensemble.
From the experiments performed in this study the best overall results are
achieved by random forests built with the standard 100% sampling ratio.
The larger initial diversity of random forest implies that there is less room
for improvement as the sampling ratio decreases. The variability introduced
by subsampling could in fact be detrimental to the accuracy of the ensemble.
Therefore, subsampling is in general not as effective in random forest as it
is in bagging. The validity of this qualitative analysis is confirmed by the
empirical evidence presented in the section on experiments.

3.2. Subsampling as a regularization mechanism

Another way to understand how the sampling ratio can influence the per-
formance of bagging ensembles is to consider the average number of distinct
instances in each bootstrap sample. The dependence of this value with the
sampling ratio is displayed in Figure 3. In standard bagging (100% sampling
ratio) each bootstrap sample contains on average 63.2% different instances
from the original training data [8]. The remaining 36.8% are repeated in-
stances. As the sampling ratio becomes smaller, the number of distinct in-
stances in each bootstrap sample decreases. Eventually, only one instance
is sampled for a sampling ratio of 1/N, where N is the size of the training
set. The classifier built on such a sample would predict the class label of the
single instance in the sample. Hence, the ensemble decision would be the
majority class in the training data, irrespective of the values of the features.

12
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the bootstrap sample

On the other extreme, bootstrap samples obtained with high sampling ratios
contain most of the training instances. In such cases most base learners are
very similar; the diversity arises only from having different repeated exam-
ples in the different bootstrap samples. Ensembles built using these extreme
values of the sampling ratio will not in general have good generalization. The
optimal performance is generally obtained at intermediate values of the sam-
pling ratio [32]. Furthermore, the optimal sampling ratio need not coincide
with the standard prescription (100%).

An interesting regime corresponds to sampling ratios smaller than 69.3%
(see Figure 3). For values below this threshold, fewer than 50% of the original
training instances are included in each bootstrap sample. This means that
each instance is present in less than half of the classifiers of the ensemble. In
this regime, the class label given by the ensemble for each training instance
is strongly influenced by the class label of nearby instances. In consequence,
subsampling has the potential to increase the diversity of the classifiers in
the ensemble. Higher diversity results in more variability in the votes and
therefore in lower margins. We conjecture that using sampling ratios in this
regime is an effective strategy to handle class-label noise in classification
ensembles.
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4. Experimental evaluation

In this section we present the results of an empirical investigation of the
performance of bootstrapping ensembles in the presence of label noise. The
experiments are designed to assess how different sampling ratios affect the
robustness of such ensembles. A total of 25 datasets from the UCI repository
[3] and other sources [9] are used. They include synthetic data (Ringnorm,
Twonorm, Threenorm and Tic-tac-toe) and classification problems from dif-
ferent application domains. The characteristics of the datasets are summa-
rized in Table 1. They have been selected to cover a wide spectrum: there are
problems with high and low numbers of attributes (e.g. Sonar and Balance,
respectively), with small and large number of instances (e.g. Magic04 and
Lung Cancer, respectively), and with different numbers of classes.

The protocol used in the experiments is similar for all datasets. The only
difference is in the generation of the training and test sets. For the synthetic
datasets ( Threenorm, Ringnorm and Twonorm) we generate a training set of
300 instances and a test set of 2000 instances. For the remaining datasets,
2/3 of the available data are used for training and 1/3 for testing. Stratified
sampling is used to guarantee that the class distributions in the training
and test sets are similar to the complete dataset. For each problem and
realization of the training and test sets, the following steps are carried out:

1. Label noise is injected in the training set with different rates: 0% (no
noise), 5%, 10% and 20%. In each case the class label of the ran-
domly selected training instances is changed to a different class, also at
random. This corresponds to the Noisy Completely At Random noise
(NCAR) model [18]. Uniform noise was used to avoid making specific
assumptions about the structure of the noise.

2. For each contaminated training set, six bagging ensembles composed
of 500 unpruned CART (Classification And Regression Tree) trees [12]
were built. The bootstrap sampling ratios used are: 10%, 20%, 40%,
60%, 80% and 100% (standard bagging). The CART trees were grown
until pure class nodes were obtained. No pruning was applied to the
fully grown decision trees. Random forest ensembles were built on the
same training sets using the different sampling ratios. Random forest
is a bagging ensemble composed of random trees. In random trees the
splits at the inner nodes of the tree are selected from those that involve
only a subset of randomly selected features. The size of these subsets
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Dataset Instances Test Attrib. Classes

Australian 690 230 14 2
Balance 625 198 4 3
Breast W. 699 233 9 2
Diabetes 768 256 8 2
German 1000 333 20 2
Heart 270 92 13 2
Hepatitis 155 o1 19 2
Horse-Colic 368 122 21 2
Ionosphere 351 117 34 2
Iris 150 50 4 3
Labor 57 38 16 2
Liver 345 115 6 2
Lung Cancer 32 10 56 3
Magic 19020 6340 11 2
New-thyroid 215 143 ) 3
Ringnorm 300 2000 20 2
Segment 2310 1540 19 7
Sonar 208 699 60 2
Threenorm 300 2000 20 2
Tic-tac-toe 958 319 9 2
Twonorm 300 5000 20 2
Vehicle 846 564 18 4
Votes 435 145 16 2
Waveform 300 5000 21 3
Wine 178 59 13 3

Table 1: Characteristics of the classification problems and testing method

was set to the square root of the number of features for each dataset
[5].

3. The generalization performance of all ensembles is gauged using the
error on the test set. To obtain comparable results across all the en-
sembles considered no noise was injected in the test set.

The test errors reported in the tables are averages over the 100 realizations
of the training and test sets.
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Table 2: Relative error change for bagging and random forest for the different levels of
noise and sampling ratios. The reference value corresponds to standard bagging in the
noiseless case (marked in boldface as 1.00+0.00 in the table).

Noise 10 20 40 60 80 100

Bag 0| 1.38+1.43 1.06+0.41 0.98+0.16 0.96+0.08 0.98+0.08 1.00+0.00

5| 1.41+1.58 1.11+£0.64 1.05+0.27 1.08+0.25 1.10+0.23 1.18+0.25

10 | 1.45+1.70 1.19+0.92 1.13+-0.43 1.18+0.44 1.28+0.47 1.38+0.57

20 | 1.55+1.98 1.424+1.51 1.44+1.16 1.60+1.10 1.72+1.13 1.83+1.19
RF 0| 1.77+2.85 1.494+2.24 1.21+1.44 1.06+0.91 0.974+0.58 0.94+40.42

5| 1.754£2.62 1.48+2.08 1.23+1.31 1.13+0.91 1.05+0.68 1.01+0.55

10 | 1.77+£2.56 1.48+1.98 1.27+1.36 1.20+£1.03 1.15+0.82 1.16+0.76

20 | 1.814+2.43 1.624+2.03 1.51+1.55 1.48+1.36 1.51+1.31 1.53+1.26

4.1. Results

To give an overall view of the results, we have computed the averages of
the test error changes in the 25 problems investigated, for each noise level,
sampling strategy and ensemble method (bagging and random forest). The
results are presented in Table 2 as the relative error change, using standard
bagging in the noiseless setting as the reference value. This reference value is
marked in boldface in the Table. Values below 1 indicate that, on average, the
corresponding method outperforms standard bagging in the noiseless setting.
Values above 1 signal a higher average test error.

In addition, the average error changes with respect to the noiseless set-
ting for each ensemble type are shown in Table 3. The reference values are
highlighted in boldface. These results serve to analyze how the accuracy of
ensembles built with the different sampling ratios is affected by class-label
noise. The average test error changes for the individual datasets are pre-
sented in the appendix: Tables 6, 7 and 8 for bagging and Tables 9, 10 and
11 for random forest ensembles.

An analysis of the results presented in Table 3 reveals that the loss of
accuracy with respect to the noiseless setting is very different for different
sampling ratios. For standard bagging with 20% noise injected, the average
error increase with respect to the noiseless case is 83%. This large increase
should be expected, given the high level of noise injected. By contrast, if a
10% sampling ratio is used, the average error increase is only 1.0%, 3.0% and
8.0% for the 5%, 10% and 20% label noise rates, respectively. An interesting
observation is that these error increments are significantly lower than the
corresponding levels of the noise that has been injected. Using lower sam-
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Table 3: Relative error change averaged over all datasets for bagging and random forest for
the different levels of noise. The reference values are the test errors bagging and random
forest noiseless case (marked in boldface in the first and fifth rows of the table).
Noise 10 20 40 60 80 100
Bag 0 | 1.00£0.00 1.00+0.00 1.00+0.00 1.00+0.00 1.00£0.00 1.00+0.00
5| 1.01+0.09 1.03+0.14 1.06+0.14 1.12+0.19 1.124+0.20 1.1840.25
10 | 1.03+£0.11 1.074£0.22 1.13+0.30 1.22+0.38 1.30+£0.45 1.38+0.57
20 | 1.084+0.13 1.23+0.44 1.43+0.95 1.66+1.02 1.75+1.12 1.83+1.19
RF 0 | 1.004£0.00 1.00+0.00 1.00+0.00 1.00+0.00 1.00+0.00 1.00+0.00
5| 1.05+0.18 1.02+0.08 1.05+0.08 1.09+0.16 1.084+0.11 1.06+0.11
10 | 1.09+£0.30 1.06+0.18 1.09+0.16 1.14+0.15 1.18+0.18 1.21+0.26
20 | 1.184+0.51 1.22+0.39 1.35+0.37 1.4440.39 1.554+0.49 1.59+0.53

pling ratios in bagging tends to increase the variability of the base classifiers.
This larger ensemble diversity generally translates into more robust classifi-
cation. The remarkable robustness to class-label noise of these ensembles is
illustrated in greater detail by the results presented in Tables 6, 7 and 8 in
the appendix. In some cases, there is even an improvement in the classifica-
tion accuracy when noise is injected. For instance,the best overall accuracy
of bagging in Breast with 20% noise is achieved using a 10% sampling ratio:
The test error goes from 4.1% when no noise is injected to 3.5% when the
training data has 20% noise. By contrast, when standard bagging is used,
the test error increases almost 5 percentage points (from 4.3% with no noise
to 9.2% with 20% noise).

For random forest ensembles, a similar, albeit less marked effect, is ob-
served in Table 3: The deterioration with the level of noise injected is more
pronounced for larger sampling ratios (18% increment with a 10% sampling
ratio and 59% with a 100% sampling ratio). However, the baseline accuracy
of random forest ensembles at low sampling ratios is rather poor: In the
noiseless setting, the average error rate of random forest with a 10% sam-
pling ratio is 77% larger than standard bagging (see Table 2). One of the
reasons why subsampling is not as effective is that random forests are typ-
ically more diverse than bagging ensembles. This diversity makes standard
random forest more robust to noise (see rightmost column of Table 2). Us-
ing lower sampling ratios is not as effective in increasing the diversity of the
random trees. Therefore, subsampling does not lead to systematic accuracy
improvements in random forest ensembles.

Finally, from the analysis of the results displayed in Table 2 one concludes
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that the best overall performance in the noiseless setting is achieved using
standard random forests (0.94). The difference with standard bagging is
6 percentage points on average. However, the difference between standard
random forest and bagging using 60% sampling ratio is only of two percentage
points (values 0.96 and 0.94 in Table 2). As the noise level increases the best
overall accuracy corresponds to bagging using 20-40% sampling ratios (1.42
and 1.44 in the Table 2 for a 20% noise rate).

4.2. Accuracy as a function of ensemble size

The error curves displayed in Figures 4 and 5 trace the dependence of the
average test error of bagging on the number of classifiers in the ensemble.
The classification problems used to illustrate this dependence are Australian
(Figure 4) and Threenorm (Figure 5). The curves displayed correspond to
different sampling ratios and noise levels: noiseless setting (top left plot), 5%
(top right plot), 10% (bottom left plot) and 20% (bottom right plot) noise
rates. The qualitative features of these error curves are similar in all the
classification problems investigated.

When no noise is injected, the error curves for Australian converge to their
asymptotic (infinite ensemble) limit after approximately 50 trees. As more
noise is injected larger sizes are required for convergence. In this dataset
the qualitative behavior of the error as a function of ensemble size is similar
for the different sampling ratios. By contrast, in Threenorm (Figure 5), the
convergence of the ensemble error curves is slower for smaller sampling ratios.

4.8. Statistical significance of the results

A record of the statistically significant differences in accuracy with respect
to the standard ensembles in the 25 classification problems investigated is
given in Tables 4 and 5 for bagging and random forest, respectively. In each
cell of these tables the number of times a given method wins, draws or looses
against standard bagging (Table 4) or standard random forest (Table 5) is
displayed. Paired t-tests with v = 0.05 are used to determine the significant
wins and losses. A draw is recorded if the differences between the test errors
are not statistically significant.

From the results presented in these tables one concludes that subsampling
is more effective at higher levels of label noise. For instance, from Table 4,
bagging using a 10% sampling ratio and 0% noise significantly outperforms
standard bagging in 9 datasets and obtains lower accuracy in 11 datasets.
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Figure 4: Average test error of bagging in the Australian dataset: Noiseless setting (top
left); 5% (top tight), 10% (bottom left) and 20% (bottom right) noise rates. The different
curves in each plot correspond to different sampling ratios.
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Figure 5: Average test error of bagging in the Threenorm dataset: Noiseless setting (top
left); 5% (top tight), 10% (bottom left) and 20% (bottom right) noise rates. The different
curves in each plot correspond to different sampling ratios.
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Noise (%) 10%  20%  40%  60%  80%

0 9/5/11 15/3/7 13/3/4 13/12/0 1/23/1
5 11/6/8 17/2/6 16/6/3 14/11/0 7/18/0
10 15/5/5 19/2/4 17/7/1 13/12/0 7/18)0
20 20/2/3 21/1/3 18/6/1 14/11/0 9/16/0

Table 4: Records for statistically significant wins/draws/losses for bagging with subsam-
pling for different sampling ratios with respect to standard bagging (100 % sampling ratio).

Noise (%)  10% 20% 40% 60% 80%

0 1/1/23 1/3/21 2/14/9 5/12/8 3/19/3
5 0/5/20 1/6/18 2/14/9 1/19/5 1/22/2
10 3/4/18 3/9/13 3/16/6 4/19/2 3/21/1
20 8/6/11 11/5/9 9/10/6 6/16/3 3/19/3

Table 5: Records for statistically significant wins/draws/losses for random forest with
subsampling for different sampling ratios with respect to standard random forest (100 %
sampling ratio).

When the noise rate is increased to 20%, the situation reverses: there are 20
wins and only 3 significant losses.

An analysis of the results for random forest in Table 5 leads to similar
conclusions. Subsampling becomes more effective also at lower sampling
ratios. The effect, however, is less salient than in bagging. In the noiseless
case random forest using 20% bootstrap sampling outperforms the standard
version in only one dataset and losses in 21 datasets. When the noise rate
is increased to 20% the number of wins increases to 11 and the number of
losses decreases to 9. Random forests built using the standard prescription
(100% sampling ratio) have the best overall performance in the problems
investigated for all noise levels. However, as the amount of class-label noise
increases, subsampling becomes more effective and is actually advantageous
in some problems.

Finally, the method proposed by Demsar in [14] is used to compare the
performance of the ensembles across the different datasets. The comparison
is made in terms of the average rank of each classifier in the problems con-
sidered. For a given dataset, the rank of the different ensembles is computed
on the basis of the average test errors in the different realizations of the
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Figure 6: Comparison of bagging with different sampling ratios using the Nemenyi test,
for datasets without noise (top left) and with 5% (top right), 10% (bottom left) and 20%
(bottom right) noise rates. Horizontal lines connect sampling ratios whose average ranks
are not significantly different (p-value < 0.05).
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Figure 7: Comparison of random forest with different sampling ratios using the Nemenyi
test, for datasets without noise (top left) and with 5% (top right), 10% (bottom left) and
20% (bottom right) noise rates. Horizontal lines connect sampling ratios whose average
ranks are not significantly different (p-value < 0.05).
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training and test sets. Figure 6 present the results of these tests for different
noise levels and sampling ratios. A Nemenyi test with p-value< 0.05 is used
to determine the statistical significance of the differences between average
ranks. The critical distance above which these differences are considered
significant is shown for reference (CD = 1.5 for 6 methods, 25 dataset and
p-value< 0.05). In this diagrams, if two methods are connected with a hori-
zontal solid line, the difference between their average ranks is not statistically
significant.

Figure 6 displays the results of the Demsar test for bagging ensembles
in the noiseless setting (top left), and with 5% (top right), 10% (bottom
left) and 20% (bottom right) noise rates. In all cases, standard bagging
with 100% sampling ratio has the lowest average rank. When no noise is
injected the highest accuracy corresponds to bagging with 20%, 40% and
60% sampling ratios. However, the differences with other sampling ratios
are not statistically significant. The improvements over standard bagging for
20% and 40% sampling ratios are statistically significant in the problems with
noise rates 5%, 10% and 20%. For the 20% noise rate, bagging ensembles
that use 10%, 20%, 40% and 60% sampling ratios are significantly better
than standard bagging (100% sampling ratio).

The results of the Demsar test for random forest are displayed in Fig-
ure 7. Standard random forest (i.e. with 100% sampling ratio) is the best
method for the noiseless setting (top left plot) and for 5% noise rate (top
right plot). However, the differences with ensembles built with 80%, 60%
and 40% sampling ratios are not statistically significant. For these noise
rates standard random forest significantly outperform ensembles built using
20% and 10% sampling ratios. When higher noise levels are injected (10%),
the best performance corresponds to random forest with 80% sampling ratio.
The improvements over ensembles built with 10% and 20% sampling ratios
are statistically significant. For the highest noise level (20%) the method
with the highest average rank is random forest with a 20% sampling ratio.
However, in this case, none of the differences between the average ranks of
the different ensembles are statistically significant.

5. Conclusion

In this article we have analyzed the resilience to class-label noise of boot-
strap aggregation ensembles as a function of the size of the bootstrap samples
used to train the individual predictors. The results of an extensive empirical
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evaluation show that bagging composed of unpruned decision trees trained
on bootstrap samples whose size is between 10% and 40% of the size of the
original training set are more resilient to label noise than standard bagging
(i.e. using a 100 % sampling ratio). For random forests subsampling is effec-
tive only in noisy domains (= 20% noise in the class labels) and in specific
classification tasks. In most problems, for low noise levels the best results
are obtained using high sampling ratios. In fact, using the standard sam-
pling ratio to build random forests is a reasonable choice with a good overall
performance in the problems investigated, especially in the absence of class-
label noise. However, in noisy tasks, it is worth to explore the possibility of
subsampling, because the optimal size of the bootstrap samples is problem
dependent.

Experiments in synthetic data have been used to illustrate that the clas-
sification margins become smaller as the sampling ratio decreases. This ef-
fect occurs both in the noiseless setting and when class-label noise is in-
jected. They provide empirical evidence that using smaller bootstrap sam-
ples to build the individual ensemble classifiers can lead to improvements
in accuracy, especially in noisy domains. However, if the sampling ratio
decreases beyond a threshold the accuracy of the ensemble abruptly drops.
This abrupt deterioration of performance occurs at higher sampling rates in
random forests than in bagging. The reason is that the margins are typically
larger in bagging than in random forests. Since lower sampling ratios tend to
reduce the margin, the potential improvements of subsampling for random
forest are realized only in problems with high levels of class-label noise.

Appendix

Tables 6, 7 and 8 display the average test error (with the standard devi-
ation after the + sign) of bagging for the different sampling ratios and noise
rates considered. The results are presented in three separate tables for the
sake of clarity. In each row the lowest error is highlighted with an asterisk
(*). For each noise level and dataset (i.e. for each row), values that are
significantly better than standard bagging (column 100%) are highlighted in
boldface. Results that are significantly worse than standard bagging are un-
derlined. The statistical significance of these differences is determined using
paired t-tests at a significance level a = 0.05. The corresponding results for
random forest ensembles are presented in Tables 9, 10 and 11.
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Table 6: Bagging average test error 1

Noise Bootstrap sampling ratio
Dataset (in %) 10% 20% 40% 60% 80% 100%
Australian 0 13.5+1.9  13.0+1.9 12.841.6*% 12.9+2.0 13.5+1.9 13.74+2.2
5 13.8+1.9 13.3+£1.9 134420 12.842.0% 13.9+£2.0 13.7+2.0
10 | 13.6£1.9 13.5+£2.2* 13.5+1.9*% 14.14+1.7 142420 14.6+2.2
20 | 13.9+2.1*% 14.7+1.8 15.842.3 16.8+2.6 17.44+2.5 18.24+2.6
Balance 0| 10.2+0.9*% 11.4+1.7 13.841.4 16.0£1.9 17.4+1.8 18.3+2.1
5| 11.0+1.1*% 11.94+1.3 14.7+1.2 17.1+1.6 183414 19.842.0
10 | 11.2+1.2*% 12.9+1.5 16.3+£1.6 17.9+1.4 19.2+1.9 20.3+2.1
20 | 12.8+1.1*% 14.9 +1.6 18.5+1.8 20.9 £1.8 23.6+3.0 25.1+3.2
Breast W. 0 4.1+1.3 3.7+1.1*% 3.841.0 3.9+1.1 4.1+1.0 4.3+1.1
5 3.7+1.0 3.5+1.0% 3.7£1.0 4.241.3 4.7+1.2 5.0£1.6
10 3.5+1.2% 3.6+£1.0 3.7+1.2 4.441.2 5.3+1.5 6.1£1.7
20 3.5+1.0% 4.2+1.3 5.1+1.4 6.44+1.7 8.0+£2.1 9.2+2.2
Diabetes 0| 23.7+2.2*% 23.842.1 24.1+26 23.8+1.9 24.64+2.3 244423
5| 23.7+2.4% 24.241.9 24.242.3 24.242.1 248422 252423
10 | 23.4+2.2% 24.242.4 24.6+2.1 25.14+2.5 25.8+2.0 25.9+2.3
20 | 24.5+2.3% 24.9+2.3 26.842.4 27.1+2.9 27.74+3.0 28.5+2.5
German 0| 25.0+1.8 242416  23.942.0% 23.9+1.8% 24.0+1.8 24.3+1.8
5| 254416 24.1+1.8% 24.3+1.9 24.241.7 24.5+1.9 25.1+1.8
10 | 25.5+1.6 24.6+1.8% 24.6+1.8% 254421 25.842.0 26.0+2.3
20 | 26.5+1.8 25.841.9*% 26.44+2.1 27.6+2.5 28.0+2.5 28.5+2.1
Heart 0| 17.0+£3.5* 17.1+3.7 18.7+4.4 19.0+£3.7 19.3+38 19.94+34
5| 17.4+4.0% 18.6+4.2 18.844.0 19.3+4.3 20.4+3.7 21.8+4.6
10 | 18.1+£3.9% 19.1+4.6 19.5+3.7 215440 21.2+4.4 22.3+4.1
20 | 20.3+3.8% 22.1+4.7 22.444.7 24.3+4.4 24.3+5.1 25.944.3
Hepatitis 0| 21.2+0.4 19.7+2.0*% 19.841.9 20.7+2.7 21.5+4.0 22.24+3.3
5] 20.1+2.5 19.842.0*% 20.842.6 21.3+2.9 22.243.6 23.3+4.1
10 | 20.0+£2.6 19.8+1.8* 21.1+3.1 22.443.7 23.5+4.4 25.0+4.8
20 | 20.2+3.6% 20.2+2.6*% 24.9+4.2 25.844.4 27.94+5.6 31.445.2
Horse-Colic 0| 25.2+2.1  19.9+09 16.1+0.4*% 16.1+0.5* 17.24+0.7 16.44+0.9
5| 258424  21.8422 17.8421 171421 17.14+1.8 17.04£2.5*
10 | 264425  23.3+29 194428  18.54+2.9% 18.5+3.2*% 18.6+2.8
20 | 27.5+3.8  25.8439 224435 224438 21.34+3.6% 21.94+3.8
Tonosphere 0 9.6+2.8 6.8+1.9% 7.5+2.2 7.24+2.1 7.7425 8.0+24
5 9.1+2.5 7.2+2.3%  7.6+2.3 8.6+29 85+2.6 84425
10 9.6+2.2 7.4+2.3% 7.9+2.6 8.1+2.7 9.14+2.7 9.6+2.8
20 | 10.3+3.1 9.8+3.2% 10.1+£3.0 11.243.5 12.74+3.4 13.0+£3.7
Iris 0| 12.3+4.6 4.54+2.6% 52427 53+24 52428 53424
5 8.6+6.0 5.1+3.2*% 5.3+2.8 5.342.5 74433 T7.94£3.7
10 4.6+6.8% 4.7+3.4 5.3+2.6 6.4+3.4 8.9+4.0 10.6+5.0
20 5.0£3.1% 6.1+£3.5 7.0+4.6 10.8+£5.1 13.44+5.4 16.04+6.2
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Table 7: Bagging average test error II

Noise Bootstrap sampling ratio
Dataset (in %) 10% 20% 40% 60% 80% 100%
Labor 0| 16.2+8.8 14.7+85 13.34+9.8 11.8+£7.6% 13.6+5.1 12.0+64
5| 16.0+10.2 13.3+8.8 14.2488  12.4+85 11.84+7.0 10.4+5.6
10 | 14.247.2 11.846.3*% 17.6+14.6 158469 17.8+10.3 16.0+£9.4
20 | 18.9+8.3 17.3+£9.0% 17.848.3 18.449.6  22.9+10.4 20.0£10.0
Liver 0| 28.6+4.0 27.4+3.4* 27.54+3.7 27.8+3.4 28.7+3.6 29.9+3.6
5| 29.0+3.5 28.5+3.8*% 28.5+4.3* 29.5+4.3 30.1+3.9 30.7+£3.9
10 | 29.9+4.0 29.1+3.4 29.0+4.0* 30.4+3.8 31.0+£3.3 31.4+3.7
20 | 32.4+4.3 31.9+4.5% 32.3+4.4 32.9+4.3 34.3+4.1 34.84+4.3
Lung Cancer 0| 42.0+8.9% 53.5+10.2 42.04+11.2* 45.5+11.1 45.54+11.8 45.04+12.9
5 | 44.0+8.5% 53.0+10.8 49.0+£11.5 47.5+12.2 46.5+11.549.5+12.7
10 | 42.0+£9.1*% 50.5+10.4 47.0+11.7 45.5+12.0 49.0+11.9 49.0+11.8
20 | 49.5+9.0 53.5+11.1 48.04+12.0 43.5+12.8% 55.0+12.2 54.0+13.7
Magic 0| 13.0+04 12.5+0.4 12.34+0.3 12.3+0.4  12.24+0.4* 12.2+0.4*
5| 13.14+04 12.7+0.4 125404 12.3+0.3*% 124404 12.5+0.3
10 | 13.0£0.4 12.840.3 12.7+0.4* 12.740.4* 12.9+0.3 12.9+0.4
20 | 13.4+0.4 13.2+0.4* 13.3+0.4 13.6+0.4 13.840.4 14.24+0.4
new-thyroid 0 54+3.0 6.4+29  6.9+3.2 5243.2%  5.6+3.1 5.7+£2.7
5 6.5+2.5 4.5+1.8% 5.3+2.7 6.7+3.0 5.0+£2.0 8.3+28
10 6.3+3.8 5.44+2.8 52425 5.04£2.3* 6.7£3.5 7.9+3.6
20 | 5.2+3.1 5.1+£2.7* 5.842.5 10.1+44 11.04+3.6 10.6+5.4
Ringnorm 0| 12.1+1.1 8.1+1.1 7.6+1.3% 8.2+1.8 8.6+1.7 88+19
5| 11.44+1.7 7.9+1.3 7.44+1.3* 8.0+1.7 8.4+1.6 9.1+1.8
10 | 11.3+19 7.8+1.5 7.5+1.5% 8.44+1.6 8.7+1.6 9.5+1.9
20 | 11.5+2.1 8.6+1.5* 9.1+1.9 9.7+1.9 10.1+1.7 11.2+1.9
Segment 0 34+14 3.0£1.2 26+ 1.7 23+ 15 22+10 21+09*
5| 3.24+1.5 3.1+1.3*% 3.4+1.9 3.8+1.9 3.6+0.7 3.8+1.1
10 | 3.241.2 3.1+1.3% 4.2+41.1 4.6+1.7 52+1.2 6.6+1.3
20 | 3.5+2.1 3.2+1.5*% 4.0+1.6 5.7+1.5 72+14 74415
Sonar 0| 225+4.4 23.6+4.3 23.0+4.6  21.5+4.9* 22.0+4.7 21.0+4.9
5| 24.74+4.2 24.0+5.3 23.244.2  21.3+4.5% 224446 22.7+5.3
10 | 24.844.6 22.7+5.1 23.945.2  21.74+4.8% 241454 21.845.0
20 | 25.6+5.1 25.7+5.5 26.8458  25.2+54*% 26.3+59 26.2+6.0
Threenorm 0| 18.7+1.2 17.6+1.3* 17.7+1.4 18.0+1.7 18.8+1.6 18.9+1.8
5| 19.54+1.3 18.1+1.6* 18.4+1.4 19.2+1.8 19.0£1.6 19.1+1.5
10 | 19.1+1.5 18.6+1.3* 19.1+1.5 19.841.5 19.3+1.8 21.1+1.7
20 | 21.7+1.9 21.5+1.9 21.44+1.8% 22.3+1.9 229419 22.842.0
Tic-tac-toe 0| 154420 5.1+2.0 2.2+09 2.0+0.9 1.940.8% 1.94+0.7 *
5| 16.9425 7.6+23  3.5+1.3 3.1+1.2% 33+1.2 3.6+14
10 | 18.0+2.3 104+2.1  5.4+1.7 5.1+1.6*% 54416 5.6+1.6
20 | 20.84+2.6 16.3+2.7 13.0+24 12.242.1%  12.242.1% 12.74+2.7
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Table 8: Bagging average test error III

Noise Bootstrap sampling ratio
Dataset (in %) 10% 20% 40% 60% 80% 100%
Twonorm 0| 4.9+1.1 4.6+0.8%* 5.1+1.0 5.2+0.7 6.3+1.5 6.6+1.4
5| 4.440.7%* 5.1+1.1 55+1.1 62419 6.2+1.0 7.1+£2.0
10 | 5.0+£0.8 4.8+0.6* 5.94+0.7 6.6+1.2 6.8+1.0 7.3+1.3
20 | 6.0+0.5* 7.24+1.8 7.3+£1.8 T7.8+1.1 84406 9.1+1.7
Vehicle 0| 26.0+£2.5 25.5+2.3 25.5+2.1 25.2+2.0 25.7+1.0 25.1+1.1
5| 301424 282422 27.6+2.0 27.4+1.3 27.2+1.6 26.5+1.5
10 | 31.8+2.3 28.4+2.2 27.9+2.0 27.5+1.8 28.1+1.7 28.5+1.2
20 | 32.3+2.6 29.94+2.7 28.7+£2.5 29.0+2.2 29.5+2.0 29.8+1.7
Votes 0| 4.4+1.6 4.0+1.6% 4.0+£1.5% 4.5+1.6 4.7+1.9 5.0£1.5
5| 4.441.4 4.3+1.5*% 4.44+1.8 4.5+1.5 5.1+1.7 5.9+2.1
10 | 4.5+1.5% 4.7+1.5 4.841.8 5.7+1.8 6.7+2.3 7.3+2.0
20 | 4.841.7%* 5.841.9 7.842.9 9.5+2.911.243.1 12.943.7
Waveform 0| 17.54+2.5% 17.9+2.4 17.842.0 18.8+1.4 19.0£1.0 20.1+£1.2
51 17.04£2.6% 17.3+2.0 17.7+1.9 19.1+1.6 19.3+1.6 19.5+1.5
10 | 17.5+£2.2% 17.8+2.2 19.54+1.6 20.8+1.7 21.24+1.7 21.9+1.8
20 | 18.14+ 2.7%19.54+2.6 19.3+£2.0 22.0+1.5 22.2+1.8 22.8+1.7
Wine 0 7.6+45 4.5+ 2.5 52444 4.442.4 3.9+3.3*% 5143.1
5 6.2+3.9  3.4+2.4% 5.242.9 4.943.0 4.7+2.9 6.1+3.6
10 | 5.943.3  3.5+2.2% 4.04+2.3 4.3+3.4 58442 7.3+4.1
20 | 5.6+3.4 4.242.4% 5.943.9 7.0+3.1 8.7+3.4 10.5+4.3
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Table 9: Random forest test error I

Noise Bootstrap sampling ratio
Dataset (in %) 10% 20% 40% 60% 80% 100%
Australian 0| 13.3+1.3 6.5+0.6 4.9+0.5 4.7+0.5*% 4.9+0.6 5.1+0.8
5| 144447 7.842.2 57+14 54+1.1  5240.7% 54408
10 | 16.6+5.2 94435 6.5+1.8 6.0+1.3 5.7£1.0% 6.1+1.1
20 | 21.54+6.5 13.5+4.8 9.6+2.5 89+2.0 8.7+2.0 83+1l5
Balance 0] 16.9+2.0 154+1.8 14.5+1.9 14.3+1.6 14.0+1.5* 15.0+1.8
5| 16.1+£2.2 15.2+2.0 14.6+2.0* 14.8+1.8 15.4+1.9 16.1+2.1
10 | 15.2+2.5 14.6+1.9* 15.7+2.2 16.2+2.1 17.14+2.2 17.6+2.4
20 | 15.24+2.2%¥ 16.0+2.1 17.5+2.6 19.1+2.4 19.842.3 20.3+2.9
Breast W. 0 3.5+1.0 3.3+1.0 3.2+1.0 3.1+£1.0 3.0+0.9% 3.0+1.0*
5 34+1.1 33409 3.2+1.0 3.2+1.0 3.2+09 3.1+1.0*
10 | 3.2+1.1* 3.44+1.1 3.7+1.3 3.8+1.2 3.8+1.1 3.8+1.1
20 | 3.7+1.2*% 4.2+1.4 5.0+1.5 6.1+1.9 5.841.5 6.6+1.7
Diabetes 0] 25.842.3 24.74+2.7 244423 243423 24.2+22 23.9+2.2*
5| 25.0+£2.7 24.7+£2.7 24.6+2.3 24.6+2.2 24.242.3% 244422
10 | 25.242.2 24.6+2.5% 24.7+2.3 25.1+2.1 25.0+£2.3 24.7+2.1
20 | 25.44+2.5 25.3+2.5% 26.5+2.5 27.2+3.0 27.0+2.7 27.44+2.9
German 0] 29.6+0.4 28.4+0.7 27.0+1.0 25.841.3 25.3+1.4 24.9+1.3*
5| 29.24+0.7 27.9+1.0 26.7+1.1 26.0+1.2 25.3+1.4 24.9+1.5%
10 | 28.6+0.9 27.5+1.3 25.8+1.3 25.6+1.6 25.5+1.7% 25.5+1.5%
20 | 28.0+1.3 27.2+1.6 26.6+1.6 26.4+1.6% 27.0+2.2 26.84+1.9
Heart 0] 20.9+34 19.6+3.9 17.5+3.1 174434 17.24+3.5% 17.5+3.2
5| 19.843.1 18.2+3.3 17.6+3.3* 18.7+3.7 18.443.3 17.7+3.4
10 | 19.5+£3.7 18.843.7 18.5+4.2% 19.1+3.4 19.8+3.7 18.9+3.8
20 | 19.7+4.3% 20.3+4.7 21.5+3.5 22.0+4.2 224439 22.844.9
Hepatitis 0] 20.5+1.1 17.942.6 14.9+3.0 13.743.4 13.1+3.3 12.7+3.6*
5| 19.6+2.2 15.7+3.1 13.94+43.3 13.0+£3.3 13.0+3.7 12.543.7*
10 | 17.7+£3.5 15.743.7 13.9+3.8 13.94+3.6 13.2+3.4* 13.5+3.9
20 | 16.3+4.2 15.5+4.0 15.844.2 15.2+4.4*% 16.1+4.4 16.5+3.8
Horse-Colic 0] 30.2+1.7 27.6+1.6 26.5+1.8 26.5+1.9 26.2+1.8 25.3+1.8%
5| 31.0+£3.1 27.6+2.7 26.3+2.2 25.843.0 25.8+2.9 24.8+2.9*
10 | 31.2+3.4 28.3+3.6 27.1+3.0 25.7+3.6 25.8+3.3 25.6+3.3*
20 | 31.244.1 29.843.8 28.1+3.6 27.44+4.3 27.243.9 26.5+3.7
Tonosphere 0| 12.6+24 7.8+1.9 6.6+2.0 6.8+1.9 6.2+1.9 6.1+1.8*
5| 10.3+3.0 7.8+2.3 7.2422 7.2+23  6.842.0% 7.1+2.3
10 | 10.7+2.9 8.1+22 7.4+2.3% 7.5+2.3 7.6+2.2 8.3+2.7
20 | 11.14+3.1  9.5+2.4% 9.6+3.1 9.7+2.6 10.843.2 10.6+2.7
Iris 0 4.442.5%  4.6+2.2 4441.9% 47425 50+2.6 4.8+24
5 6.2+4.9  4.943.1* 55+2.8 5.0+2.7 53+29 5.4+29
10 7.6+£5.5 6.844.5 5.6+3.5%* 57428 57+3.0 6.5+3.9
20 | 8.2+4.8 7.8+5.0%* 8.9+5.0 8.9+5.3 10.6+5.1 11.845.4
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Table 10: Random forest test error II

Noise Bootstrap sampling ratio
Dataset (in %) 10% 20% 40% 60% 80% 100%
Labor 0] 12.043.7 12.743.2 11.74£28 11.1+29 9.0+£2.8 8.9+2.2 *
5| 12.7+43.8 12.5+ 3.3 13.5+3.6 12.5+4.8 124438 11.0+£3.3 *
10 | 12.7+4.2% 12.844.5 14.5+4.1 14.844.0 15.6+4.5 15.7+4.2
20 | 13.0+5.8% 13.5+5.3 15.54+5.1 15.7+4.8 16.4+4.7 16.4+45
Liver 0| 36.8+2.0 33.5+2.2 29.74+3.0 28.1+2.9 27.5+3.2 27.1+3.2*
5| 35.1+3.2 32.7+3.0 29.943.2 29.2+3.5  28.8+3.6 28.5+4.0*
10 | 33.6+2.9 314439 30.8+4.2 3044+3.6  30.3+3.7% 30.6+3.4
20 | 33.9+£3.8  33.2+4.2% 337444 34.3+4.7  335+44 34.4+4.6
Lung Cancer 0| 57.9+9.1 53.8+11.7 48.24+12.9 43.0+13.1* 46.8+13.2 48.4+14.6
5| 60.7+7.4 55.8+11.7 49.2+13.0 49.3+12.3 47.6+13.7 47.4+12.6*
10 | 61.849.3 55.94+11.7 54.2+12.9 50.2+15.7% 51.24+13.5 51.8+12.7
20 | 61.8+10.9 58.7+12.1 55.4+11.5 54.7+13.0 50.5+£13.3* 54.8+14.2
Magic 0| 144404 13.6+04 12.94+0.3 12.6+04  12.4+0.3% 12.430.4*
5| 13.5+04 13.2+04 12.840.4 12.7+04  12.5+0.3% 12.5+0.3*
10| 13.3+04 13.0+04 129404 12.84+0.4 12.7+£0.4*  12.7+0.4*
20 | 13.6+0.4 13.5+0.4* 13.5+0.4* 13.6+0.4 13.7+04 13.840.4
New-thyroid 0 8.4+2.3 7.3+2.5 51+2.0 3.3+1.8 3.0+£1.0 4.4+1.2
5 8.1+24 8.24+2.5 5.6+2.3  5.8%1.9 4.0+1.6 3.4+£15
10 8.24+2.8 5.9+4+2.1 3.3+24  4.8+18 4.3+1.7 3.2+1.7
20 6.1+2.5% 6.2+3.0 7.2+2.8 8.0+2.5 8.4+2.7 8.5+2.6
Ringnorm 0| 13.2+14 6.5+0.7 4.9+0.5 4.840.6% 4.8+0.6* 5.0+0.7
5| 14.9+4.7 74423 55+1.2 5.240.9%  52+0.9% 54408
10 | 16.7+5.2 9.3+3.1 6.2+14  6.1+1.2 6.0£1.3*  6.1+14
20 | 21.4+45.7 143448 9.7+24  8.6+2.3 8.5+1.7 8.2+1.8
Segment 0 5.9+0.9 44409 3.5+0.5 2.940.6 2.7+0.7 2.6+0.6*
5 5.9+0.8 4.5+0.9 3.7+0.7  3.1+0.8%  3.1+0.7%* 3.24+0.8
10 5.8+1.1 46+1.1 3.4+0.6 3.0+0.7* 3.4+0.7 4.1£0.7
20 57+0.7  4.9+0.8 4.0+0.9* 4.5+0.8 5.2+0.7  6.1+0.7
Sonar 0| 31.1+48 24.6+49 21.5+4.6 19.6+4.5 18.3+4.6% 18.6+4.4
5| 28.6+6.1 24.9+5.2 21.34+5.0 20.6+5.2  20.5+4.5 19.9+3.8*
10 | 28.74+6.5 24.445.0 21.2+45 20.7+4.5  20.9+52  20.6+4.5*
20 | 27.8+6.4 26.3+5.2 24.94+4.7 244455 242459  23.9+5.2*
Threenorm 0| 18.2+0.9 16.9+0.9 16.0+0.9*% 16.8+1.0 16.2+1.0 16.0+1.1*
5| 223+3.2 19.3+1.9 184412 17.2+1.1 17.2+41.1  16.9+1.0*
10 | 247439 21.742.5 20.0+1.6 19.5+1.5 18.6+1.6* 19.0+1.5
20 | 30.6+4.5 26.3+3.2 234420 22.9+2.2 22.3+2.0 21.6+1.7*
Tic-tac-toe 0| 29.0+£1.3 23.0+1.4 15.2+1.7 10.04+2.0 6.6+2.0 4.9+1.7*
5| 269+1.9 215+19 14.0+£19 101+23  7.7420  6.3x1.9*
10 | 26.3+2.2  20.6+2.2 14.5+24 11.3+24  9.1421  8.4+2.3*
20 | 25.2+2.5 21.3+2.7 16.842.6 14.9+2.5 14.3+24 13.6+2.4*




Table 11: Random forest test error III

Noise Bootstrap sampling ratio
Dataset (in %) 10% 20% 40% 60% 80% 100%
Twonorm 0| 3.3+0.3* 3.3+0.3* 3.34£0.3* 3.4+0.3 3.6+:0.3 3.6:04
5| 45+1.3 3.94+0.8% 3.94+0.5* 4.0+£0.5 3.9+0.5% 4.0+:04
10 | 5.942.0 4.8+1.2 4.4+40.7% 4.6+09 4.440.6% 4.5+0.6
20 | 9.5+44 74427 6.3+14 6.0£1.2*% 6.1+£1.0 6.3+1.1
Vehicle 0] 30.7+24 29.6+1.7 272419 26.3+£1.7 25.9+1.7% 26.1+1.6
51 30.9+3.0 29.0+2.0 27.34+2.0 26.1+1.8 26.2+2.1 25.6+2.5*
10 | 30.14+2.2 27.842.2 27.9+2.4 26.2+1.7 26.3+2.0 25.9+1.8*
20 | 30.5+2.2 29.6+2.4 282422 27.0+£25 27.4+1.8 26.9+2.6*
Votes 0| 53+1.7 44415 39+14 3.6+£1.3* 3.6x1.4*% 3.6x1.3*
5| 54+1.7 44415 4.0+14 39+14 3.7+£1.5% 3.7x1.7*
10 | 5.74+1.6 5.0£1.7 45+1.5 4.1+1.5% 42420 4.6+1.9
20 | 6.3+£2.2 5.5+2.1*% 5.942.2 62423 6.5+£2.6 6.7£2.5
Waveform 0| 15.5+0.7 14.94+0.8 14.840.8 14.5+0.6* 14.6+0.6 14.6+0.6
51 15.3+0.9 15.14+0.9 14.94+1.1 15.0+£0.8 14.8+0.8* 14.84+0.6*
10 | 15.14+0.6 14.84£0.5 14.8+0.8 14.9+0.8 14.6+0.9*% 15.0+0.7
20 | 14.9+1.0% 15.0+0.6 15.3+0.8 15.4+0.7 15.4+1.0 14.9+0.7*
Wine 0| 3.0+18 31419 254+1.7 23+1.6 21+1.7 1.9+1.6*
5| 4.8+33 3.64+2.7 27420 29422 28+21 2.4+2.0%
10 | 58443 4.143.0 3.7£2.6 34426 3.2424% 34426
20 | 7.0+44 58+36 59435 51+3.1 5.3+3.5 5.0+£3.0%
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