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Abstract

This paper presents a novel online version of laplacian eigenmap termed as
generalized incremental laplacian eigenmap (GENILE), one of the most pop-
ular manifold-based dimensionality reduction technique performed by solv-
ing the generalized eigenvalue problem. We have used swiss roll and s-curve
dataset, the most popular datasets used for manifold-based learning tech-
niques, in this paper as artificial datasets. For a real data experiment, we
have selected the MNIST digit dataset, the bank-note dataset, and the heart
disease dataset for testing and evaluating our novel method and for com-
paring it with the standard batch isomap method and other manifold-based
learning techniques. The experimental results have clearly shown the im-
provements in terms of classification accuracy by the proposed method in
comparison with other techniques.

Keywords: dimensionality reduction, generalized eigenvalue problem,
laplacian eigenmap, manifold-based learning

1. Introduction

Most of the traditional techniques used for feature extraction and dimen-
sionality reduction come in both batch and incremental versions. Out of all of
the dimensionality reduction methods proposed in the past, manifold-based
learning techniques for feature extraction and dimensionality reduction have
gained great popularity but most of these run in batch mode. Very few in-
cremental approaches based on manifold-based learning have been proposed
in the past, which is not good because the major difficulty arises in scenarios
where the input is coming in more than one chunk from time to time, batch
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mode algorithms repetitively recalculate the previous chunks again and again
at each new input, which becomes computationally very expensive and less
efficient.

The general problem of classical dimensionality reduction methods like
PCA, MDS, etc., is to produce projections for non-linear data. This has
to some extent been solved by methods that generate non-linear maps such
as self-organizing maps and other neural network based methods [1]. These
methods normally resolve a non-linear optimization problem by using gra-
dient descent methods that do not always reach the global optimum and
most of the time produces a local optimum. The ideal solution for this is to
explicitly consider the structure of the manifold on which the data reside.

A classical and widely used dimensionality reduction method is princi-
pal component analysis (PCA), used primarily for visualization and pre-
processing purposes in the area of data mining and machine learning [2],
information retrieval [3], multimedia [4], etc. Dimensionality reduction us-
ing PCA is performed on the basis of the leading eigenvectors of the data’s
covariance matrix. One more classical linear method is multi-dimensional
scaling, which can only see the flat euclidean structure and can unable to
find the non-linear structure in the data [5]. In [6] the authors have proposed
a variant of fisher’s linear discriminant analysis technique - another classical
dimensionality reduction technique which resulted in more than one filters
for the two class problem and also produced higher classification accuracy
in comparison with other dimensionality reduction techniques. Similarly in
[7] the authors have proposed a regularized version of linear discriminant
analysis by introducing within cluster scatter matrix generated on the basis
of between and within class scatter matrix. In [8] the authors have pro-
posed an L1-norm based multi-linear subspace analysis technique which has
proved very robust to outliers as it suppresses the negative effect of out-
liers on the resulting projection matrix or projection vector. This method
is suitable in scenarios where less training data is available. Most of these
classical dimensionality reduction methods suffer from difficulties in design-
ing the cost function and are often limited to relatively low-dimensional data
sets. Recently, manifold based dimensionality reduction methods have been
developed such as isomap [9, 10], local linear embedding (LLE) [11], laplacian
eigenmaps [12, 13], hessian eigenmap [14], semi-definite programming (SDE)
[15], manifold based charting [16], local tangent space alignment (LTSA) [17]
and diffusion maps [18]. Due to these methods’ non-linear geometrical na-
ture, they have attracted wide attention in various domains of computational
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intelligence.
All the above mentioned algorithms run in batch mode and necessarily

require all the data to be available at once for processing. These types of algo-
rithms are computationally very expensive in scenarios where the data is re-
quired to be observed sequentially. The reason is the need for repetitively re-
considering the previously processed data: this makes the execution of these
batch algorithms computationally very expensive. There are several scenarios
for explaining the benefits of incremental learning and how it overcomes the
problem of the high computational cost involved in the execution of a batch
version. Instead of considering a single new entry, we have considered the
most common scenario, where the data is coming in more than one chunk, and
in a sequence. The problem of incremental learning of data coming in this way
can be stated as follows. Assume X = [x1, x2, ..., xt1 , xt1+1, xt1+2, ..., xt1+t2 ] as
a sum of two chunks of the whole dataset, where xiϵR

t1+t2 . Suppose the low-
dimensional coordinates yi of xi representing the first two chunks termed as
t1 + t2 training samples have already been produced. When the third chunk,
say [xt1+t2+1, xt1+t2+2, .....xt1+t2+t3 ], comes, incremental learning should inde-
pendently figure out how to project this chunk of information onto the low
dimensional space.

In many scenarios, it can be uncommon for all the data to be present
before learning, for example social networking site data, online web trans-
action data, and data received through sensors, due to which, the storage
mechanism has also completely changed. These kinds of data are mostly
collected and stored in raw form in a distributed file structure storage envi-
ronment like Hadoop or Cassandra. Analytical programming environments
like java, matlab and revolution R extract data from these environment con-
taining storage ranging from terabytes to petabytes and perform learning on
these big datasets. The incremental learning technique is best suited to these
scenarios because the huge amount of transactional data cannot be learned
at once. Instead the best choice is to learn the data in the form of chunks,
or more appropriately, one data point at a time in a completely adaptive
environment.

Several incremental manifold-based learning methods related to different
dimensionality reduction techniques that have been proposed in the litera-
ture. In [19], an incremental manifold-based learning method via tangent
space alignment is presented. This method works by firstly updating the
existing local geometrical information in view of the new input. After that
using it with respect to the existing points to perform new estimations and
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updating of the whole tangent space. In [20] the authors have proposed an
incremental learning multiple threshold based classifier that performs sam-
ple by sample incremental learning and then update a pre-defined number
of threshold based classifiers without re-training on previous data. Another
important characteristic of this algorithm is the optimal determination of
threshold and training error of each classifier in a completely close form. In
[21], Martin and Anil presented an incremental version of isomap, in which
the geodesic is updated every time when a new input comes which leads to
the solution of an incremental eigen-decomposition problem. In [22], the au-
thor has not changed the cost matrix on a new arrival, as the least eigenvalue
is taken for projection. This is always susceptible to change, and then an in-
cremental learning problem of local linear embedding (LLE) is processed by
solving a d2 × d2 minimization problem considering d2 as the dimensionality
of the low-dimensional embedding space. The author in [23] has presented
a generalized common framework for local linear embedding (LLE), multi-
dimensional scaling (MDS), isomap and laplacian eigenmap by proposing a
novel nystrom formula for new datapoints. This helps in solving the subset
eigendecomposition problem and tries to generalize the dimensionality reduc-
tion results for the novel datapoints. Similarly, in [24], a general incremental
learning framework capable of dealing with one or more new samples each
time for the so-called spectral embedding methods is presented. The authors
in that paper have solved the dimensionality reduction problem by recover-
ing the latent manifold as new samples on the basis of the low-dimensional
embedding coordinates learned from the previous samples.

The incremental methods presented so far in the literature can be easily
divided into two groups.

1. Independent Training: Calculate the low-dimensional embedding of a
new chunk from a new class or an existing class like incremental sub-
space versions of PCA and LDA methods [25][26].

2. Dependent Training: Calculate the low-dimensional embedding of a
new chunk by using the existing adjacent information of the previous
chunk, like the most recently proposed incremental version of laplacian
eigenmap, which is very much dependent on the previously processed
information to compute the new information. [27].

The rationale behind deriving a new online version in the presence of
an existing extension of laplacian eigenmap already proposed in [27] is to
highlight four key findings.
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1. For big data computations, the two positive semi-definite matrices pro-
duced for learning by solving the generalized eigenvalue problem will
be quite big in size and require a large amount of computations, which
can only be solved by incrementally learning each vector point by point
for both matrices.

2. If the data is online in nature and a light-weight adaptable learning
mechanism is required, then too our online version will be a better
choice than the standard laplacian eigenmap approach.

3. It is not always important as mentioned in [12, 27] to consider only min-
imum eigenvalues to produce low-dimensional projections for laplacian
eigenmap.

4. The low dimensional embedding can also be calculated incrementally
very easily independently in one pass without using the existing adja-
cent information of the previous chunk as in [27].

2. Manifold-Based Learning

Let us consider the problem of observing some images: there are factors
like the view angle, rotation and the lighting angle of the pixel intensities,
which means that the data in the high-dimensional space attains a complex
non-linear structure. These changes do not occur abruptly and so the data
can be reasonably assumed to lie approximately on a (Riemannian) mani-
fold. This is one reason for manifold-based learning techniques’ gaining a lot
of attention. In this paper, our topic of discussion is to propose an online
version of laplacian eigenmap, which is a manifold-based learning technique
performed by first building a graph by incorporating the neighborhood in-
formation of the dataset. After that using the notion of the laplacian of
the graph, computing a low dimensional representation of the dataset that
optimally preserves local neighborhood information in a certain sense.

The core idea of laplacian eigenmap [12] is very simple: with minimal
computation calculate locally one sparse eigenvalue problem. Since the first
part has minimal computation and is calculated only once, the idea for cre-
ating an incremental version is to solve the sparse eigenvalue problem incre-
mentally therefore making it computationally more efficient and applicable
for deep analysis.

The remainder of this paper is organized as follows: Section 3 reviews
the standard laplacian eigenmap technique and in Section 4 we discuss the
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Table 1: Important Notations

Notations Description
X Input Data
n Number of training datapoints

t1, t2 and t3 chunks of data from the whole dataset
W The adjacent weight matrix
D A diagonal weight matrix, Dij =

∑
j Wji

L Laplacian Matrix
w1 Eigenvector corresponding to the maximum eigenvalue
w2 Eigenvector corresponding to the second highest eigenvalue
y1 Output projection 1
y2 Output projection 2

existing incremental method for finding the maximum eigenvalue of the gen-
eralized eigenproblem. In Section 5 we discuss our own incremental version
of the standard laplacian eigenmap technique. In section 6, we describe and
implement these methods on artificial and real datasets.

For convenience, we show the important notations used in this paper in
Table 1.

3. The Laplacian Eigenmap Algorithm

Given l points x1, x2, ....., xl in ℜl, we construct a weighted graph one for
each point connected by the set of edges between neighboring points. The
steps involved in the execution of a laplacian eigenmap are stated below.

1. Step 1. [Construct an Adjacency Graph Matrix] Using the K-Nearest
Neighbor algorithm on the complete dataset, create an edge between
xi and xj if i is among the n nearest neighbor of j or j is among the n
nearest neighbors of i.

2. Step 2. [Weighting the edges] There are two different variations for
weighting the edges.

(a) Heat Kernel. [tϵℜ] if node i is connected with j put

Wij = e−
∥xi−xj∥

2

t . (1)
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(b) Simple Approach. Set Wij = 1 if vertices i and j are connected
by an edge and set Wij = 0 if vertices i and j are not connected
by an edge.

3. Step 3. Construct the objective function. Consider the problem of
mapping the weighted graph G to a lower dimensional space so that
the connected points stay as close together as possible. Consider y =
(y1, y2, ...., yn) be such a map. A reasonable criteria of choosing an
appropriate map is to minimize the following objective function:∑

ij

(yi − yj)
2Wij, (2)

The minimization of the objective function is an attempt to remain
away from the heavy penalty which can occur if the neighboring points
xi and xj are mapped far apart. Let D be a diagonal weight matrix,
whose entries are (column or rows as W is a symmetric matrix) sums
of W. Dii =

∑
j Wji and the laplacian matrix is L = D−W. It turns

out that for any y, we can have

1

2

∑
ij

(yi − yj)
2Wij = tr(yTLy). (3)

The minimization problem can now be elaborated as arg min tr(yTLy)
such that

yTDy = 1, (4)

yTD1 = 0, (5)

The bigger the Dii is, the more important yi will be. There is a con-
straint as yTDy = 1 where constraint yTD1 = 0 is to eliminate the
trivial solution which collapses all vertices of G onto the real number
1.

4. Step 4. Compute the eigenvalues and eigenvectors by solving the gen-
eralized eigenvalue problem

Lf = λDf , (6)

where D is a diagonal weight matrix whose entries are the sum of each
column of W, i.e., Dii =

∑
j Wij, and L = D−W is a laplacian matrix

which is always symmetric and positive semi-definite.
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4. Generalized Eigenproblems: Incremental Solutions

[28] shows that one method of finding the maximum eigenvalue of the
generalized eigenproblem

Aw = λBw, (7)

is to iteratively use

∆w = Aw − f(w)Bw,

w = w + η∆w, (8)

where η is a learning rate or step size. In (8) the first term on the right-hand
side can be considered as a standard hebbian rule term, and the second term
acts to bound the length of the vector w. In (8) f(w) = wtw becomes the
continuous version of oja’s algorithm as mentioned by Zhang in [28]. The
function f(w) : Rn − {0} → R satisfies

1. f(w) is locally Lipschitz continuous

2. ∃M1 > M2 > 0 : f(w) > λ1,∀w :∥ w ∥≥ M1 andf(w) < λn,∀w : 0 <∥
w ∥≤ M2

3. ∀w ∈ Rn − {0},∃N1 > N2 > 0 : f(θw) > λ1,∀θ : θ ≥ N1 andf(θw) <
λn, ∀θ : 0 ≤ θ ≤ N2 and f(θw) is a strictly monotonically increasing
function of θ in [N1, N2].

where λ1 is the greatest generalized eigenvalue and λn is the least eigenvalue.
Intuitively, what these criteria mean is that:

1. The function is rather smooth.

2. It is always possible to find values of wi, i = 1, 2 large enough so that
the functions of the weights exceed the greatest eigenvalue.

3. It is always possible to find values of wi, i = 1, 2 small enough so that
the functions of the weights are smaller than the least eigenvalue.

4. For any particular value of wi, i = 1, 2, it is possible to multiply wi, i =
1, 2 by a scalar and apply the function to the result to get a value
greater than the greatest eigenvalue.

5. Similarly, we can find another scalar so that, multiplying the wi, i =
1, 2, by this scalar and taking the function of the result gives us a value
less than the smallest eigenvalue.

6. The function of this product is monotonically increasing between the
scalars defined in 4 and 5.
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This method was already used by us in [29] to extract slowly varying features
from temporal data. In this paper we will further use this method to derive
a new incremental learning method for the laplacian eigenmap.

5. Generalized Incremental Laplacian Eigenmap

In this section, we provide our state of the art purely incremental ver-
sion of the manifold-based learning technique discussed in [12] for laplacian
eigenmap.

Let L be the laplacian matrix and D be the diagonal matrix where each
value of D is the sum of each column of W as explained in [12]. As shown in
[28], the optimal weights for a linear projection can be found as the solution
of the generalized eigenproblems

Lw = λDw. (9)

Therefore we can use the method of the previous section to get

∆w = Lw − f(w)Dw,

w = w + η∆w, (10)

where L and D are both symmetric and semi-definite matrices. Both the
matrices are calculated prior to the learning process and then by using the
generalized eigenvector solution, the filter w in (10) finds the eigenvector
corresponding to the maximum eigenvalue. The interesting thing to note
here is the selection of eigenvector corresponding to the maximum eigenvalue
instead of considering the minimum eigenvalue as in [12, 27] which actually
looses a lot of variance of the data and the actual overall orientation of
data lying on the high dimensional space. Considering smaller variance or
least eigenvalues indicates data to be close to the mean but will make no
improvement in projecting the neighboring points closer to each other. In
other words transforming the data to a different direction and attaining the
maximum variance of the data by processing each data point incrementally
can produce better results as shown in this paper. Therefore in our case
due to our algorithm’s incremental nature which learns data point by point
of every chunk, so by projecting it on the eigenvector corresponding to the
maximum eigenvalue produces better result as compared to the standard
version of laplacian eigenmap.
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It can be seen from (9) that it uses a mixture of batch and online methods
since the whole data is used at any one time and the weights are updated
incrementally. For a truly neural solution, by updating the weights in an
online mode and using only one sample at a time, we can go further and
replace the A and B matrices with instantaneous values so that

Liw = Diw, (11)

where i = 1, 2, 3, ..., n. Here Li and Di means the laplacian matrix L which is
computed as L = D−W and the diagonal matrix D whose entries are sum
of each column of W, i.e., Dii =

∑
j Wij will be learned point by point in a

purely incremental manner. In order to find the next filter corresponding to
the second highest eigenvalue, we subsequently deflate the matrices L and D
and again incrementally solve the generalized eigenvector problem to find a
second filter:

L∗ = L− λwLwT , (12)

D∗ = D− λwDwT , (13)

with L andD as positive semi-definite matrices andw is the filter correspond-
ing to the highest eigenvalue. In order to find the next filter corresponding
to the second highest eigenvalue L and D matrices needs to be deflated first
by using (12) and (13).

According to (10), the same learning process is conducted using the de-
flated L and D and the next filter corresponding to the second highest eigen-
value is found. The major steps involved in the execution of the incremental
algorithm for the next chunk are shown in Table 2.

6. Simulations

6.1. Experiment on an Artificial Dataset

We have used the swiss roll as an artificial dataset for our initial ex-
periment. It consists of 20,000 datapoints and each data point is three in
dimensions. Since our method is purely incremental, we divide the data into
four different chunks and perform dimensionality reduction on each chunk
separately by using the same learned filters w1 and w2 of the previous chunk
for the next chunk coming ahead. The learning rate was set to 0.00001 and
the number of iterations for learning each chunk were 10,000. The learning
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Table 2: The Computing Procedure of the generalized incremental laplacian eigenmap
(GENILE) Algorithm

Input: The input patterns X = [x1, x2, x3, ....., xt2 ] where t2 ϵ Next Chunk

Output: The mapping function: f : Rt2
i − > Rt1+t2

o

Step 1:[Construct an adjacency Graph Matrix of the new chunk t2]
Using the K-Nearest Neighbor Algorithm on the whole chunk t2 and create an edge
between xi and xj if xi is among the K nearest neighbor of xj or xj is among
the K nearest neighbor of xi of the chunk t2.

Step 2::[Weighting the edges independently of the chunk t2]

Heat Kernel. [tϵt2] if node i is connected with j put

Wij = e−
∥xi−xj∥

2

t ,

Simple Approach. Set Wij = 1 if vertices i and j are connected
by an edge and set Wij = 0 if vertices i and j are not connected by an edge.

Step 3:Construct an objective function of the new chunk independently. Consider
y = [y1, y2, y3, ...., yt2 ]. The criteria to minimize would be similar to the existing method but
this time the minimization will be performed independently for each chunk:∑

ij(yt2i − yt2j )
2Wt2ij

,

and independently calculate L and D of the new chunk t2
where Dt2ii

=
∑

j Wt2ji
and L = D−W

Step 4: Use the updated eigenspace from the previous chunk belonging to the highest
eigenvalue by incrementally solving the GEV of the new chunk t2 to produce updated
w1

new where w1
new = wt1+t2 is the updated eigenspace of the first dimension

Liw1
t1+t2 = λDiw1

t1+t2 .

Step 5: Use the updated eigenspace from the previous chunk belonging to the second
highest eigenvalue by deflating Lnew and Dnew and incrementally solving the GEV of
the new chunk t2 to produce the updated w2

new where w2
new = w2

t1+t2 is the updated
eigenspace of the second dimension .11
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Figure 1: Swiss Roll Dataset

rate and the number of iterations for learning were initialized with the most
appropriate values after checking their effect on the output. The results of
our experiment conducted incrementally are shown in Figure 2. For our ex-
periments on this artificial dataset we used the weight matrix W defined
by

Wij =

{
e−

∥xi−xj∥
2

t , if vertices i and j are connected

0, otherwise

First 500 Points First 1000 Points First 1500 Points All Points

Figure 2: Incremental Laplacian Eigenmap Firstleft: Projections for first 500 datapoints.
Secondleft: Projections for first 1000 datapoints. Thirdleft: Projections for first 1500
datapoints. Fourthleft: Projections for all the datapoints
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First 500 Points First 1000 Points

Figure 3: Batch Laplacian Eigenmap Firstleft: Projections for first 500 datapoints. Sec-
ondleft: Projections for the first 1000 datapoints.

First 500 Points First 1000 Points First 1500 Points First 2000 Points

Figure 4: Incremental Laplacian Eigenmap Firstleft: Projections for first 500 datapoints.
Secondleft: Projections for first 1000 datapoints. Thirdleft: Projections for first 1500
datapoints. Fourthleft: Projections for all the datapoints
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6.1.1. Discussion

It has been commonly remarked that the swiss roll dataset is most of the
times used to evaluate algorithms for manifold-based learning techniques [9].
In Figure 2, the projections calculated by using the novel incremental version
of the Laplacian eigenmap are shown by splitting the first 2000 datapoints
into four chunks assuming the leftmost to be the first chunk of 500 datapoints
whose projections are first calculated and displayed. The next 500 datapoints
together with the previous chunk are shown in the second sub-figure from the
left, and then the other two, including the previously processed datapoints,
are shown in the third and fourth sub-figures from the left. It can be easily
seen that all the datapoints of the swiss roll dataset are properly revealed
in two dimensions with minimum collisions despite the fact that the shape
is rather flat than rolled but still all the points are properly clustered in the
reduced dimensions.

In Figure 3 we have tested the same swiss roll dataset using batch lapla-
cian eigenmap and tried to learn the manifold of the high dimensional dataset
in two separate chunks where the first chunk consists of the first 500 data-
points and the second chunk consists of the first 1000 datapoints. As one
can see very easily with the naked eye, the projection produced in both cases
are completely different in shape and show no continuity between each other
and of course the factor of repetitive re-calculation is always fermenting the
computational efficiency in terms of batch processing.

One more interesting point to note is, by projecting the data on minimum
eigenvectors in case of standard batch laplacian eigenmap version produces
a very sparse kind of shape of a swiss roll with gaps between projected data
points in the form of holes. On the other hand projecting the data in a
purely adaptive manner on the eigenvector corresponding to the maximum
eigenvalue using our proposed method produces very symmetrical results
with no gap or sparseness between points in the reduced dimensions.

The simulation results of our newly proposed incremental algorithm are
also given on the s-curve dataset in Figure 4. In the case of the s-curve
dataset, our approach is able to produce the results in two dimensions that
almost represent the shape of a s-curve as compared to the results produced
for the swiss roll dataset. According to the results of real dataset shown in
the next section, the improvement in clustering, classification and its purely
incremental nature as compared to the standard batch laplacian approach
are the actual strengths of our incremental approach.
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6.2. Experiment on MNIST Digit Dataset

In terms of real data, the performance evaluation of the novel purely
incremental approach compared with its standard batch version is firstly
demonstrated on the MNIST digit dataset [30]. The MNIST digit dataset
consist of 60,000 training patterns containing 0–9 handwritten digits and
10,000 test patterns. Each digit contains 784 pixels. The experiment is
conducted by taking 500 datapoints each of the first four digits (0, 1, 2 and
3) and trying to learn the manifold of the high-dimensional data separately
using both the standard and the incremental approach. The results are
exhibited in Figure 5 in reduced dimensions.

First 2000 Points (500 each) First 2000 Points (500 each)

Figure 5: Left: Unfolding first 2000 points (500 each of digits 0,1,2 and 3) using standard
LE. Right: Projections of first 2000 points (500 each of digits 0, 1, 2 and 3) using GENILE.

6.2.1. Discussion

The projections visualized in Figure 5 shows the same type of digits placed
most of the times closer to each other using both the standard and incremen-
tal algorithms. In order to clarify the classifications and misclassifications of
all the digits, we ran the k-nearest neighbor (kNN) algorithm on the projec-
tions of the data with k = 5. This will be assumed as the middle value after
considering all the values of k from 1 to 10 in an odd manner. This enables
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Table 3: The confusion matrices. Left: Batch Laplacian Eigenmap (LE). Right: GENILE.

0 1 2 3
0 480 1 15 4
1 1 482 14 3
2 17 38 345 100
3 12 9 218 216

0 1 2 3
0 490 0 7 3
1 0 487 9 4
2 15 27 451 7
3 6 9 28 457
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Figure 6: Comparison Between GENILE and other Dimensionality Reduction Methods

these neighbors to vote for the class of the particular datapoint: the most
frequent digits among each digit’s five neighbors will be considered as that
particular digit’s group. The results of the kNN algorithm for both the ap-
proaches are shown in the form of a confusion matrix in Table 7. According to
the confusion matrix, the subtable on the left side shows the results of batch
laplacian eigenmap) whereas the subtable on the right shows the results of
the generalized incremental laplacian eigenmap (GENILE). It is clear from
the results of both the standard and incremental techniques that the latter
outperformed the other by showing the correct classification 1885 times out
of 2000. The standard approach shows the correct classification 1523 times
out of 2000, which is much less than the other. For further clarification, we
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Table 4: Classification Accuracy of MNIST Digit Dataset

Algorithn Classifier Data Length Dimensions Accuracy %
IPCA KNN 2000 784 (28 x 28) 77.44
LLE KNN 2000 784 (28 x 28) 80.16
Isometric Projection KNN 2000 784 (28 x 28) 82.62
LE KNN 2000 784 (28 x 28) 76.15
GENILE KNN 2000 784(28x28) 94.25

increased the number of digits in each class and tested its impact on the
classification accuracy compared with other incremental and manifold-based
learning algorithms. The comparative results are shown in Figure 6. There
is a clear sight of improvement by our method compared with the existing
batch version and other dimensionality reduction mechanism. The classi-
fication accuracy produced by our method is always above 90 % whereas
with all the other method including incremental principal component analy-
sis (IPCA) [31], local linear embedding (LLE) [11], isometric projection [32]
and laplacian eigenmap (LE) [12] the classification accuracy is always below
90 % as shown in Table 4. The reason of the high classification accuracy pro-
duced by our method is its point-by-point learning nature and its projection
to the eigenvector corresponding to the maximum eigenvalue which actually
made a very clear difference of improvement in the classification accuracy
compared with the existing batch laplacian eigenmap approach.

6.3. Experiment on the Banknote Authentication Data Set

Next we have chosen the banknote dataset taken from genuine and forged
banknote-like specimens [33]. This dataset comprises five attributes: 1) vari-
ance of wavelet transformed image, 2) skewness of wavelet transformed image,
4) entropy of image, and 5) class information. The dataset is organized into
two classes. We have tried to learn the manifold of this high-dimensional
dataset and tried to reduce the dimensions to properly visualize the dataset
in two dimensions. The dataset has a total of 1372 instances. The manifold
of the whole dataset is learned by using both the standard and our novel
incremental approach and the results in reduced dimensions are visualized in
Figure 7.
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All Points (1372) All Points (1372)

Figure 7: Left: Unfolding all 1327 points using standard LE. Right: Projections of all
1327 points using GENILE.

Table 5: The confusion matrices. Left: Batch Laplacian Eigenmap (LE). Right: GENILE.

0 1
0 757 5
1 26 539

0 1
0 762 0
1 11 554

6.3.1. Discussion

Here again the projections visualized in Figure 7 show the same category
of notes placed closed to each other in the low dimensional latent space. The
classification of both classes is clearly visible in both projections, but in order
to find out which algorithm has produced a slightly higher degree of accuracy
in terms of classifying the data properly, we again ran the k-nearest neighbor
algorithm on the reduced projections produced by both the algorithms. The
value of k is again taken as 5. We checked each datapoint’s five nearest neigh-
bors and labeled the datapoint based on the maximum number of datapoints
from each class. The results of both the experiments are shown in the form
of confusion matrix in Table 7, which clearly shows a slightly higher degree of
classification again produced by our novel incremental algorithm, something
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Table 6: Classification Accuracy of Banknote Dataset

Algorithn Classifier Data Length Dimensions Accuracy %
IPCA KNN 1372 5 77.23
Isometric Projection KNN 1372 5 94.52
LLE KNN 1372 5 95.21
LE KNN 1372 5 94.46
GENILE KNN 1372 5 95.92

which is very rarely found in any other incremental version of dimensionality
reduction methods as compared to their batch versions. Similarly here too
we have compared the classification accuracy of our proposed method with
other existing approaches which again includes IPCA [31], LLE [11] and iso-
metric projection [32] as shown in Table. 6. The classification accuracy of
our method is still higher compared with the other methods shown clearly in
Table 6.

6.4. Experiment on Cardiovascular Disease Dataset

This is a manually collected dataset from one of the co-authors of this
paper related to gathering more than one different type of attributes of the
patients which helped in designing a framework for labeling the patients
as cardiovascular or non-cardiovascular using standard supervised classifiers.
In this paper, we used this real time dataset to check the performance of
our novel incremental version of laplacian eigenmap in comparison with the
traditional approach. The features of the original dataset are reduced to
six by using a standard decision tree algorithm [34]. The reduced features
are then clustered and classified by using the standard k-means algorithm
so that patients of the same type come closer to each other in the higher
dimensional space. The total number of patients is 558 and each patient has
six attributes. The projections produced by both methods are visualized in
Figure 8

6.4.1. Discussion

In Figure 8 the projections produced by both the methods are not very
clearly seen, a confusion matrix is created which will enable us to find the
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All 558 Points All 558 Points

Figure 8: Left: Unfolding all 558 points using standard LE. Right: Projections of all 558
points using GENILE.

Table 7: The confusion matrices. Left: Batch Laplacian Eigenmap (LE). Right: GENILE.

0 1
0 391 4
1 7 156

0 1
0 394 1
1 5 158

difference in the classification accuracy between the classes produced by the
traditional batch and by our newly proposed incremental method. Accord-
ing to Table 7, the batch version has attained a classification accuracy of
98.02 percent, whereas the new algorithm attained a classification accuracy
of 98.93 percent, which is slightly higher than its batch version. The ratio-
nale behind using this manually collected dataset by one of the co-author
of this paper is to test the practical significance of the proposed method in
the paper and further comparing it with the other methods which includes
IPCA [31], LLE [11], isometric projection [32] and LE [12] shown in Table
8. The classification accuracy produced by our method is still higher with
very close difference with standard LE but very large difference with other
manifold-based learning and dimensionality reduction incremental and batch
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Table 8: Classification Accuracy of Banknote Dataset

Algorithn Classifier Data Length Dimensions Accuracy %
IPCA KNN 558 6 86.43
LLE KNN 558 6 84.23
Isometric Projection KNN 558 6 85.32
LE KNN 558 6 98.02
GENILE KNN 558 6 98.93

techniques.

7. Conclusion

Results concluded that the technique evolved by us in this paper can be
termed a purely incremental technique in that it is able to consider each
datapoint separately while processing the whole dataset, compared to other
incremental methods proposed in the literature which mostly do not work
separately on each instance during the calculation. Results have also shown
an always slightly higher classification accuracy produced by our method and
its strongly adaptable nature as compared to the standard laplacian tech-
nique, which is considered inapplicable to online data, especially in scenarios
where the data is coming in more than one chunk.

Future work will consider expanded information by mapping the input
data on both the feature space and the kernel hilbert space before the calcula-
tion of the laplacian matrix and the diagonal matrix. Time series information
will also be considered by using an echo state network.
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